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Abstract: Lanthanun oxide (La2O3) is a lanthanum chemical compound incorporates a sensible
anionic complexing ability; however, it lacks stability at a low pH scale. Biochar fibers will give
the benefit of their massive space and plethoric uses on the surface to support a metal chemical
compound. Herein, wet spinning technology was used to load La3+ onto sodium alginate fiber, and
to convert La3+ into La2O3 through carbonization. The La2O3-modified biochar (La-BC) fiber was
characterized by SEM, XRD and XPS, etc. An adsorption experiment proved that La-BC showed
an excellent adsorption capacity for chromates, and its saturation adsorption capacity was about
104.9 mg/g. The information suggested that the adsorption was in step with both the Langmuir
and Freundlich models, following pseudo-second-order surface assimilation mechanics, which
showed that the Cr (VI) adsorption was characterized by single-phase and polyphase adsorption,
mainly chemical adsorption. The thermodynamic parameters proved that the adsorption process
was spontaneous and endothermic. The mechanistic investigation revealed that the mechanism
of the adsorption of Cr (VI) by La-BC may include electrostatic interaction, ligand exchange, or
complexation. Moreover, the co-existing anions and regeneration experiments proved that the La-BC
is recyclable and has good prospects in the field of chrome-containing wastewater removal.

Keywords: wet spinning; lanthanum oxide; biochar; chromate; adsorption

1. Introduction

Chromium (Cr) is amongst the foremost typical and venomous significant metal ions,
which is widely found in wastewater from a variety of industries, such as textiles, metal-
lurgy, metal electroplating, and tanneries [1]. Chromium can cause serious environmental
problems and harm human health due to its problematic characteristics of bioaccumulation,
non-biodegradability and potential carcinogenicity in the food chain [2,3].

Generally speaking, chromium in nature mainly exists in two stable states in a wide
pH range: trivalent chromium (Cr (III)) and hexavalent chromium (Cr (VI)). Cr (III) is
non-toxic and can be effectively removed by precipitation (such as chromium hydroxide) or
adsorption [4–7]. Cr (VI) are more dangerous because it has toxicity, and higher solubility
and mobility [4]. It appears in the forms of chromate (CrO4

2−, HCrO4
−) and dichromate

(Cr2O7
2−), which have caused great environmental concern [3,8]. As a priority toxic

pollutant identified by the US environmental protection agency, Cr (VI) can cause serious
toxic and detrimental effects to human health and ecosystems. When the Cr (VI) content in
drinking water exceeds 0.05 mg/L and that in water for different uses exceeds 0.1 mg/L, it
can cause harm to human health, such as kidney, liver and stomach damage, skin allergies
and lung cancer [9], but in contaminated natural water and industrial wastewater, Cr (VI)
tends to be more than 200 mg/L [10,11]. Therefore, practical methods must be developed
to remove Cr (VI), in order to protect the aquatic environment.
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Compared with strategies such as membrane separation, biodegradation, electro-
chemical oxidation, solvent extraction and other treatment methods, the capture of Cr
(VI) using adsorbing media has numerous advantages, such as being a non-toxic and
harmless process, easy operation, versatility, and low cost [12–14]. The adsorbents with
different sites will interact with Cr (VI) through different mechanisms, including direct
precipitation, electrostatic interaction, ligand exchange, intra-sphere complexation and
redox [1,15–17]. Many of the naturally available adsorbents such as sawdust, pine needles
and seaweed have the disadvantages of a low adsorption capacity and a slow adsorption
process. Thus, in order to realize the unification of economic and environmental benefits,
there is a need to create innovative and economical adsorbents for composite materials
with high efficiency [18].

Biochar (BC) has recently received significant attention because of its beneficial surface
physical/chemical properties for the removal of heavy metals from wastewater [19–21].
However, the surface of the original BC is usually negatively charged, with a low anion
removal ability. Rare earth metal oxides can participate in chemical reactions as active
components, and have been widely used in petroleum, metallurgy, ceramics, textiles and
other fields. Lanthanum oxide (La2O3) has a good anionic complexation ability, but lacks
stability under low pH conditions. In actuality, biochar fibers can take advantage of their
large surface area and abundant surface functional groups to support lanthanum oxide;
meanwhile, the pores in biochar could enhance the dispersion of La and improve the
consumption efficiency, so biochar is a viable option to support La incorporation [22].
Recently, biochar materials with lanthanum oxide dropped have been extensively studied,
and they exhibited several advantages in removing oxygen-containing acids, such as strong
adsorption selectivity, remarkable adsorption capacity, a high removal rate and a wide
pH range. According to Yang Bei (2019), through inner-sphere complexation, La-dropped
biochar can form an La-O-P chemical bond with phosphate to remove PO4

3− in sewage [23],
while Haiyang Yang (2019) stated that Cr (VI) adsorption might be related to the outer-
sphere complexation. Therefore, we speculate that chromate can also bond with La-BC with
the same chemical bond [24,25]. In addition, other literature data shows that lanthanum-
containing materials have an excellent effect on the removal of phosphate, antimonate and
arsenate in water [14,21,26–31]. As a great biochar doping component, La can improve
the adsorption capacity of anions. However, there are few reports in the literature on the
use of La-doped BC to remove Cr (VI). Moreover, the adsorption capacity of Cr (VI) by
La-based adsorbents is also low in these relevant literatures. For example, the adsorption
capacity of hexavalent chromium in chitosan and lanthanum mixed oxyhydroxide is only
48.3 mg/g [32]. In order to investigate the adsorption capacity of La for chromate, a
lanthanum-oxide–loaded carbon fiber material was prepared by calcination at 90 0 ◦C. By
using La-BC, Cr (VI) can be effectively removed. The possible mechanism is discussed in
detail. It is proved that the adsorption effect of La-BC on Cr (VI) is better than that of other
La-based adsorbents reported in the literature. Beyond that, La-BC is recyclable, and has
good prospects in the field of chrome-containing wastewater removal.

2. Materials and Methods
2.1. Materials

The reagents included lanthanum chloride, sodium alginate (alighting), potassium
dichromate, hydrochloric acid, sodium hydroxide, sulfuric acid, phosphoric acid, sodium
chloride, sodium sulfate, sodium nitrate, sodium bicarbonate, disodium phosphate, ace-
tone, and diphenylcarbazide. All of the chemicals and reagents were analytically pure,
and were produced by the Sinopharmaceutical chemical reagent co., Ltd., Shanghai, China
except for the sodium alginate (AR, Shanghai Aladdin Bio-Chem Technology Co., Ltd.,
Shanghai, China). All of the solutions were prepared using deionized water.
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2.2. Preparation of the Adsorbent

The La3+-loaded sodium alginate fiber (La-SA) was prepared by wet spinning with
4% sodium alginate solution as the spinning solution and lanthanum chloride (LaCl3)
solution with the same concentration as the coagulate bath. The La-SA was placed in
an oven at 30 ◦C and dried for 24 h. The dried La-SA was transferred to a tube furnace
and pyrolyzed at 900 ◦C for 1 h (with a heating rate of 5 ◦C/min). After being ground
and sifted, the biochar (La-BC) loaded with lanthanum oxide (La2O3) was obtained for
the experiment. Under the same concentration of sodium alginate, pure sodium alginate
fibers were prepared with a mixture of 5% NaCl and 4% HCl as the coagulation bath.
Through the same pyrolysis conditions, pure sodium alginate biochar (SA-BC) and pure
lanthanum oxide (La2O3) were prepared in order to compare the adsorption performance
of the samples.

2.3. Characterization

The Brunauer-Emmett-Teller equation was used to determine the specific surface area,
and the pore structures were calculated by nitrogen adsorption/desorption isotherms
carried out on a surface area and porosity analyzer (3H-2000PS2, Best Instrument Tech-
nology Co., Ltd., Beijing, China). The surface morphology of material was observed by
scanning electron microscopy (SEM, SU8020, Hitachi Hi-Tech Co. Ltd., Tokyo, Japan).
Besides this, the phase structure of the materials was examined by X-ray diffraction (XRD,
DX2700, Shanghai Precision Instrument Co., Ltd., Shanghai, China) at a scan rate (2θ) of
6◦/min, from 10◦ to 80◦, and at an accelerating voltage of 40 kV. X-Ray photoelectron
spectroscopy (XPS, ULTRAESCALAB 250Xi, Thermo Fisher Scientific, Waltham, MA, USA)
was used to analyze the surface functional groups and the valence state of the chromium
with monochromatic 150 WAl Kα radiation.

2.4. Adsorption and Desorption Experiments

A series of adsorption and desorption experiments were carried out in order to
evaluate the adsorption properties of the La-BC and analyze its adsorption mechanism.
Potassium dichromate (2.827 g) was dissolved in distilled water (1000 mL) to make a
1000 mg/L dichromate stock. Then, the stock was diluted to produce dichromate solutions
of different concentrations. The effects of the carbonization temperature (700–1000 ◦C),
solution pH (2–10), adsorption isotherm (initial concentration 20–1000 mg/L), adsorption
kinetics (shaken for 3 h in oscillator), adsorption thermodynamics (adsorbent tempera-
ture 298–318 K) and co-existing acid ions on the adsorption of Cr (VI) were analyzed
in turn. In order to assess the reusability of La-BC as a Cr (VI) adsorbent, five adsorp-
tion/desorption cycles were conducted. The filtrate was filtered with a 0.45 µm nylon
membrane syringe after adsorption. The clear solution was extracted, and the possible
leaching concentrations of Cr6+ and La3+ in the adsorbed solution were determined by a
visible light spectrophotometer and an inductively coupled plasma emission spectrometer,
respectively.

In all of the adsorption experiments, the dosage of La-BC was 1 g/L. The pH of all
of the solutions was not adjusted separately, except for the pH experiment. Similarly,
all of the experiments were conducted at room temperature (298 K or 303 K), except the
adsorption thermodynamics experiment. Due to the indoor temperature difference in
different seasons, the specific experimental conditions are described in detail in the results
and discussion sections below. In addition, in all of the charts in this paper, the data—such
as the Cr (VI) solution concentration and the adsorption capacity—were calculated by the
total Cr (VI) content.

3. Results and Discussion
3.1. Preliminary Experiments

Before the formal batch adsorption experiment, the adsorption properties of pure
sodium alginate biochar (SA-BC), pure lanthanum oxide (La2O3) and La-BC were compared
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through the preliminary experiment under the conditions of pH 4.6, 300 rpm, 303 K, contact
time 5 h and adsorbent dosage 1 g/L (Figure 1). The data showed that the Cr(VI) adsorption
capacity of the sample was ranked as La-BC > La2O3 > SA-BC, which may be due to the
following reasons: (1) the surface of SA-BC is negatively charged, which leads to its low
ability to remove anionic groups such as Cr2O7

2− and CrO4
2−, and the main adsorption

process is physical adsorption caused by its porous structure; (2) La2O3 has a good anion
complexation ability, but it is not stable in an acidic solution. Therefore, loading La2O3
onto SA-BC to prepare La-BC is a win–win situation. It can take advantage of the larger
surface area and rich surface functional groups of biochar to support La2O3, and the pores
in biochar can enhance the dispersion of La, improve the stability of La2O3, and aid the
removal efficiency of Cr (VI).
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Figure 1. Pre-experiment: comparison of the adsorption capacity of Cr (VI) by SA-BC, La2O3

and La-BC.

3.2. Characterization of the La-BC

Table S1 shows some of the physical properties of carbonized adsorbents at different
temperatures. According to the nitrogen adsorption–desorption curve (Figure S1), it can
be found that all of the four carbon adsorbents are type IV with H4 hysteresis loops,
indicating that the lanthanum-supported biochar, through high temperature carbonization,
is a mesoporous material [28,33]. The specific surface area and porosity of the adsorbent
have an important influence on its adsorption capacity [20,34]. Generally speaking, the
larger the specific surface area is, the more adsorption points are available, and the larger
the adsorption capacity will be. The specific surface area of La-BC (900 ◦C) reached
177.41 m2/g, while the specific surface areas of La-BC (700 ◦C), La-BC (800 ◦C) and La-
BC (1000 ◦C) were 8.21 m2/g, 38.61 m2/g and 52.08 m2/g respectively, indicating that
La-BC (900 ◦) might be the adsorbent with the highest adsorption capacity. In addition,
by comparing the pore volume, it was found that the pore volume of La-BC (900 ◦C) was
0.2515 cm3/g, which was larger than the other three adsorbents. Larger pore volumes also
facilitate the adsorption of the target elements.

SEM images, TEM images and element mapping were used to research and analyze
the surface morphology and element distribution of La-BC (900 ◦C) (Figure 2). As a porous
material, biochar is a good substrate for lanthanum deposition. The sodium alginate
biochar supported by lanthanum was fibrous, with a diameter of about 20–50 µm. The
surface was rough and irregular, with a large number of acicular crystals and loose pores
distributed upon it (Figure 2a–c). The same morphology was also shown in TEM images,
in which the fractured biochar fibers were supported by needle-like or rod-like crystals
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(Figure 2d–f). The lattice fringe of La-BC can be observed more clearly through the analysis
of the high-resolution TEM image (Figure 2g). Compared with the standard card La2O3
(PDF#05-0602), the lattice spacings of 0.335 nm and 0.346 nm both correspond to the
(100) plane of La2O3. In the SEM-EDS element mapping image of the La-BC (900 ◦C),
the La element can be observed evenly (Figure 2h), proving that the La element has been
successfully loaded onto the surface of the biochar.
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Figure 2. (a–c) SEM images of La-BC; (d–g) TEM images of La-BC; (h) elemental mapping images
of La-BC.

The XRD patterns of La-BC (900 ◦C) at four different carbonization temperatures are
shown in Figure 3. The composition of its elements and substances was analyzed. It was
found that the existing forms of La change with the increase of the calcining temperature.
For La-BC at 700 ◦C and La-BC at 800 ◦C, there were diffraction peaks of La2CO5 (PDF#23-
0320), while for La-BC at 900 ◦C and La-BC at 1000 ◦C, there were characteristic peaks of
La2O3 (PDF#05-0602), which proves that La was successfully loaded onto the adsorption
materials [30], and that the lanthanum-containing products were different at different
carbonization temperatures.
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In order to further identify the functional groups on the La-BC and to obtain the
possible adsorption mechanism of Cr (VI), the sample La-BC (900 ◦C) was analyzed by
X-ray photoelectron spectroscopy (Figure 4). All of the peaks are calibrated by using C 1s
(284.3 eV) as a reference. The wide-scan XPS spectrum of La-BC showed that the elements
C (63.4%) and O (28.96%) were the main components (Figure 4a). The peaks at the binding
energies of 835.6 eV, 839.0 eV, 852.6 eV and 855.8 eV confirmed the introduction of La3+ on
the biochar surface (Figure 4b).
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3.3. Adsorption Isotherm

The adsorption isotherm refers to the relationship curve between the adsorption
amount of the adsorbent and the equilibrium concentration of the adsorbent after the
adsorption process occurs at the set adsorption temperature. This process can be fitted
by the adsorption isotherm model (Text S1). The correlation between the Langmuir and
Freundlich isotherm models and the experimental data with different initial chromium
concentrations was studied. The isothermal adsorption model fitting of carbonized La-
BC at four temperatures is shown in Figure 5. Under the conditions of pH 4.6, 300 rpm,
303 K, contact time 5 h and a 1 g/L dosage of the adsorbent, adsorption experiments
were carried out with four kinds of La-BC, in which the range of the initial potassium
dichromate concentration was from 20 to 1000 mg/L. It was found that the adsorption
capacity of La-BC (700–1000 ◦C) increased from 2.2 to 37.6 mg/g, 9.6 to 56.3 mg/g, 5.8 to
83.5 mg/g, and 3.2 to 39.6 mg/g, respectively. The increase of the initial concentration
of the potassium dichromate solution might result in the improvement of the collisions
between La-BC and Cr (VI), and might increase the driving force of removing Cr (VI), thus
promoting adsorption [35]. The adsorption isotherm shows that, in the carbonized La-BC
at four different temperatures, the adsorption capacity of 900 ◦C La-BC is higher, which
may be attributed to the following two reasons: (1) as the specific surface area and pore
size of 900 ◦C La-BC are larger than those of the other three kinds of La-modified biochar
(Table S1), there are more available adsorption sites, enhancing the adsorption capacity
of 900 ◦C La-BC; (2) according to the XRD pattern (Figure 3), the lanthanum compound
loaded with 900 ◦C La-BC and 1000 ◦C La-BC was La2O3, which could be used as an active
adsorption site for metal ions. The Langmuir isotherm model showed that the saturated
adsorption amounts of Cr (VI) with four kinds of La-BCs, respectively, were 41.4 mg/g,
67.4 mg/g, 104.9 mg/g and 49.9 mg/g (Table S2). The fitting results showed that the
adsorption process had consistency with both the Langmuir model and the Freundlich
model, but conformed to the Langmuir model more, suggesting that the adsorption process
should exist in monolayer and multilayer adsorption, especially the adsorption of a single
molecule layer [35,36].
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Figure 5. Fitting the adsorption data of Cr (VI) on La-BC (900 ◦C) to (a) the Langmuir isotherm, and
(b) the Freundlich isotherm.

3.4. Adsorption Kinetics

Adsorption is a continuous dynamic process characterized by ‘external diffusion
—internal diffusion’. This process can be fitted by the adsorption kinetic model (Text S2). In
order to evaluate the chromate adsorption rates of La-BC, the time-dependent sorption was
conducted under the conditions of an initial Cr (VI) concentration of 200 mg/L, pH 4.6,
300 rpm, 303 K, contact time 5 h and a 1 g/L adsorbent dose. The relationship between the
adsorption amount of Cr (VI) and the time of the La-BC carbonized at four temperatures
is shown in Figure 6a. The adsorption process can be divided into three stages: a rapid
adsorption stage, a slow adsorption stage, and an adsorption equilibrium stage. In the
first 20 min, the adsorption reaction of Cr (VI) with La-BC was very rapid. The Cr (VI)
adsorption capacities of La-BC (700–1000 ◦C) were 14.1 mg/g, 19.0 mg/g, 30.3 mg/g and
15.5 mg/g, which occupied the corresponding equilibrium adsorption capacities of 95.5%,
93.1%, 93.5% and 95.7%, respectively, and the adsorption capacity of La-BC at 900 ◦C was far
higher than that of the other three adsorbents. The following 70 min is the slow adsorption
phase. After 90min, there was no significant difference between the concentration of Cr
(VI) and that after 3h in the solvent, showing that the adsorption process entered the
equilibrium stage due to the saturation of the sites [1,37]. The differences between these
stages can be explained as follows: (1) at first, the concentration of Cr (VI) at the interface
of the adsorbent was the highest, forming a large adsorption dynamic gradient, which
drove the Cr (VI) to occupy the adsorption site on the outer surface of the La-BC rapidly;
(2) when Cr (VI) entered the interior of La-BC, the adsorption rate decreased due to the
blockage of the pores and the decrease of the active adsorption sites; (3) when the slow
adsorption continued, the adsorption rate gradually decreased until it reached the dynamic
adsorption equilibrium.

In order to determine the adsorption mechanism, the equilibrium data were used to
fit the pseudo-first-order and pseudo-second-order models (Table S3). The fitting results
showed that the pseudo second-order kinetic equation can better describe the adsorption
behavior. In other words, the adsorption of Cr (VI) on La-BC was closer to chemisorption,
which is carried out through polar functional groups sharing or exchanging electrons
between the adsorbate and adsorbent [38,39].
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3.5. Adsorption Thermodynamics

Temperature is an important factor affecting the adsorption effect. Temperature
changes affect the value of the thermodynamic parameters (Text S3). Under the conditions
of an initial Cr (VI) concentration of 100–900 mg/L, contact time 5 h, pH = 4.6, adsorbent
300 rpm and a 1 g/L dose, the relationship between the adsorption amount of Cr (VI) with
La-BC (900 ◦C) and the adsorption temperature is shown in Figure 6b. The increase of the
adsorption temperature makes the adsorption amount increase. The calculated adsorption
reaction enthalpy change ∆H was 41.66 KJ/mol, ∆S was 144.6 J/(mol·K), and the Gibbs free
energy change ∆G < 0 at each temperature (Table S4), which showed that the adsorption
was a spontaneous endothermic reaction; in other words, the rising of the temperature lead
to a prompt reaction [12,16,40].

3.6. Effect of the Solution pH on the Adsorption Experiment

Under the conditions of an initial concentration of 250 mg/L, 300 rpm, 298 K, contact
time 5 h and an adsorbent of 1 g/L, the effect of the pH on the adsorption capacity of Cr (VI)
with La-BC (900 ◦C) is shown in Figure 7a, and the comparison of the initial and final pH of
the solution before and after adsorption is also demonstrated. The selected pH range was
2–10, within which the adsorption capacity of the chromate decreased significantly with
the increase of the pH, and the maximum adsorption capacity was 68.52 mg/g, appearing
at pH = 2. The existent form of chromate is related to the pH of the solution. At an acidic
pH, the main types of chromate existent forms are Cr2O7

2−, HCrO4
− and CrO4

2− [12,41].
At the same time, the surface of La-loaded biochar is positively charged; therefore, under
acidic conditions, the adsorption mechanism of chromate by La-BC may be explained as an
electrostatic interaction [14,32]. The change of pH before and after the adsorption proves
another possible mechanism: the final pH of the solution was higher than the initial pH,
indicating that OH− was released during the process of the chromate adsorption, which
confirms that a ligand exchange interaction was involved [30]. Based on the above, several
possible adsorption equations are summarized as follows:

La2O3 + HCrO4
− + H+ → La2CrO6 + H2O (1)

La2O3 + Cr2O7
2− + H+ → La2Cr2O9 + OH− (2)

La2O3 + CrO4
2− + H2O→ La2CrO6 + 2OH− (3)

With the increase of pH (>pHpzc), a large amount of OH− was released into the
solution, which can compete with chromate ions for active adsorption sites, and can
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generate electrostatic repulsion [23]. All of the above resulted in a significant decrease of
the adsorption of the chromate at higher pH values; therefore, the range of pH > 7 was no
longer taken into account in the subsequent experiments.

The XRD images of La-BC (900 ◦C) before and after the adsorption of the dichromate
solutions with a pH range of 2–7 were compared (Figure 7b). The results showed that when
pH > 2, the main peaks after adsorption were characteristic peaks of La (OH)3 (PDF#36-
1481). When pH = 2, the XRD image of the La-BC was a smooth curve without any peak.
The reason may be that the La2O3 in the La-BC (900 ◦C) was largely dissolved into the
solution in a strong acidic environment. For this reason, the amount of La dissolution of the
adsorbed dichromate solution was detected (Figure S2), and the results confirmed that a
large amount of La was dissolved at pH = 2. The initial pH of the dichromate solution was
about 4–5; within this range, not only can the adsorption amount of La-BC be guaranteed
not to be too low but also the dissolution amount of La can be kept at a low level. Based on
the results, it was finally decided that the experiment would not take too much adjustment
to the pH of the initial solution, and it should be kept at pH = 4.6.
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3.7. Effect of Coexisting Acid Ions on the Adsorption Experiments

Five kinds of 100 mg/L K2Cr2O7 solutions containing NaCl, Na2SO4, NaNO3, NaHCO3
and Na2HPO4 were prepared, in which the concentrations of the coexisting ions were
0.05 mol/L, 0.1 mol/L and 0.2 mol/L, respectively. The pure 100 mg/L K2Cr2O7 was used
as a blank control, and the adsorption experiments were carried out under the conditions of
300 rpm, 303 K, contact time 5 h, pH 4.6 and a 1 g/L dosage of La-BC (900 ◦C). It was shown
that different interfering ions had different influences on the adsorption amount of Cr (VI)
(Figure 8a). The results showed that Cl− and NO3

− had no effect on the adsorption of
chromate, and SO4

2− had little effect. However, HCO3
− and HPO4

2− seriously interfered
the adsorption of chromate, which may be for the following two reasons: (1) the structure of
these oxygen-containing acid groups was similar to that of Cr2O7

2− and CrO4
2−, resulting

in competition in the adsorption process; (2) both carbonic acid and phosphoric acid are
weak acids, so the hydrolysis degree of HCO3

− and HPO4
2− in the solution is greater than

the degree of ionization—this is why NaHCO3 and Na2HPO4 solutions are weakly alkaline.
The release of OH− led to the decrease of the adsorption amount of the chromate.



Materials 2021, 14, 2224 10 of 14

Materials 2021, 14, x FOR PEER REVIEW 10 of 14 
 

 

mate, and SO42− had little effect. However, HCO3− and HPO42− seriously interfered the ad-

sorption of chromate, which may be for the following two reasons: (1) the structure of 

these oxygen-containing acid groups was similar to that of Cr2O72− and CrO42−, resulting 

in competition in the adsorption process; (2) both carbonic acid and phosphoric acid are 

weak acids, so the hydrolysis degree of HCO3− and HPO42− in the solution is greater than 

the degree of ionization—this is why NaHCO3 and Na2HPO4 solutions are weakly alka-

line. The release of OH− led to the decrease of the adsorption amount of the chromate. 

 

Figure 8. (a) Effect of coexisting ions on the adsorption amount of Cr (VI); (b) five cycles of Cr (VI) 

adsorption by La-BC (900 °C). 

3.8. Cycle Experiments 

The experiment of the adsorption of Cr (VI) by La-BC (900 °C) was carried out under 

the conditions of an initial Cr (VI) concentration 200 mg/L, pH 4.6, 300 rpm, 303 K, contact 

time 5 h and a 1 g/L adsorbent dosage, and five cycles were carried out for the desorption 

treatment of 1 mol/L NaOH (Figure 8b). After each cycle, the recovered product was cal-

cined in inert gas at a high temperature in order to ensure that the composition of the 

recovered product was the same as the original La-BC material. The experimental results 

showed that La-BC (900 °C) had good stability, a low loss in five cycles, and a good reuse 

effect. The circulating experiment also proved the possibility of the use of La-BC in treat-

ing chromium-containing wastewater. 

3.9. Adsorption Mechanism 

The pH experiments and XRD characterization results indicated that the adsorption 

behavior of La-BC on Cr (VI) might have an electrostatic interaction and a ligand exchange 

(Figure 7). In addition, X-Ray photoelectron spectroscopy analysis was performed on the 

La-BC (900 °C) after the adsorption of chromite, and a comparison was made with an XPS 

image of La-BC (900 °C) before the adsorption (Figure 9). The wide-scan XPS spectrum of 

La-BC after the experiments showed that the peak of the Cr element appeared in La-BC 

(900 °C) (Figure 9a). Moreover, the corresponding peaks where the binding capacity was 

577.8 eV, 579.7 eV proved that Cr (VI) was successfully absorbed (Figure 9b) [42]. The Cr 

has been absorbed successfully. In the La3d images, the binding energy of the element La 

had a negative displacement (0.4–0.7 eV) after adsorption (Figure 9c), indicating that elec-

tron transfer occurred between La-BC (900 °C) and chromite, which formed a strong 

chemical bond [30]. The O1s spectrum changed significantly before and after the adsorp-

tion, which could explain the adsorption mechanism (Figure 9d,e). The O1s deconvolution 

(Figure 9d) indicated that three main oxygen components—lattice oxygen La-O (530.8 eV), 

OH− (531.9 eV), and adsorbed H2O (533.0 eV)—existed in the La-BC. However, after the 

Cr (VI) sorption, the peak of La-O nearly disappeared, while the H2O percentage increased 

Figure 8. (a) Effect of coexisting ions on the adsorption amount of Cr (VI); (b) five cycles of Cr (VI)
adsorption by La-BC (900 ◦C).

3.8. Cycle Experiments

The experiment of the adsorption of Cr (VI) by La-BC (900 ◦C) was carried out under
the conditions of an initial Cr (VI) concentration 200 mg/L, pH 4.6, 300 rpm, 303 K, contact
time 5 h and a 1 g/L adsorbent dosage, and five cycles were carried out for the desorption
treatment of 1 mol/L NaOH (Figure 8b). After each cycle, the recovered product was
calcined in inert gas at a high temperature in order to ensure that the composition of the
recovered product was the same as the original La-BC material. The experimental results
showed that La-BC (900 ◦C) had good stability, a low loss in five cycles, and a good reuse
effect. The circulating experiment also proved the possibility of the use of La-BC in treating
chromium-containing wastewater.

3.9. Adsorption Mechanism

The pH experiments and XRD characterization results indicated that the adsorption
behavior of La-BC on Cr (VI) might have an electrostatic interaction and a ligand exchange
(Figure 7). In addition, X-Ray photoelectron spectroscopy analysis was performed on the
La-BC (900 ◦C) after the adsorption of chromite, and a comparison was made with an XPS
image of La-BC (900 ◦C) before the adsorption (Figure 9). The wide-scan XPS spectrum of
La-BC after the experiments showed that the peak of the Cr element appeared in La-BC
(900 ◦C) (Figure 9a). Moreover, the corresponding peaks where the binding capacity was
577.8 eV, 579.7 eV proved that Cr (VI) was successfully absorbed (Figure 9b) [42]. The Cr has
been absorbed successfully. In the La3d images, the binding energy of the element La had
a negative displacement (0.4–0.7 eV) after adsorption (Figure 9c), indicating that electron
transfer occurred between La-BC (900 ◦C) and chromite, which formed a strong chemical
bond [30]. The O1s spectrum changed significantly before and after the adsorption, which
could explain the adsorption mechanism (Figure 9d,e). The O1s deconvolution (Figure 9d)
indicated that three main oxygen components—lattice oxygen La-O (530.8 eV), OH−

(531.9 eV), and adsorbed H2O (533.0 eV)—existed in the La-BC. However, after the Cr
(VI) sorption, the peak of La-O nearly disappeared, while the H2O percentage increased
(Figure 9e). This was because La2O3 is hygroscopic, and it adsorbed moisture to become
La (OH)3 [28]. All of the above results show that the adsorption may be caused by ligand
exchange or complexation. The increase of the proportion of the element O from 28.96% to
32.47% might also be explained by the adsorption of the oxygen-containing acid radicals
CrO4

2− and Cr2O7
2−.
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4. Conclusions

In this experiment, wet spinning and ion exchange were combined to load La3+

onto sodium alginate fiber, and then La3+ was converted to La2O3 in the process of high-
temperature carbonization. Lanthanum-oxide–modified biochar showed an excellent
adsorption capacity for chromate, and it also had a high adsorption capacity in a potassium
dichromate solution with a high concentration at room temperature, and its saturated
adsorption capacity was about 104.9 mg/g. The isotherm data showed that the adsorption
process is more consistent with the Langmuir model, and that it has a higher correlation
with the adsorption of a single molecular layer. The adsorption kinetic data followed the
pseudo-second-order kinetic model, showing that the adsorption process was dominated
by chemisorption. The thermodynamic parameters proved that the adsorption of chromate
by La-BC is spontaneous and endothermic. In addition to physical adsorption, the adsorp-
tion mechanism of Cr (VI) in La-BC may be electrostatic interaction, ligand exchange, or
complexation (Figure 10). Compared with Cr (VI) adsorbents in other literatures (Table 1),
La-BC has the advantages of a large adsorption capacity, a simple preparation process and
good recycling performance.

Table 1. Literature data on the adsorption of Cr (VI) ions by various adsorbents.

Adsorbent Adsorption Capacity (mg/g) Ref.

MgAl-LDH 84.2 [42]

MWCNTs-70 17.2 [15]

Chitosan engraved iron and lanthanum Mixed oxyhydroxide 106.04 [32]

Fe3O4 nanoparticles functionalized polyvinyl alcohol/chitosan
magnetic composite hydrogel 24.69 [43]

Chitosan-citric acid nanoparticles 106.15 [44]

Cross-linked chitosan bentonite composite 89.13 [45]

Fe–Mn oxide-modified biochar 59.8 [16]

Biochar supported nZVI composite 31.53 [1]

La2O3-dropped biochar 104.9 This article
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