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Abstract: The effect of polydispersity of nickel-silver core-shell nanoparticles (Ni-Ag NPs) on the 
conductivity of ink coatings was studied. Ni-Ag NPs of various average diameters (100, 220, and 
420 nm) were synthesized and utilized for the preparation of conductive inks composed of mono-
disperse NPs and their polydisperse mixtures. The shell thickness of synthesized Ni-Ag NPs was 
found to be in the range of 10–20 nm and to provide stability of a core metal to oxidation for at least 
6 months. The conductivity of metallic films formed by inks with monodisperse Ni-Ag NPs was 
compared with those formed by polydisperse inks. In all cases, the optimal conditions for the for-
mation of conductive patterns (weight ratio of monodisperse NPs for polydisperse composition, the 
concentration of the wetting agent, sintering temperature, and duration) were determined. It was 
found that metallic films formed by polydisperse ink containing 100, 220, and 420 nm Ni-Ag NPs 
with a mass ratio of 1:1.5:0.5, respectively, are characterized by the lowest resistivity, 10.9 µΩ·cm, 
after their thermal post-coating sintering at 300 °C for 30 min that is only 1.6 higher than that of bulk 
nickel. 

Keywords: core-shell nanoparticles; monodispersity and polydispersity; thermal sintering;  
conductive properties 
 

1. Introduction 
During the last years, nanoscience and nanotechnology have attracted much atten-

tion due to their great impact on the fabrication of functional nanomaterials with novel 
physical and chemical properties. Among nanosized particles, metal nanoparticles (NPs) 
are nowadays widely applied for the preparation of conductive coatings for electronic 
circuits and devices such as batteries, electro-optic devices, Radio Frequency Identifica-
tion (RFID) tags, thin-film transistors, transparent conductive electrodes, touch panels, 
and flexible displays [1–6]. Various methods of deposition of metal nanoparticles dis-
persed in a liquid vehicle, such as spin, spray, dip and rod coatings, screen, inkjet, flexo, 
and gravure printings are used for the fabrication of conductive films [6,7]. 

The conductivity of such coatings strongly depends on the type of metal and the 
tightness of nanoparticles packing in the deposited film [8,9]. Such tight packing is 
reached by post-coating sintering, which results in the formation of numerous contacts 
and percolation paths between metal NPs due to removal of organic components of inks 
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(e.g., polymeric stabilizers, wetting agents) and even welding of NPs. Such effect can be 
achieved by heating (thermal sintering), the action of intense light (photonic sintering), 
plasma, microwave, and chemical sintering [6,10]. 

As to the type of nanoparticles, currently, most conductive nanoinks are based on 
silver NPs. Silver is a noble metal, which is resistant to oxidation and possesses the highest 
electrical conductivity among metals. However, large-scale production of printed elec-
tronic devices requires low-cost nanoinks, in which silver as a conductive functional ma-
terial should be replaced by lower-cost metals with high electrical conductivity, for exam-
ple, copper and nickel. However, the specific challenge while utilizing NPs of such metals 
is their oxidation at ambient conditions. To overcome this disadvantage, NPs of these met-
als should be protected against oxidation, and the most effective approach toward obtain-
ing stable metal NPs applicable for conductive ink formulations is the formation of a dense 
shell composed of a protective non-oxidizable highly conductive material such as noble 
metals, i.e., formation of bimetallic core-shell NPs. Such hybrid NPs can be obtained by 
transmetalation, which is a galvanic displacement reaction when the surface of preformed 
core functions (and is sacrificed) as a reducing agent for the second metal with higher 
reduction potential. By this process, the reduction of the second metal occurs only on the 
surface of the core metal, resulting in the formation of a metal shell on the surface of the 
core metal [6,11]. 

It can be noticed that most of the inks for the preparation of conductive coatings are 
based on metal NPs with monodisperse size distribution [12,13]. Although monodisperse 
NPs provide better stability of ink formulations, which is especially important for optimal 
printing performance (avoiding aggregation and precipitation of NPs and nozzle clog-
ging) [14], some specific requirements have to be addressed and several specific chal-
lenges should be overcome for the obtaining nanoparticles with monodisperse size distri-
bution. To improve the monodispersity and prevent aggregation of metal NPs, the mass 
ratio of the stabilizers-to-precursors in the synthesis process should be usually high [15], 
which not only increases the cost of the fabrication of electronic circuits but can also de-
crease their conductivity due to the presence of a large amount of organic insulating ma-
terial. In addition, it is also quite challenging to prepare the dispersions of monodisperse 
NPs of high concentrations (high metal loading is required for obtaining highly conduc-
tive patterns) and on a large scale. Considering the geometric aspects of coating, more 
tight packing of NPs can be obtained while using polydisperse nanoparticles (voids be-
tween large NPs are filled with small NPs), and hence higher conductivity can be 
achieved. In this context, we should ask, is it rational to pay so much effort to obtain per-
fect monodisperse systems? Is it crucial the obtaining metal NPs with monodisperse size 
distribution for the preparation of highly conductive ink coatings? 

It was found that the conductivity of nanocomposite materials can be improved by 
using NPs with bimodal size distribution. For example, Balantrapu et al. [16] obtained the 
lowest resistivity in the sintering temperature range of 125–200 °C for the ink coating com-
posed of a mixture of silver NPs with sizes 12 and 80 nm. The enhancement of conductiv-
ity was also observed for the metallic film containing a mixture of Ag NPs with sizes 9 
and 170 nm as compared with the one based on NPs with monodisperse size distribution 
[17]. In our recent work, we found that the ink coatings composed of Ni-Ag NPs with 
bimodal sizes distribution (70 and 250 nm) had higher conductivity than the films based 
on monomodal NPs [9]. 

In the present research, we focused on the effect of polydispersity of Ni-Ag NPs on 
the final conductive properties of metallic coatings. Polydisperse dispersions of Ni-Ag 
NPs for ink formulation were prepared by mixing of three types of Ni-Ag NPs with dif-
ferent average sizes synthesized by previously developed methods [9,18,19] with some 
additional improvements. The conductive properties of ink coatings composed of mono-
disperse and polydisperse Ni-Ag NPs were analyzed and compared. 
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2. Materials and Methods 
2.1. Materials 

Nickel sulfate hexahydrate (NiSO4·6H2O), sodium borohydride (NaBH4), sodium car-
boxymethyl cellulose (CMC) with MW 90000, and amino methyl propanol (AMP) were 
purchased from Sigma-Aldrich (Poznań, Poland). Citric acid (CA) and silver nitrate 
(AgNO3) were products of Avantor Performance Materials Poland S.A (Gliwice, Poland). 
Wetting agent (TEGO WET KL 245, polyether siloxane copolymer), was obtained from 
Evonik (Essen, Germany). 

2.2. Synthesis of Ni-Ag NPs 
To obtain Ni-Ag NPs with different average sizes, their synthesis was performed by 

using an improved two-stage process recently developed in our lab [9,18,19], in the pres-
ence of various complexing agents. At the first stage, Ni NPs were synthesized by the 
“wet” chemical process, while at the second stage, the Ag shell was formed on the surface 
of Ni NPs by the transmetalation reaction. 

Ni NPs were obtained by the reduction of Ni ions in complex with CA and AMP, in 
the presence of sodium CMC (MW = 90,000) as a stabilizer. In the optimized process, 30 
mL of an aqueous solution of CMC (0.5%) and 12 mL of the NiSO4 aqueous solution (0.2 
M) were mixed and then 12 mL of the aqueous solution of CA (complexing agent) was 
added to obtain its final concentration 0.15 M. Thereafter, AMP solution with concentra-
tion 80% was added to the above mixture to adjust the required pH value in the range of 
6.5–12. Finally, 30 mL of a reducing agent, NaBH4, a solution with a concentration of 0.05 
M was injected into the reaction mixture. The mixture was stirred at 850 rpm for 60 min. 
For obtaining Ni NPs with different average sizes, the different amounts of AMP and the 
presence/absence of CA in the reaction mixture were used. In addition, the properties of 
Ni NPs obtained in the presence of AMP were compared with the properties of Ni NPs 
synthesized in the reaction mixtures of the same pH range, but adjusted with 0.1M NaOH. 

At the next stage of Ni-Ag NPs synthesis, to the obtained dispersion of Ni NPs, 45 
mL of the aqueous dispersion of the precursor of a silver shell (AgNO3), with concentra-
tions in the range of 0.01–0.08 M was added. The synthesis was performed for 60 min at 
room temperature while stirring at 850 rpm. 

2.3. Ink Composition and Conductive Coatings Fabrication 
The synthesized Ni-Ag NPs were washed two times with distilled water and concen-

trated to 25 wt% by centrifugation (7000 rpm, 20 min). Then, dispersions of these NPs with 
various average sizes as well as their mixtures with various weight ratios (polydisperse 
dispersions) were used for ink preparation. The physicochemical properties of NPs based 
inks were optimized by using TEGO WET KL 245 (Evonik, Essen, Germany) as a wetting 
agent at various concentrations. The obtained inks were homogenized by using an ultra-
sonic bath for 30 min at 20 kHz. The ink coatings were formed on glass slides by using a 
bar coating method (with 0.05 mm of wire winding rod) [20]. After the deposition process, 
the ink layer was dried on a hot plate at 60 °C for 10 min and then the obtained films were 
sintered by heating at various temperatures (250–350 °C) during 15–90 min. 

2.4. Characterization 
The hydrodynamic diameter of nanoparticles according to number distribution was 

measured by the dynamic light scattering (DLS), and the zeta potential by the microelec-
trophoretic method using a Zetasizer Nano Series system (Malvern Instruments, Malvern, 
Worcestershire, UK). Each value was determined as an average of three runs with at least 
20 measurements. All analyses were performed with aqueous dispersions of NPs at 25 °C. 
The optical properties of the dispersions of Ni-Ag NPs were studied by UV-Vis spectro-
photometry (UV-1800, Shimadzu, Kyoto, Japan). The chemical composition of Ni-Ag NPs 
was evaluated by using freshly synthesized dispersion of NPs dried in vacuum at room 
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temperature by the use of X-ray photoelectron spectroscopy (XPS) with an ESCA/XPS 
equipped with a semispherical analyzer EA15 (Prevac, Rogów, Poland) using Al-Kα 
(1486.6 eV) radiation with a power of 180 W. For the Ag 3d5/2 line, the resolution of the 
instrument was 0.9 eV, and the spectra were acquired at a pressure of 2 × 10−9 mbar. The 
efficiency of the reduction process of Ni ions was evaluated by the Energy Dispersive X-
ray fluorescence technique (EDXRF, FISCHERSCOPE X-RAY XDL 230, Sindelfingen, Ger-
many). To establish the concentration of Ni NPs, the calibration curve was defined by the 
measurement of the intensity of X-ray fluorescence at various concentrations of Ni ions. 

The ink formulation was deposited by using a hand coater (Kontech, Łódź, Poland). 
The morphology (shape, size) of synthesized NPs and their coatings were visualized by 
SEM (LEO Gemini 1530, Zeiss, Jena, Germany). 

The thickness of coatings was measured by the EDXRF method (FISCHERSCOPE X-
RAY XDL 230). The sintering process was performed on a hot plate in an atmospheric 
environment. The sheet resistance of metallic coatings was determined by a four-point 
probe method (Milliohm Meter, Extech Instruments, Nashua, NH, USA). The values of 
the resistivity were calculated by multiplying the values of the sheet resistance by the 
thickness, and the conductivity was established as the reciprocal value to the resistivity 
[21]. 

3. Results and Discussion 
Taking into account the geometrical aspects, it seems to be rational, that the polydis-

persity of metallic NPs will favor the formation of films with higher conductivity as com-
pared with monodisperse NPs, since smaller NPs can occupy voids between larger NPs 
that will lead to the formation of a metallic layer with tightly packed structure. To confirm 
experimentally this assumption, the coatings formed by monodisperse Ni-Ag NPs of var-
ious sizes and by their mixture were fabricated in a multistep process and their conduc-
tivities were compared. The scheme of preparation of coatings composed of Ni-Ag NPs of 
different sizes is shown in Figure 1. 

 
Figure 1. Scheme of the preparation of conductive coatings based on Ni-Ag NPs: (a) optimization 
of the process of synthesis of Ni NPs with different size distributions; (b) formation of Ni-Ag NPs 
by transmetalation method; (c) preparation of ink containing Ni-Ag NPs with various sizes; (d) 
fabrication of conductive metallic coating. 

3.1. Preparation of Polydisperse Ni-Ag NPs Dispersion 
To prepare polydisperse Ni-Ag NPs dispersion, the previously developed methods 

of synthesis Ni-Ag NPs were adopted with some modification [18,19]. These two-step 
methods consist of a synthesis of Ni NPs followed by silver shell formation by transmeta-
lation reaction [11]. At the first step, NiSO4 (0.2M) was used as a precursor of Ni NPs, 
while NaBH4 as a reducing agent, the reduction was performed in sodium carboxymethyl 
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cellulose solution (0.5%) as a stabilizer. The synthesis of Ni NPs was carried out at the 
deficiency (0.05M) of the reducing agent that is important for the stage of the formation 
of a silver shell by transmetalation [11,22]. Due to its deficiency, all NaBH4 is consumed 
in the reduction of Ni ions that prevents the reduction of Ag ions to Ag NPs instead of 
reduction of Ag ions on the surface of Ni NPs with the formation of the silver shell. As a 
result of this process, the Ni NPs with an average size of about 250 nm were obtained 
(Supplementary Materials, Figure S1A). It is a well-known phenomenon that at the alka-
line pH the redox potential of sodium borohydride increases, which favors the reduction 
of metal ions [23]. Therefore, the reduction of Ni ions was performed in an alkaline me-
dium. It was achieved by the addition of AMP or NaOH. The addition of both reagents to 
only slightly alkaline pH~8 results in precipitation of green gelatinous Ni(OH)2. To avoid 
its formation, citric acid (CA) as a complexing agent of Ni ions was used. Such an ap-
proach was also reported by others [24–26]. In the present research, CA with a concentra-
tion of 0.15M was used that is below the stoichiometric balance with Ni ions, which pro-
vides its total consumption by Ni ions with the formation of Ni-CA complex. Again, this 
is important for the formation of a silver shell by transmetalation, since CA is also a good 
reducing agent for Ag ions, and its excess in the reaction mixture can lead to the formation 
of Ag NPs along with the formation of Ag shells. The decreasing of the size of Ni NPs 
from about 250 to 220 nm (Supplementary Materials, Figure S1C) in the presence of citric 
acid (without AMP and NaOH) may indicate the process of Ni-CA complex formation. 

The efficiency of the reduction of Ni ions to Ni NPs for various compositions and pH 
was studied by the EDXRF method, and the obtained results are presented in Figure 2. 

 
Figure 2. The dependence of the efficiency of Ni2+ reduction on the conditions of the synthesis pro-
cess obtained from the EDXRF data: without complexing agents (blue bar); with citric acid (green 
bar); with complexing agents (black bars), with CA (citric acid) and NaOH (grey bars); with an 
excess of AMP (amino methyl propanol) (red bar). 

As seen from Figure 2, the amount of reduced Ni ions and, accordingly, the amount 
of formed metallic Ni increase from 13% to 91% and from 11% to 28% in the presence of 
AMP and NaOH, respectively with increasing pH from 6.5 to 12.0. This data testifies also 
to much higher efficiency of Ni ions reduction in the presence of AMP as compared with 
NaOH. The greater impact of AMP in comparison with NaOH can be explained by the 
formation of mixed Ni complex with AMP, which contains two functional complexing 
groups, amine and hydroxyl, and with CA (AMP-Ni-CA). It is worth noting that in the 
case of AMP excess (pH~12) without CA, the dissolution of Ni(OH)2 occurs that follows 
by changing the color of the Ni2+ solution to dark blue which indicates the formation of 
Ni-AMP complex. At excess of AMP, the efficiency of the reduction process was slightly 
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lower (78%, red bar) than in the presence of both complexing agents (91%, black bar) that 
can also testify to the formation of the mixed AMP-Ni-CA complex. 

Three types of Ni NPs: synthesized at pH 9.5 with CA and AMP, at pH 12 with CA 
and AMP, and at pH 12 with an excess of AMP were characterized by the size and poly-
dispersity index. As seen from the data presented in Table 1, the size and polydispersity 
strongly depend on the conditions of the synthesis. 

Table 1. Dependence of average size and polydispersity index for the dispersion of Ni NPs on 
synthesis conditions. 

Synthesis Conditions Average Size [nm] Polydispersity Index (PDI) 
AMP + CA at pH 9.5 180 ± 15 0.152 ± 0.033 
AMP + CA at pH 12 80 ± 10 0.093 ± 0.021 

AMP at pH 12 400 ± 25 0.211 ± 0.029 

In the presence of both complexing agents, AMP and CA, much smaller NPs with 
average sizes of 80 and 180 nm are formed at pH 12 and 9.5, respectively, in comparison 
with 400 nm in the presence of only AMP as a complexing agent. More data on the effect 
of complexing agents on Ni NPs size distribution is presented in the Supplementary Ma-
terials (Figure S1). 

As was found, the synthesized Ni NPs are not stable and totally oxidize in aqueous 
dispersion after 4–5 h of storage. To stabilize Ni NPs against oxidation, a protective silver 
shell was formed on their surface by transmetalation reaction, which consists of the re-
duction of silver ions on the surface of obtained Ni NPs, which play the role of a reducing 
agent. As was reported previously [18], to prepare a stable protective silver shell on Ni 
NPs, the transmetalation process has to be optimized. The silver film should be as thin as 
possible in order to decrease the amount of expensive silver, but thick and dense enough 
to ensure the long-term stability of Ni-Ag NPs to oxidation at ambient conditions. 

First, we studied the effect of AgNO3 concentration in the range of 0.0–0.08 M, added 
to the dispersions of synthesized Ni NPs with different average sizes by measuring the 
size of obtained Ni-Ag NPs (Figures 3 and 4A). The obtained results indicate that the 
thickness of the silver shell can be controlled by the concentration of Ag ions in the reac-
tion, and the diameter of all NPs increases by the value of ~68 nm after the formation of 
the silver shell at the highest AgNO3 concentration. We selected the lowest AgNO3 con-
centration, at which there were the lowest indications of oxidation of formed Ni-Ag NPs. 
Such AgNO3 concentrations were found to be 0.01, 0.04, and 0.01 M for optimal coating of 
Ni NPs with average sizes 80, 180, and 400 nm, respectively (Supplementary Materials, 
Figure S1). The average sizes of obtained Ni-Ag NPs at these AgNO3 concentrations were 
found to be 100, 220, 420 nm, respectively (in the text below these NPs are designated as 
100-Ni-Ag NPs, 220-Ni-Ag NPs, and 420-Ni-Ag NPs). Therefore, the shell thicknesses for 
all synthesized core-shell NPs are in the range of 10–20 nm. SEM images (Figure 5) of core-
shell NPs testify to their more or less spherical morphology, and their average sizes cor-
relate well with the sizes measured by DLS. 
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Figure 3. The dependence of the size of Ni-Ag NPs on the concentration of AgNO3 in the reaction 
mixture. Ni-Ag NPs obtained at the optimal concentration of AgNO3 are marked by red circles. 

 
Figure 4. (A) The size distributions of the individual dispersions and (B) polydisperse dispersions of Ni-Ag NPs as mix-
tures of Ni-Ag NPs with ratio 1:1:1 and 1:1.5:0.5. 

 
Figure 5. Scanning Electron Microscopy (SEM) images of Ni-Ag NPs with the size distribution of about 100 (A); 220 (B) 
and 420 nm (C). 

Figure 6 presents the UV-visible spectra of various NPs. As seen, the spectra of Ni-
Ag core-shell NPs are characterized by distinct peaks at about 420 nm typical for surface 
plasmons of nanosized silver (in forms of spheres, islands, plates, rings, and so on) [27] 
while bare Ni NPs have no peaks in the spectrum. The intensity of plasmon peaks in-
creases with an increase of Ag shell thickness. 

A B C 

500 nm 500 nm 500 nm 
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Figure 6. Absorbance spectra of Ni NPs (black curve) and Ni-Ag NPs at various concentrations of 
AgNO3. 

The chemical composition of synthesized NPs was evaluated by XPS analysis. Table 
2 supports the XPS spectra (presented in Figures 7 and 8) and shows the measured atomic 
percentages of metallic Ni and Ag as well as their oxides. 

Table 2. Chemical composition of synthesized Ni-Ag NPs according to XPS. 

Average Size [nm] 
Atomic Percentage [%] 

Metallic Nickel 
Nickel Oxide 

(NiO) Metallic Silver Silver Oxide 

100 59 41 93 7 
220 84 16 98 2 
420  54 46 80 20 

 
Figure 7. XPS spectra of Ni-Ag NPs with different sizes—analysis of nickel: (A) 100 nm, (B) 220 nm, (C) 420 nm (metallic 
Ni—black curves, NiO—green curves, satellite—grey curves). 

 
Figure 8. XPS spectra of Ni-Ag NPs with different sizes—analysis of silver: (A) 100 nm; (B) 220 nm; (C) 420 nm (spectra 
bands: metallic Ag—yellow curve, AgO—black curve). 

  

A B C 

A B C 
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Figures 7 and 8 show the Ni2p and Ag3d XPS spectra, respectively, obtained for Ni-
Ag NPs with different sizes: (A) 100 nm, (B) 220 nm, (C) 420 nm. The spectra are similar 
for all samples and display two main component peaks regarding nickel (Figure 7) as well 
as silver (Figure 8) analysis. At binding energies of about 853 and 860 eV the characteristic 
peaks of metallic nickel and nickel oxide, respectively were observed in Ni2p3/2. In Figure 
8, for Ag3d5/2 at binding energies of about 368 and 367 eV, the peaks of metallic silver and 
AgO, respectively, were detected. 

It can be seen, that the atomic percentages of metallic Ni in the dispersions of Ni-Ag 
NPs with average sizes 100 and 420 nm are comparable to previously published values 
[9,18] and are higher than 50%, while for the dispersion of NPs with the size of 220 nm it 
is much higher, 84%, which can be the result of the different conditions of synthesis pro-
cess (pH 12 vs. 9) Miyakawa et al. [28] noticed that pH of the dispersion of metallic nano-
particles is an important factor for preferential Ag deposition on the NPs core, and the 
most favored Ag shell formation on the Cu core was observed at pH 9. 

The high content of Ni oxide presented in Table 2 and XPS spectrum (Figure 7) may 
be explained as follows. NiO is formed on the surface of Ni NPs at the stages of their 
synthesis and washing under ambient conditions. Therefore, the surface of such NPs only 
partially (if not at all) undergoes the transmetalation reaction. These NPs are a small por-
tion of a total amount of Ni NPs, but only they determine the Ni and Ni oxide contents 
measured by XPS since for Al Kα excitation, the information on chemical composition can 
be obtained at the sample depth <10 nm, [29] and Ni and NiO cannot be identified in Ni-
Ag NPs with Ag shell thickness of 10–20 nm. Most Ni NPs do not undergo oxidation, or 
oxidation is negligible during pre-transmetalation stages, and a dense Ag shell is easily 
formed on their surface. This explanation correlates well with the fact that after six months 
of storage at ambient conditions, the atomic percentage of NiO detected by the XPS 
method for all types of Ni-Ag NPs does not change, and more important that there are no 
indications of their oxidation in dispersions and inks as well indications of conductivity 
loss of coatings (see below) during the same period of storage (the uncoated Ni NPs totally 
oxidized after 4–5 h of the dispersion storage). These findings clearly indicate the long-
term stability of Ni NPs coated by Ag shell to oxidation at ambient conditions. 

3.2. Ink Composition and Fabrication of Conductive Coatings 
To evaluate the size distribution of NPs in mixed dispersion, the model dispersion 

containing Ni-Ag NPs with average sizes 100, 220, and 420 nm and weight ratio 1:1:1 was 
prepared. The result is presented in Figure 4B. As clearly seen, this dispersion is charac-
terized by high polydispersity, (PDI 0.560 ± 0.050), as compared with monosized disper-
sions (Figure 4A). 

To optimize the composition of Ni-Ag NPs ink to be used for conductive coatings, 
four types of dispersions with various contents of different Ni-Ag NPs were prepared and 
concentrated to 25 wt% by washing/centrifugation. Then TEGO WET KL 245 as a wetting 
agent was added at various concentrations as described in our previous reports [9,19]. 
After homogenization by ultrasound, the inks were deposited on glass slides by a bar 
coating method (with 0.05 mm of wire winding rod). The optimal concentrations of wet-
ting agents were determined optically by observation of the quality of formed coatings 
after the drying process (on a hot plate at 60 °C for 10 min). 

The main requirements for the structure of coatings are the lack of holes and cracks. 
The optimal concentrations were found to be 0.025%, 0.05%, and 0.025% for Ni-Ag NPs 
with average sizes 100, 220, and 420 nm, respectively, and 0.35% for the polydisperse mix-
ture (Figure S2, Supplementary Materials). After coating and drying, the obtained films 
were sintered to remove the insulating layer of stabilizer from the surface of Ni-Ag NPs 
and to form stable joints between NPs. The sintering was performed by heating at tem-
peratures in the range of 250–350 °C for 15 to 90 min. The electrical conductivities of ob-
tained films were calculated from the experimentally measured resistivities (Figure S3, 
Supplementary Materials) The thicknesses of all coatings, composed of Ni-Ag NPs with 
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average sizes 100, 220, and 420 nm and the mixture of them after the sintering process 
were similar (~2 µm, Figure S4, Supplementary Materials). The obtained results indicated 
that for all types of coatings based on Ni-Ag NPs, the optimal sintering temperature which 
enables obtaining the best conductivity was about 300 °C for 30 min heating (Figure 9). At 
these conditions, the values of conductivity of metallic films deposited with the use of 
monodisperse Ni-Ag NPs with average sizes 100, 220, and 420 nm were found to be 
5.43·106, 6.86·106, and 4.86·106 S/m, respectively, and in the case of model polydisperse NPs 
the conductivity increases to 7.87·106 S/m. These values are as high as 38, 48, 34, and 55% 
of bulk Ni conductivity, respectively. Significant improvement in conductivity of films 
based on polydisperse NPs is a result of the better packing when smaller particles fill the 
voids between larger particles thus providing their tight packing on the surface and ena-
bling an effective merging during sintering. 

 
Figure 9. The dependence of the conductivity (in comparison to bulk nickel) of metallic films 
based on Ni-Ag NPs with different average sizes and their mixture (at 1:1:1 weight ratio) on the 
temperature of sintering (30 min). 

Since the highest conductivity was obtained with a coating formed by polydisperse 
dispersion, the optimization of its composition was performed. Figure 10 presents the 
conductivity (as a percent of the conductivity of bulk Ni) of metallic films after sintering 
at optimal conditions as a function of the weight ratios of individual NPs, which form 
polydisperse dispersion. The highest increase of conductivity was observed for dispersion 
with a 1.0:1.5:0.5 weight ratio of NPs with average sizes 110, 220, and 420 nm. The calcu-
lated values of resistivity (by multiplying the thickness ~2 µm by the value of sheet re-
sistance 40 ± 5 mΩ/□) and conductivity (as the reciprocal value of resistivity) was 10 
µΩ·cm and 9.9·106 S/m that is 69% of the bulk Ni conductivity, respectively. In compari-
son, the sheet resistance recently reported for coatings based on Ni-Ag NPs, was only 11 
mΩ/□ [30], but this value was obtained after sintering at a much higher temperature (850 
°C). Since the thickness of the coating was not indicated in this report, it is difficult to 
compare the conductivities of the metallic coatings. The resistivity of films composed of 
Ni NPs after optimization of conditions of flash-light sintering was found to be 76.34 
µΩ·cm [31], which was almost two times higher than obtained in the presented research. 
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In addition, the stability of those films against the oxidation process was not analyzed.

 
Figure 10. The dependence of the conductivity compared to the bulk nickel for metallic films 
formed with a mixture of Ni-Ag NPs with different size distributions on their weight ratio after 
sintering at optimal conditions (300 °C, 30 min). 

To support our statement that significant improvement in conductivity of films based 
on polydisperse NPs is a result of their tighter packing compared to monodisperse NPs, 
the SEM analysis of sintered films was performed. Figure 11 shows SEM images of coat-
ings composed of individual Ni-Ag NPs as well as coating composed of polydisperse NPs. 
The coating conditions and post-coating treatment were the same for all kinds of NPs. As 
clearly seen, the coating composed of the polydisperse NPs is better packed compared to 
those composed of monodisperse NPs. In addition, for all coatings, the changes in the 
shape and size of NPs are observed, but in the case of polydisperse NPs better coalescence 
and packing are obvious. Actually, NPs are well merged and form continuous films, 
which ensure their highest conductivity among the other studied coatings. 

 
Figure 11. SEM images of metallic coatings formed by individual Ni-Ag NPs with different average sizes and by their 
mixture at an optimal weight ratio (1.0:1.5:0.5): (A) after drying at 60 °C for 10 min and (B) after sintering at 300 °C for 30 
min. 
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4. Conclusions 
There is no simple answer to the question “is it rational to put so much effort into 

obtaining a perfect monodisperse system”? Generally, it depends on the intended appli-
cation, e.g., for medical applications where the interaction of NPs with living cells/tis-
sues/organs strongly depends on size it is crucial, while in applications like the one pre-
sented in this paper, where metal NPs were used to form compact coatings with numerous 
contact points between them to provide high conductivity, polydisperse NPs can offer 
better results than monodisperse ones. One more challenge while using metal NPs is their 
fast oxidation under ambient conditions. Therefore, the nickel-silver core-shell NPs, in 
which Ag shell provides stability of Ni core to oxidation, were synthesized, and such NPs 
were stable for at least 6 months both in dispersion and in the coating as well. 

It was also clearly demonstrated that the polydisperse composition of metal NPs be-
ing used for conductive coatings provides better conductivity as compared with original 
monodisperse NPs used for ink formulation. The highest conductivity of the coatings 
based on polydisperse NPs was found to be 69% of that for bulk Ni. 

We believe that such ink coatings composed mainly of low-cost non-noble metals 
with high electrical conductivity can have great potential applications in the printed elec-
tronics industry and will contribute to developing an efficient and low-cost manufactur-
ing route for electronic devices. 

Supplementary Materials: The following are available online at www.mdpi.com/1996-
1944/14/9/2304/s1, Figure S1. The size distribution of Ni NPs as the results of synthesis: (A) without 
complexing agents (Ni NPs ~250 nm); (B) with CA and AMP at pH~9.5, Ni NPs ~ 80 nm (green 
curve) and pH~12.0, Ni NPs ~ 180 nm (red curve); (C) with CA, Ni NPs ~ 220 nm (green curve) or 
excess of AMP, Ni NPs ~ 400 nm(red curve)., Figure S2: XPS spectra of Ni-Ag NPs with different 
size distribution—analysis of nickel: (A) 100 nm; (B) 220 nm, (C) 420 nm (spectra bands: metallic 
Ni—black curves, NiO—green curves, satellite—grey curves)., Figure S3. XPS spectra of Ni-Ag NPs 
with different size distribution —analysis of silver: (A) 100 nm; (B) 220 nm, (C) 420 nm (spectra 
bands: metallic Ag—yellow curve, AgO—black curve)., Figure S4: Visualization of the quality of 
obtained metallic coatings composed of Ni-Ag NPs with different average sizes and the mixture of 
them, after drying (60 °C, 10 min),: (A) without wetting agent; (B) with the optimal concentration of 
TEGO WET KL 245 as a wetting agent., Figure S5: The dependence of the resistivity of metallic films 
based on Ni-Ag NPs with different average sizes and their 1:1:1 mixture on sintering temperature 
of (heating duration 30 min)., Figure S6: The thickness of the ink coatings composed of Ni-Ag NPs 
with average sizes (A) 100 nm, (B) 220 nm; (C) 420 nm and (D) their mixture after the sintering 
measured by the EDXRF (Energy Dispersive X-ray fluorescence) method. 
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