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Abstract: The operational performance of cantilever composite structures can benefit from both stiff-
ness tailoring and geometric design, yet, this potential has not been fully utilized in existing studies.
The present study addresses this problem by simultaneously optimizing layer and taper angles of
cantilever laminates. The design objective is selected as minimizing the average deflection of the tip
edge subjected to shear loads while keeping the length and total volume constant. The plate stiffness
properties are described by lamination parameters to eliminate the possible solution dependency on
the initial assumptions regarding laminate configuration. The responses are computed via finite ele-
ment analyses, while optimal design variables are determined using genetic algorithms. The results
demonstrate that the plate aspect ratio significantly influences the effectiveness of stiffness tailoring
and tapering as well as the optimal layer and taper angles. In addition, concurrent exploitation of
the lamination characteristics and plate geometry is shown to be essential for achieving maximum
performance. Moreover, individual and simultaneous optimization of layer and taper angles produce
different optimal results, indicating the possible drawback of using sequential approaches in similar
composite design problems.

Keywords: structural optimization; composite plates; shear load; tapering; lamination parameters

1. Introduction

Engineering structures are typically designed in geometries that yield optimal de-
formation behavior under operating loads. One particular group of structures whose
shape can be optimized to improve load-carrying performance is the tapered cantilevers,
which are used in various applications such as propeller and turbine blades [1] or aircraft
wings [2]. Hence, the design and analysis of these structures have received significant
attention in the literature. For instance, Dado and Al-Sadder [3] studied the large deflection
behavior of cantilever beams with different taper ratios under various types of loading.
Ansari et al. [4] compared the static and dynamic deflection characteristics of axially loaded
microcantilevers with rectangular and trapezoidal profiles. Afterward, Plaut and Virgin [5]
determined the optimal material distribution to minimize the vertical deflection of the tip
of a horizontal cantilever under self-weight. Kien and Gan [6] examined the influence of
the material non-homogeneity as well as taper and aspect ratios on the large deflection
behavior of the beams subjected to end forces. Recently, Zhao et al. [7] used the finite
element method to investigate the nonlinear bending behavior of functionally graded
trapezoidal nanocomposite plates under thermo-mechanical loading.

Cantilever plates made of fiber-reinforced composites have also been extensively
studied since their operational responses can be altered by modifying the fiber angles and
stacking sequence of the layers. For example, Kılıc et al. [8] investigated the deflections
at the free ends of orthotropic cantilever beams under bending and shear for different
height-to-length ratios and fiber angles. Thinh and Ngoc [9] analyzed the static behavior of
piezoelectric cantilever composite plates with two different stacking sequences. Later, Vo
and Thai [10] studied the static response of shear-loaded composite beams with various
length-to-thickness ratios and fiber angles. Lately, Doeva et al. [11] calculated exact ana-
lytical solutions for the static deflection of cantilevered laminates with different stacking
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sequences considering tip and uniformly distributed loads. In another recent study, large
deflection analyses were carried out for cantilever composite beams using analytical and
experimental approaches [12].

There are several studies that consider cantilever laminated plates that are tapered
along their length. For instance, Franco Correia et al. [13] minimized the volume of a
cantilever laminate with rectangular planform by stepwise tapering the thickness while re-
specting a maximum transverse deflection constraint. Mota Soares et al. [14] minimized the
weight of a width-tapered back-swept cantilever composite panel subjected to maximum
stress constraints. Kim et al. [15] minimized the weight of a tapered cantilever laminate
by optimizing the thickness and stacking sequences of constituent discrete patches while
considering combined deflection and strength constraints. A couple of studies investigated
the static stability of width-tapered cantilever laminated beams under compression [16]
and shear [17]. Blasques and Stolpe [18] identified optimal fiber orientations and laminate
thicknesses of cantilever composite beams for maximum stiffness and minimum weight.

In the design of fiber-reinforced composites, the optimal solutions can depend on the
initial assumptions on the laminate arrangement such as number layers and layer thick-
nesses. As a remedy, the lamination parameters approach was introduced to determine
globally optimal laminate configurations [19]. This formulation method also provides con-
vex solutions for various quantities such as natural frequencies, buckling load, and effective
stiffness [20–22] except for certain metrics such as the forced vibration responses [23,24].

There are also available studies that use lamination parameters in the design of
cantilever composites. For instance, Hammer et al. [25] used an optimization scheme
based on lamination parameters to maximize the stiffness of a cantilever plate exposed to
transverse loading. Liu et al. [26] conducted a similar study for cantilever plates subjected
to multi-axial loading. Setoodeh et al. [27] minimized the compliance of cantilever variable-
stiffness laminates using lamination parameters. Later, the same problem was investigated
in a couple of other studies that imposed additional fiber steering constraints on the
solution [28,29]. Lamination parameters did not find extensive application in the design
of tapered composites. In one study, they were used for multi-scale analysis of thickness-
tapered laminates involving ply-drops [30].

As shown in the literature review, the deformation mechanics of tapered cantilever
laminated plates has been broadly studied. However, to the best of the author’s knowledge,
concurrent optimization of geometrical tapering and laminate stiffness has not been previ-
ously addressed using direct layer angles or lamination parameters. Studies that involve
the use of lamination parameters within topology optimization (e.g., [31]) are also scarce in
general. The current study focuses on these gaps by considering the stiffness maximiza-
tion problem for tapered cantilever laminates under shear. The lamination parameters
governing the material stiffness properties are optimized together with the taper angle to
minimize the average tip deflection. The influence of the plate aspect ratio on the optimal
results is investigated. The results provide insights into the design requirements concern-
ing the geometry and lamination of the cantilever composites for minimum compliance,
which is an important criterion in diverse applications. The findings also demonstrate that
geometric design and stiffness tailoring should be simultaneously exploited to achieve
maximum operational performance.

2. Materials and Methods
2.1. Cantilever Laminated Plate

Figure 1 shows the schematic diagrams of the considered (a) non-tapered and (b)
width-tapered cantilever laminated composite plates. The plates have identical thicknesses
(t), lengths (l), and surface areas (A). The width of the rectangular plate is denoted by w.
Distributed shear loads with total magnitude F are applied to the tip of the plates.
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Figure 1. Schematic diagrams of (a) non-tapered and (b) width-tapered cantilever laminated composite plates with identical thickness,
length, and surface areas.

2.2. Stiffness Formulation

The laminate stiffness properties are described by means of lamination parameters,
which are non-dimensional variables that govern the integral stiffness characteristics [32].
The studied laminates are assumed to consist of many homogenously distributed balanced
layers. Therefore, the formulation involves two lamination parameters: V1 and V3 [33,34],
which are defined as [35] {

V1
V3

}
=

1
t

N

∑
k=1

tk

{
cos(2θk)
cos(4θk)

}
(1)

where N is the number of layers, ti are layer thicknesses, and θi are layer angles.
The values of the lamination parameters are constrained by the following relations [36]:

−1 ≤ V1 ≤ 1
(2V2

1 − 1) ≤ V3 ≤ 1
(2)

Figure 2 illustrates the feasible region of lamination parameters and sample design
points with corresponding layer angles. The boundary points require certain layer angles
during stacking-sequence retrieval, while many different configurations can be used for
the interior points. The responses obtained with proper stacking-sequences converge to
the solutions computed using the two lamination parameters for the increasing number of
layers [37,38].

Figure 2. Feasible region of lamination parameters and sample design points with corresponding
layer angles.

Using the longitudinal modulus E11, transverse modulus E22, in-plane shear modulus
G12, and major Poisson’s ratio ν12; the material invariants (Ui) used within the formulation
are defined as follows [39]:
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U1
U2
U3
U4
U5

 =


3/8 3/8 1/4 1/2
1/2 −1/2 0 0
1/8 1/8 −1/4 −1/2
1/8 1/8 −/4 −1/2
1/8 1/8 −1/4 1/2




E11
2/(E11 − E22ν12

2)
E11E22/(E11 − E22ν12

2)
E11E22ν12/(E11 − E22ν12

2)
G12

 (3)

In terms of lamination parameters and material invariants, the constitutive matrix
relating in-plane strains to stresses is stated as [35]

Cp =

U1 U4 0
U4 U1 0
0 0 U5

+

U2 0 0
0 −U2 0
0 0 0

V1 +

 U3 −U3 0
−U3 U3 0

0 0 U3

V3 (4)

The constitutive matrix for the transverse shear deformation can be expressed as [39]

Ct =
5
6

[
G31 + (V1 + 1)(G23 − G31)/2 0

0 G23 + (V1 + 1)(G31 − G23)/2

]
(5)

where G13 and G23 are transverse shear moduli.
The material properties of the graphite/epoxy laminae used in the present study are

given in Table 1 [40]. The values are given as relations since the results are normalized and
presented in non-dimensional form.

Table 1. Material properties of the considered graphite/epoxy laminae.

E11 25E22
G12 = G13 0.5E22
G23 0.2E22
ν12 0.25

2.3. Finite Element Analysis

The solutions are computed by finite element analyses that are performed using
in-house software. The plates are discretized with linear 4-node isoparametric shell ele-
ments with three translational and two rotational degrees of freedom at each node. The
formulation details for this first-order shear deformable element can be found in [41].

Through elemental stiffness matrix generation, domain discretization, and assembly
procedures, the nodal stiffness matrix (K) is obtained. One should note that previously
obtained constitutive matrices (Cp and Ct) are used within the elemental stiffness matrices.
The nodal force vector ( f ) is defined by equally distributing the total in-plane shear force
over the nodes at the tip. Then, K and f are modified to impose fixing boundary conditions
at the clamped end. Finally, the nodal displacement vector (u) is calculated by solving the
following global system of equations:

Ku = f (6)

The element formulation is based on equivalent single layer theory, which is accurate
for the analysis of thin to moderately thick laminates [42]. Hence, the plate thickness is
selected such that the t/l ratio ranges from 0.005 to 0.04 as the length is varied, while
the t/w ratio remains constant as 0.02. In addition, the plate deformations are assumed
to be small due to the use of linear elastic formulation, and the computed responses are
presented in non-dimensional form.

The plates with an l/w ratio of 1.0 are discretized by using 10 elements in each
direction, yielding a total of 100 elements (Figure 3). For meshing the other models,
the number of elements along the longitudinal direction is varied proportionally to the l/w
ratio while retaining 10 elements along the width.
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Figure 3. Exemplary finite element meshes for (a) non-tapered and (b) 25◦ width-tapered plates with
l/w = 1.0.

2.4. Optimization

The optimization task is performed using genetic algorithms. For each aspect ratio,
the lamination parameters and taper angle are optimized. Preliminary investigations
showed that the optimal solutions appear on the boundary of the lamination parameter
domain for the selected range of design variables. Hence, instead of the entire feasible
domain, only the lower boundary of the lamination parameter space is searched by selecting
V1 as the design variable (V3 = 2V1 − 1). Such an optimization strategy has previously been
suggested by Grenestedt [43]. The minimum and maximum possible values of the taper
angle α are defined as 0 (rectangular panel) and tan−1(w/l) (triangular panel) radians,
respectively. No additional constraints are imposed on the solution except the bounds on
V1 and α. The values of V1 and α are restricted to be multiples of 0.01 and 1◦, respectively.
The ‘ga.m’ function of MATLAB is used as the optimization tool.

3. Results and Discussion

In this section, the optimal results that minimize average tip displacements of the
cantilever plates under shear load are presented. Three plate types (quasi-isotropic tapered
(QI-T), stiffness-tailored rectangular (ST-R), and stiffness-tailored tapered (ST-T)) and four
different aspect ratios (l/w = 0.5, 1.0, 2.0, 4.0) are considered.

First, the variation of the optimal design variables with respect to different design
strategies and plate aspect ratios is investigated (Figure 4). All optimal lamination pa-
rameters appear on the lower boundary of the feasible domain. Since these points can
be attained using angle-ply laminates, corresponding layer angles are also visualized.
In comparison to QI-T plates, the optimal taper angles obtained for ST-T plates are slightly
lower for (l/w = 0.5, 1.0) and larger for (l/w = 2.0, 4.0). Compared to ST-R plates, opti-
mal lamination parameters for ST-T plates spread further and lead to greater layer angles.
Note that, neither optimal taper angles nor optimal layer angles remain unchanged when
both variables are included within the design parameters. This result indicates the possible
drawback of using a sequential approach for optimizing geometry and stiffness properties
of laminate plates.

Optimal taper and layer angles vs. aspect ratio curves for different design approaches
are also analyzed (Figure 5). Both optimal taper and layer angles decrease with increasing
aspect ratio, where the former decreases with a greater rate. One can also note that the
taper and layers angles of ST-T plates have very close values for (l/w = 0.5), while they
draw apart for higher aspect ratios.

Next, the influences of aspect ratio and design strategy on the optimal responses
are analyzed. Figure 6 shows (a) the normalized tip displacements of cantilever plates
under shear load and (b) displacement reduction percentage with respect to QI-R plates.
The results indicate that ST-T plates yield the lowest mean displacements for all analyzed
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cases, indicating the importance of concurrently optimizing the layer and taper angles to
attain the best performance. For all design approaches, the percent reduction compared to
the QI-R rises with increasing aspect ratio. Sole tapering is more effective than sole stiffness
tailoring for lower aspect ratios (l/w = 0.5, 1.0), where the opposite holds true for higher
aspect ratios (l/w = 4.0).

Figure 4. Optimal lamination parameters with corresponding layer angles and taper angles for different design approaches
and aspect ratios.

Figure 5. Optimal taper and layer angles vs. aspect ratio plots for different design approaches.
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Figure 6. The influences of aspect ratio and design strategy on (a) the normalized tip displacements
of cantilever plates under shear load and (b) displacement reduction percentage compared to the
quasi-isotropic rectangular plates.

Finally, deflection contours of the plates are obtained to further investigate the de-
formation mechanics governing the observed trends in the optimal design variables and
responses. All four designs (QI-R, QI-T, ST-R, and ST-T) and two extreme nominal aspect
ratios (l/w = 0.5 and 4.0) are selected for this investigation.

Figure 7 shows the deflection contours, which demonstrate the relative lateral dis-
placement magnitudes for each aspect ratio. The contours are normalized such that the
value of the largest lateral displacement is 1.0 (red color), while the immobility at the
clamped edges is denoted by 0.0 (blue color). The deflection profiles are visualized by
preserving the proportions between different designs, while the exact displacement values
are arbitrary.

Figure 7. Plate deflection contours for different designs and nominal aspect ratios.

The deflection profiles differ significantly with both panel design and aspect ratios.
For l/w = 0.5, relatively large deformations are observed around the tip corners of the
rectangular plates due to the dominant shear effects. The ST-R plate shows the largest of
such local deformations, although it has a slightly lower average lateral tip displacement
compared to the QI-R plate (see Figure 6). The tapering significantly reduces the corner
deformations, which explains the greater effectiveness of sole tapering compared to stiffness
tailoring alone.
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Raising the l/w value to 4.0 results in beam-like deformation profiles unlike the
deflection shapes of the plates with a low aspect ratio where local effects are involved.
Consequently, the relative effectiveness of sole tapering reduces, and the ST-R plate out-
performs the QI-T one. The observed influence of increasing aspect ratio is related to
the amplification of flexural deformation over shearing, as reported in the literature as
well [8,10]. This transition in the dominant deformation mechanism also justifies the op-
timal fiber angle values, which are close to 45◦ and 0◦ for small and large aspect ratios,
respectively.

The deflection contours also facilitate interpreting the growing effectiveness of all opti-
mized designs with increasing aspect ratio. The low aspect ratio plates behave intrinsically
stiffer due to the larger proportion of the fixed edge length. This characteristic disrupts the
development of a regular deformation field along the plate length. A greater aspect ratio
increases the relative length of the free edges potentially boosting the improvements that
can be attained through optimization.

4. Conclusions

In this study, layer and taper angles of cantilever composite plates were concurrently
optimized. The analyzed plates were subject to in-plane shear loads, and the average tip
displacement was minimized as the design objective. The plate stiffness properties were
modeled using lamination parameters to circumvent the solution dependency on the initial
assumptions on the laminate configuration. The effectiveness of stiffness tailoring and
tapering as well as the optimal layer and taper angles were investigated for several panel
aspect ratios.

The optimal lamination parameters appeared at the lower boundary of the feasi-
ble domain for the studied problem. Since these points require especially orthotropic
angle-ply laminates in the stacking-sequence retrieval, corresponding layer angles were
also determined. Optimal taper and layer angles both decreased with increasing plate
aspect ratio.

The optimization results showed that internal stiffness properties and plate geometry
should both be exploited to minimize the deflection. In addition, the individually opti-
mal layer and taper angles did not remain unchanged when they were simultaneously
optimized. This result signifies the possible downside of using sequential optimization
approaches in composite design studies. Moreover, tapering alone was found to be more
effective than sole stiffness tailoring for low plate aspect ratios, while an opposite condi-
tion was observed for a large aspect ratio. However, the individual effectiveness of both
approaches improved with the increasing aspect ratio.

Future work may address concurrent stiffness tailoring and tapering optimization
in multi-axial loading scenarios. In addition, multi-objective optimization studies can be
conducted to observe the conforming or conflicting behavior of different performance
metrics.
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Abbreviations
The following abbreviations are used in this manuscript:

QI-R Quasi-isotropic and rectangular
QI-T Quasi-isotropic and tapered
ST-R Stiffness-tailored and rectangular
ST-T Stiffness-tailored and tapered

Nomenclature

A Plate area
Cp Constitutive matrix for in-plane deformation
Ct Constitutive matrix for transverse shear deformation
E11 Longitudinal modulus
E22 Transverse modulus
G12 In-plane shear modulus
G13, G23 Transverse shear moduli
F Tip shear force
f Nodal force vector
K Nodal stiffness matrix
l Plate length
N Number of layers
t, ti Plate and layer thickness
Ui Material invariants
u Nodal displacement vector
V1, V3 Lamination parameters
w Plate width
α Taper angle
ν12 Major Poisson’s ratio
θi Layer angles
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