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Abstract: Recycling scrap tyres as alternative aggregates of concrete is an innovative option. To clarify
the dynamic properties of the pretreated rubberized concrete with some cumulative damage, the
natural frequency, flexural dynamic stiffness, and damping ratio of the specimens under incremental
stress level were investigated in this paper. The results indicated that the pretreatment of rubber
particles improved the strength, ductility, and crack resistance of the rubberized concrete. The
reduction of the flexural dynamic stiffness was clarified with the increase of concrete stress level. The
addition of the pretreated rubber particles enhanced the concrete energy dissipation capacity during
the destruction, and the specimen dissipated more energy with the increase of rubber content before
its failure.

Keywords: pretreated rubberized concrete; stress level; dynamic properties; natural frequency;
flexural dynamic stiffness; damping ratio

1. Introduction

In recent years, the continuous development of new raw materials has enriched the
materials in the field of construction [1–4], among which the treatment and recovery of
solid waste are of great significance for environmental protection, such as the utilization of
recycled tyre polymer fiber as concrete reinforced materials by Chen et al. [1], the incorpo-
ration of construction and demolition wastes as recycled aggregates by Rodríguez et al. [2],
and the utilization of waste tyre rubber as concrete material by Huang et al. [3] and
Gupta et al. [4]. The scrap tyre has become one of the most problematic solid wastes
throughout the world, and many researchers have proved that scrap tyres are sources of
valuable raw materials [5–7]. The application of rubbers recovered from waste tyres as
concrete materials is beneficial to the environment and the sustainable development of
society [8–10].

The rubberized concrete (RUC) with the appropriate amount and size of rubber parti-
cles featured better durability [11], thermal and sound insulation properties [12,13] as well
as ductility [14,15] than those of normal concrete (NC). Aslani et al. [16–18] studied the prop-
erties of high-performance self-compacting concrete produced with rubber and achieved
remarkable results. However, the concrete strength reduced significantly by replacing
aggregates with rubber particles [19–21]. Compared with NC, the compressive strength,
splitting tensile strength, and elastic modulus of the concrete where 20% fine aggregate
was replaced with rubber particles were reduced by 30% at least, and with the concrete
where 20% coarse aggregate was replaced, the reduction was larger [20,22–26]. Numerous
methods to increase the properties of RUC and rubberized mortars have been proved
feasible, such as pretreatment of rubber particles, application of fibers, etc. [18,27–31].
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In recent years, researchers have paid more and more attention to concrete’s dynamic
properties [32,33]. The previous literature was mainly about the properties of unpretreated
rubberized concrete without damage. As a green potential concrete material, the dy-
namic properties of RUC have become an important research topic in recent years [34–38].
Chi et al. [39] and Xue and Shinozuka [40] researched the energy-dissipation capability
of rubberized concrete, and showed that the concrete curvature ductility and damping
ratio were enhanced significantly by replacing aggregate with rubber particles. Xue and
Shinozuka [40] reported that the damping ratio of the RUC mixed with 15% rubber particles
with a maximum size of 6 mm increased by 62% compared with that of NC. The damping
ratio of the concrete whose coarse or fine aggregate was replaced with rubber particles
was enhanced significantly [26,37,41]. The particle size, content and mixing method of
rubber particles had significant effects on the concrete’s dynamic properties [26,42,43].
As Gurunandan et al. [26] reported, the damping ratio of the RUC with 7.5% and 22.5%
fine aggregate replaced with rubber particles increased by 33.0% and 77.1% compared
with that of NC at 56-day age. Also, Zheng et al. [42] reported that when using rubber
particles instead of 15–45% coarse aggregate, the damping ratio of the RUC increased
by 19.2–75.3% and 28.6–144.0% when the size of the rubber particles was 2.62 mm and
15.00–40.00 mm, respectively.

According to the above studies, rubber particles replacing coarse aggregate increased
the concrete damping capacity more notably, but the strength reduced significantly. The
concrete with fine aggregate replaced with rubber particles was relatively better. Muñoz-
Sánchez et al. [28] reported that the surface hydrophilicity, absorption, and roughness
of rubber particles increased after acid or alkaline treatments. Mohammadi et al. [27],
Si et al. [29], Guo et al. [44], and Rivas-Vázquez et al. [45] showed that pretreated rubberized
concrete (PRC) could maintain good workability, mechanical properties and enhance
durability with reduced environmental impacts. Compared with NC, the compressive
strength of the PRC reduced by only 14% (28 days), after replacing 10% fine aggregate
with rubber particles pretreated with alkaline activation [46]. Therefore, a further study
on dynamic properties of concrete with fine aggregate replaced with pretreated rubber
particles is necessary.

Numerous mentioned papers have drawn important conclusions about the damping
capacity of RUC through different methods, and promote the development of research
on the dynamic capacity of concrete [40,42,43]. As reported by Xue and Shinozuka [40],
Zheng et al. [42], and Najim and Hall [43], the change trend of the damping ratio with
the increase of rubber content was almost the same, but the test values of damping ratio
and natural frequency showed a significant difference due to the different test methods
and specimens of different size and shape. The frequencies of concrete specimens were
hundreds to thousands Hz, and the energy dissipation capability was significantly affected
by the incompletely fixed ends and other vibration factors. Just as Strukar et al. [14] said,
the inconsistent effects of recycled rubber in concrete on the static and dynamic properties
of concrete materials and structures indicated that there was vital need for further research.

The reported publications mainly studied the properties of original rubberized con-
crete with undamaged specimens. The dynamic properties of concrete with some damage
directly affect the anti-vibration capacity of the structures. It is necessary to study the
dynamic properties of PRC during its destruction. In this test, specimens of uniform size
were used, and the dynamic properties of the PRC, including natural frequency, flexural
dynamic stiffness and damping ratio under incremental loading, were investigated using
free vibration tests on them. The raw materials and the test methods were stated first, and
then a brief research on the concrete slump and mechanical properties was made. Finally,
the concrete dynamic properties were investigated.
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2. Materials and Methods
2.1. Materials

The cement used in this test was the 42.5 Ordinary Portland Cement produced by
Tianrui Group Cement Co., Ltd., Zhengzhou, China. The chemical compositions and
properties of the cement are listed in Table 1, the preparation of cement mortar specimens
and the test of their compressive and flexural strength are show in Figure 1.

Table 1. The properties of the cement, stone and sand.

The Chemical Compositions of the Cement (%)

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O
61.63 21.00 5.20 3.92 2.75 2.48 0.83 0.20

Physical and Mechanical Properties of the Cement

Setting time (min) Compressive
strength (MPa) Flexural strength (MPa) Density

(kg/m3)

Blaine
fineness
(m2/kg)

Loss on
ignition (%)

Initial Final 3 days 28 days 3 days 28 days

180 250 25.7 49.6 4.8 7.9 3100 348.3 1.05

Properties of Crushed Stone and Sand

Aggregates Size (mm) Fineness Apparent
density (kg/m3)

Pile-up density
(kg/m3)

Mud
content (%)

Water
Absorption

(%)

Crushed
index (%)

Coarse 5–20 – 2700 1628 0.47 1.00 14.8
Fine 0–4.75 2.7 2584 1520 1.80 1.30 –
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Figure 1. Preparation of cement mortar specimens and the test of their compressive and flexural strength: (a) Preparation 
of cement mortar specimens; (b) The test of cement mortar compressive strength; and (c) The test of cement mortar flexural 
strength. 

The coarse and fine aggregates were natural crushed stone and river sand. Their 
properties are listed in Table 1. The apparent density of the rubber particles with the size 
of 1–2 mm is 1250 kg/m3, and the ash content, fiber content and moisture content are 2.7%, 
0.5%, and 0.6%, respectively. The distributions of the rubber and aggregate particle size 
are shown in Figure 2, and the test of coarse aggregate crushed index and the distributions 
of the rubber and aggregate particle size are shown in Figure 3. 

Figure 1. Preparation of cement mortar specimens and the test of their compressive and flexural strength: (a) Preparation
of cement mortar specimens; (b) The test of cement mortar compressive strength; and (c) The test of cement mortar
flexural strength.

The coarse and fine aggregates were natural crushed stone and river sand. Their
properties are listed in Table 1. The apparent density of the rubber particles with the size of
1–2 mm is 1250 kg/m3, and the ash content, fiber content and moisture content are 2.7%,
0.5%, and 0.6%, respectively. The distributions of the rubber and aggregate particle size are
shown in Figure 2, and the test of coarse aggregate crushed index and the distributions of
the rubber and aggregate particle size are shown in Figure 3.

The pretreated solution of rubber particles was sodium hydroxide solution with a
mass concentration of 5%. The rubber particles were washed with water three times and
dried, then soaked in the solution for 30 min. The mass ratio of rubber particles and the
solution was 1/2, and each batch of the solution was used only once on the rubber particles.
Finally, they were washed with water again, and dried.
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The test of coarse aggregate crushed index; (c) The test of distributions of the rubber and aggregate particle size. 

The pretreated solution of rubber particles was sodium hydroxide solution with a 
mass concentration of 5%. The rubber particles were washed with water three times and 
dried, then soaked in the solution for 30 min. The mass ratio of rubber particles and the 
solution was 1/2, and each batch of the solution was used only once on the rubber parti-
cles. Finally, they were washed with water again, and dried. 

2.2. Concrete Mixes and Specimen Preparation 
The concrete mixtures were based on China Standards JGJ 55- contents of the rubber 

particles were 0%, 5%, 10%, 15%, and 20%. The dynamic 2011 [47]. The volumes of sand 
properties and frost resistance may decrease when the rubber content exceeds 20% based 
on the previous literature [35,48], hence a maximum value of 20% rubber particles was 
used in this test. The mix proportions of RUC and PRC are listed in Table 2. 

  

Figure 2. Gradation curves of the sand, rubber particles, and crushed stone.

Materials 2021, 14, 2183 4 of 19 
 

 

 
Figure 2. Gradation curves of the sand, rubber particles, and crushed stone. 

   
(a) (b) (c) 

Figure 3. the test of coarse aggregate crushed index and the distributions of the rubber and aggregate particle size: (a,b) 
The test of coarse aggregate crushed index; (c) The test of distributions of the rubber and aggregate particle size. 

The pretreated solution of rubber particles was sodium hydroxide solution with a 
mass concentration of 5%. The rubber particles were washed with water three times and 
dried, then soaked in the solution for 30 min. The mass ratio of rubber particles and the 
solution was 1/2, and each batch of the solution was used only once on the rubber parti-
cles. Finally, they were washed with water again, and dried. 

2.2. Concrete Mixes and Specimen Preparation 
The concrete mixtures were based on China Standards JGJ 55- contents of the rubber 

particles were 0%, 5%, 10%, 15%, and 20%. The dynamic 2011 [47]. The volumes of sand 
properties and frost resistance may decrease when the rubber content exceeds 20% based 
on the previous literature [35,48], hence a maximum value of 20% rubber particles was 
used in this test. The mix proportions of RUC and PRC are listed in Table 2. 

  

Figure 3. The test of coarse aggregate crushed index and the distributions of the rubber and aggregate particle size: (a,b)
The test of coarse aggregate crushed index; (c) The test of distributions of the rubber and aggregate particle size.

2.2. Concrete Mixes and Specimen Preparation

The concrete mixtures were based on China Standards JGJ 55- contents of the rubber
particles were 0%, 5%, 10%, 15%, and 20%. The dynamic 2011 [47]. The volumes of sand
properties and frost resistance may decrease when the rubber content exceeds 20% based
on the previous literature [35,48], hence a maximum value of 20% rubber particles was
used in this test. The mix proportions of RUC and PRC are listed in Table 2.

Table 2. The mix proportions and slumps of concrete.

Mixtures Rubber
Content

Mix Proportions (kg/m3)
Slump
(mm)Cement Water Unpretreated

Rubber
Pretreated

Rubber
Crushed
Stones Sand

NC 0 325.0 195.0 0 0 1092.0 728.0 60
RUC1 5% 325.0 195.0 17.61 0 1092.0 691.6 57
PRC1 5% 325.0 195.0 0 17.61 1092.0 691.6 60
RUC2 10% 325.0 195.0 35.22 0 1092.0 655.2 55
PRC2 10% 325.0 195.0 0 35.22 1092.0 655.2 50
RUC3 15% 325.0 195.0 52.83 0 1092.0 618.8 57
PRC3 15% 325.0 195.0 0 52.83 1092.0 618.8 54
RUC4 20% 325.0 195.0 70.44 0 1092.0 582.4 61
PRC4 20% 325.0 195.0 0 70.44 1092.0 582.4 65
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A total of nine groups of specimens, including four groups of RUC, four groups
of PRC, and a group of NC as reference specimens were prepared. Each group con-
tained 17 concrete specimens, three for the test of dynamic elastic modulus and flexural
strength, two for the test of dynamic properties, and three for each other test. The six
specimens for the test of cube compressive strength and splitting tensile strength were of
the size of 100 × 100 × 100 mm. Another six specimens for the test of axial compressive
strength and static elastic modulus were of the size of 150 × 150 × 300 mm. Three spec-
imens for the test of dynamic elastic modulus and flexural strength were in the size of
100 × 100 × 400 mm. The last two specimens for the test of dynamic properties were in
the size of 100 × 100 × 1000 mm.

The structural form of the cantilever beam is simple, and the pre-loading damage
is easy to operate [49,50]. The natural frequency of specimens can be calculated with
the dynamic elastic modulus, the mass and the length–width ratio of the specimens [50].
Based on the normal concrete cantilever beam with the natural frequency of about 30 Hz,
rubberized concrete specimens of small cantilever beams were used for the free vibration
tests. The longitudinal reinforcement, with a diameter of 6 mm and a grade of HPB300,
was 432 MPa at yield and 556 MPa at peak. The hooping was made with iron wire of a
diameter of 4 mm. The thickness of the protective layer was 15 mm. Specimens of each
group were produced at the same time, and the tests were performed at the end of 28 days
curing period, keeping the specimens in a curing room within 20 ± 5 ◦C and over 95% for
the relative humidity.

2.3. Test Methods

The properties of concrete including the slump, strength, static, and dynamic elastic
modulus were tested based on China Standards GB/T50080-2016 [51], GB/T50081-2002 [52]
and British Standards BS 1881-209-1990 [53], respectively. For each test, the average value
of the three specimens was reported as the test value. The natural frequency, flexural
dynamic stiffness and damping ratio were obtained through the free vibration test of the
small cantilever beams under incremental loading (0, 0.8Mr, 0.6Mu and 0.8Mu) with 0–0.8
of the concrete stress level (σ), as shown in Figure 4.

Three concrete stress levels including 0.8Mr/Mu, 0.6 and 0.8 were designed, and the
dynamic properties of concrete both before and after cracking were studied, where Mr and
Mu were the flexural cracking and ultimate moment of the cantilever beam. As shown in
Figure 4, the concrete stress level was prepared under a concentrated load with a hanging
basket and a set of calibrated weights by using a standard graded loading procedure based
on China Standards GB/T 50152-2012 [54]. Based on the assumptions and method of
calculation in Standards GB50010-2010 [55], the stress of concrete during the destruction
was determined by

σc = Ecεc, σs = Esεs (1)

x0/εc = h0/(εc + εs) (2)

α1Ecεcbβx0 = Esεs AS (3)

M = α1Ecεcbβx0(h0 − βx0/2) (4)

where σc and σs were the sectional concrete maximum compressive stress and the tensile
stress of the reinforcement bar. Ec and Es were the elastic moduli of RUC and reinforcement
bar, and εc and εs were the strain. The unmarked physical parameters mentioned above
were formulated according to Standards [55]. When the bending moment was M, based on
Equations (1)–(4), the stress level (σ) was able to be calculated by

σ = σc/σcu = M/Mu (5)

where σcu was the concrete ultimate stress.
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Well-reasoned design of the test setup was the basis for obtaining reliable results,
especially for testing concrete dynamic properties [32]. The test setup and dynamic digital
signal-processing instrument are shown in Figure 4.

Four INV9828 accelerometers were mounted on the top surface along the centerline of
the beam, and the INV3062T Data Acquisition System recorded the acceleration-versus-time
data. The version of this software was COINV DASP V10, and both the accelerometers and
the software were developed 2014 by China Orient Institute of Noise & Vibration, Beijing,
China. The sampling rate and signal acquisition time were 1024 Hz and three seconds,
respectively, and the acceleration-versus-time data in three seconds were collected from the
peak acceleration of 0.5 m/s2. Zheng et al. [42] reported that the concrete damping ratio
increased with the increase of maximum response amplitude, and the damping property
of rubberized concrete was more sensitive to the vibration response amplitude than that
of plain concrete. This can be attributed to the increased Coulomb friction damping by
adding the rubber particles [56,57]. Hence, the same excitation (300 N) of vibration was
applied to the position of the concentrated load. The effect of excitation was slight, and
considered to influence only the first model.

2.4. Theoretical Bases of Analysis

The dynamic analysis of concrete was based on structural dynamics [50].
(1) Natural frequency
The acceleration-versus-time data were obtained through the free vibration test of a

cantilever beam under incremental loading. The test natural frequency of the specimens
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was determined with the attenuated curves of acceleration. For the concrete specimens
without damage, their natural frequency can be calculated by

ω1 = 2π f /
√

1 − ξ2 = 1.8752
√

EI/(mL4) (6)

where ξ, E, I, and f are the damping ratio, dynamic elastic modulus, the moment of
inertial, and natural frequency, 1 − ξ2 ≈ 1. Also, m and L are the mass per unit length
and calculated length of cantilever beams. Based on Equation (6), the theoretical natural
frequency of the specimens was determined by

f = 1.8752
√

EI/(mL4)/2π (7)

(2) Damping ratio
The acceleration amplitude from the first 20 oscillation cycles was used to calculate

ξ by

ξ =
1

40π
ln

a1

a21
(8)

where a1 and a21 were the initial peak and the 21st peak in the given time history.
(3) Flexural dynamic stiffness
The properties of concrete change with the increase of rubber content and cumulative

damage, and EI is no longer an invariant constant. Based on Equation (6), once the
natural frequency was obtained, Equation (9) could be used to approximately predict
the flexural dynamic stiffness under various conditions, and the dimensionless flexural
dynamic stiffness was calculated by Equation (10).

EI = (2π f )2mL4/1.8754 (9)

(EI)i = (EI)i/(EI)0 = f 2
i / f 2

0 (10)

where (EI)0 and f 0 were the flexural dynamic stiffness and natural frequency about can-
tilever beams of reference, and (EI)i and fi were the values of cantilever beams under
different conditions. For each test of natural frequency, damping ratio and flexural dy-
namic stiffness, the average value of the two specimens was reported as the test value.

3. Results and Discussion
3.1. Slump

The concrete workability was measured by the slumps obtained by the standard test.
The slumps of RUC and PRC with the same rubber content were similar, as listed in Table 2.
The concrete slumps first decreased with the increase of rubber content, and then increased
slightly when the rubber content exceeded 10%. The value reached the minimum when
the content of the rubber was about 10%, and the slump reduced by 8.3% compared with
that of NC. The slump of PRC4 reached the value of NC. All the rubberized fresh concrete
mixtures exhibited a similar slump to that of NC.

In this test, the concrete slumps first decreased and then increased slightly with the
increase of rubber content. This is understandable since both the amount of sand and
water are the important factors of fresh concrete slumps. When some sand was replaced
by rubber particles, the flowability of concrete decreased as the result of the reduction
of sand and coarse aggregate ratio. Note that when the sand was replaced with enough
rubber particles, the actual moisture content of RUC was higher due to the lower water
absorption of rubber particles (1–2 mm) than that of sand, which may have increased the
slump of concrete slightly. Also, the gas carried by rubber particles during the concrete
mixing process can also improve the workability of the concrete.
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3.2. Mechanical Properties
3.2.1. Strength and Static Elastic Modulus

The test results for the concrete strength and static elastic modulus are listed in Table 3.

Table 3. The strengths and elastic modulus of concrete.

Mixtures

Strength (MPa) Static Elastic
Modulus

(GPa)

Dynamic Elastic
Modulus (GPa)

Cube
Compressive

Axial
Compressive Flexural Splitting

Tensile Ed1 Ed2
Difference

(%)

NC 37.8 25.8 5.60 2.69 31.7 34.3 30.9 9.9
RUC1 36.2 23.5 5.31 2.48 25.9 33.0 29.6 10.3
RUC2 33.3 20.8 5.02 2.23 24.1 32.3 28.9 10.5
RUC3 29.0 17.9 4.38 1.93 21.8 30.7 27.3 11.1
RUC4 23.4 15.0 3.63 1.53 18.9 28.4 26.8 5.6
PRC1 37.3 24.0 5.59 2.60 28.3 33.8 30.0 11.2
PRC2 35.1 21.8 5.51 2.45 25.1 32.8 30.7 6.4
PRC3 32.2 18.6 5.00 2.10 22.3 31.2 28.4 9.0
PRC4 27.4 16.0 4.10 1.65 20.5 29.5 27.3 7.5

As most papers reported, the addition of rubber particles weakened the concrete
strength significantly [28,56–58]. In this test, compared with NC, for the concrete with
10–20% rubber content, the cube and axial compressive strength reduced by about 15.0–42.0%,
and static elastic modulus reduced by about 25.0–45.0%. To PRC with 5%, 10%, and 15%
rubber content, their cube compressive strengths reached 1.3%, 7.1%, and 14.8% below
that of NC, and their static elastic modulus were 13.5%, 23.2%, and 31.8% below that of
NC. The concrete with added pretreated rubber particles showed a significant recovery
of strength and satisfactory deformation. Pelisser et al. [46] reported that the compressive
strength of PRC with 10% rubber content reduced by 14% (28 days) compared with NC,
which is similar to the test result of this paper.

The effects of rubber content and pretreatment of rubber particles on the ratio of
splitting tensile and axial compressive strength, and the ratio of flexural and axial com-
pressive strength, are shown in Figure 5, where f f, f cp and f ts represent the dimensionless
values of flexural strength, axial compressive strength, and splitting tensile strength. As
shown in Figure 5, f f/f cp is larger than f ts/f cp, and both the f f/f cp and f ts/f cp increase first
and then decrease with the increase of rubber content. To f f/f cp and f ts/f cp of PRC, the
values are larger than that of RUC. This indicated that the pretreatment of rubber particles
with sodium hydroxide further enhanced the ductility of the rubberized concrete, and the
recommended content of rubber was about 15%.

The surface of the routine and pretreated rubber particles, as well as their bonding
interface with cement matrix, were obtained by scanning electron microscopy. Figure 6a–e
show the surface of the unpretreated rubber particle, the surface of the pretreated rubber
particle, the bonding interface between unpretreated rubber particle and cement matrix, the
bonding interface of pretreated rubber particle and cement matrix, and the distribution of
the rubber particles in concrete, respectively. The rubber particles are uniformly distributed
in the concrete.
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As shown in Figure 6, the surface of the pretreated rubber particle is clean and rough,
and the width of an obvious crack along the interface between rubber and cement matrix
reduces significantly after pretreatment. This can be attributed to the enhanced superficial
adsorption, roughness, and the attenuation of hydrophobicity of rubber powders due to
the corrosion of sodium hydroxide [28,46]. Therefore, the pretreatment of rubber particles
helped reduce the internal defects between the rubbers and cement matrix, and increased
the strength of RUC. However, the increase of concrete strength by enhancing the bonding
interface between the rubber and cement matrix is not unlimited, since the rubber particles
fill the voids in concrete as rubber aggregate, but they can’t act as the skeleton like sand
due to its lower strength and stiffness.

Gao et al. [44] and Bompa et al. [56] reported that the added rubber particles increased
the ductility of concrete, but concrete strength decreased significantly due to the rubber’s
low stiffness and surface bonding with cement matrix. Hence, the ductility of the rubber-
ized concrete may be further enhanced due to the elasticity of rubber and the enhanced
interface between the rubber and cement matrix by pretreating the rubber particles. More-
over, lots of concrete internal defects due to a large content of rubber particles may reduce
the splitting tensile and flexural strength more rapidly, which is adverse to concrete duc-
tility, hence the values of f f/f cp and f ts/f cp decrease when the content of rubber particles
exceeds 15%.

3.2.2. The Ratio of Cracking and Ultimate Moment

The ratio of cracking and ultimate moment (Mc/Mu) of the cantilever beams reflects
the ductility of the specimens. When Mc/Mu is too high, the material lacks ductility and
there will be a sudden brittle failure of the specimen without obvious warning signs. The
test results of Mc and Mu are listed in Table 4.

Table 4. Cracking moment, ultimate moment, and natural frequency of cantilever beams.

Mixtures Mc Mu
Frequency (Hz)

Theoretical Test

NC 1.42 2.62 30.18 26.68
RUC1/PRC1 1.13/1.17 2.55/2.53 29.01/29.36 26.51/26.50
RUC2/PRC2 1.03/1.07 2.43/2.44 28.70/28.92 26.26/26.10
RUC3/PRC3 0.87/0.91 2.30/2.32 27.98/28.21 26.01/26.09
RUC4/PRC4 0.80/0.89 2.18/2.22 26.91/27.43 25.92/26.01

The effects of the content of rubber particles and the pretreatment on Mc/Mu are
shown in Figure 7.
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Mc/Mu of the specimens decreased with the increase of rubber content. Xie et al. [7]
reported that the addition of rubber particles generally reduced the cracking load of the
concrete specimens, but had a slight effect on the load-bearing capacity when the rubber
content was less than 10%, which was similar to that of this research. This indicated
that the addition of rubber particles increased the ductility of concrete significantly. As
listed in Table 4, both Mc and Mu increase by pretreating the rubber particles, and the
increase of Mc is more significant than that of Mu. This indicated that the addition of the
appropriate amount of pretreated rubber particles increased concrete ductility, as well as
the cracking property.

The uniformly distributed rubber particles in the cement matrix can effectively prevent
the extension and expansion of micro cracks in the initial stage of concrete failure. However,
it is completely possible that micro cracks will continue to extend along the cracks between
rubber particles and cement matrix due to the unbonded interfaces and micro cracks
between the rubber particles and cement matrix. The enhanced bonded interfaces between
rubber particles and cement matrix are more beneficial for rubber particles bringing the
advantage of elasticity and deformation into full play to effectively prevent micro cracks
from extending and expanding, and to increase the ductility and crack resistance of concrete.
It is also notable that the falling rates of Mc/Mu gradually decrease, and the decrease of
Mc/Mu was not distinct when the rubber content exceeded 15%. This can be attributed to
lots of concrete internal defects due to the large content of rubber particles. This indicated
that the pretreatment of rubber particles with sodium hydroxide further enhanced f f/f cp
and f ts/f cp, and the recommended content of rubber is about 15%. Also, the compressive
strength of PRC with 15% rubber content reached 14.8% below that of NC. Therefore,
taking into account the strength, deformation, ductility, and crack resistance of concrete,
the satisfactory content of pretreated rubber particles is about 15%.

3.3. Dynamic Properties
3.3.1. Dynamic Elastic Modulus

The dynamic elastic modulus (Ed1) about all the mixtures are listed in Table 3. Com-
pared with NC, when the rubber content was 5%, 10%, 15%, and 20%, the reduction of
dynamic elastic modulus was 3.8%, 5.8%, 10.5%, and 17.2% for RUC and 1.5%, 4.3%, 9.0%,
and 14.9% for PRC, respectively. As for static elastic modulus, the pretreatment of rubber
particles had a slight influence on dynamic elastic modulus.

As shown in Figure 8, with the same mix proportion, the dynamic elastic modulus
is larger than the static elastic modulus, and the reduction of dynamic elastic modulus is
smaller than that of the static elastic modulus. This is understandable since the dynamic
elastic modulus is determined through a non-destructive test [42,43,53], and the effects of
rubber particles on the concrete internal structure in the absence of external forces is much
slighter than that in the condition of external load.

The dynamic elastic modulus represents the behavior of concrete deformation under
dynamic load. The deflection of the specimen will decrease as the result of the increase
of concrete dynamic elastic modulus. In this test, to PRC with 10% and 20% rubber
content, their dynamic elastic modulus decreased by 4.3% and 14.9%, while the static
elastic modulus decreased about by 23.2% and 45%. To RUC and PRC with 20% rubber
content, the dynamic elastic modulus was higher than the static elastic modulus by 50.3%
and 43.9%, and the difference was 50.0%, reported by Zheng et al. [42]. This indicated that
the response of the specimen produced with PRC was smaller than that of the specimen
produced with NC under the same dynamic load, and the anti-vibration and deformation
of PRC were more satisfactory than that of NC.
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3.3.2. Natural Frequency

The acceleration-versus-time data in three seconds were collected from the peak accel-
eration of 0.5 m/s2 through the free vibration tests. The curves were typical logarithmic
attenuated curves, and the partial curves are shown in Figure 9.
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The test values of natural frequency were obtained with the curves, as listed in Table 4.
The theoretical natural frequency of the specimens can also be determined by calculating
with Equation (7), and the values are listed in Table 4. Small differences (less than 10.0%)
between the test and theoretical values verified the validity of the test results.

As per the test natural frequency listed in Table 4, the increase of rubber content leads
to a slight reduction, but an obvious decrease is observed with the increase of stress level,
as shown in Figure 10.

The test natural frequency of the cantilever beams produced with NC (NCB) was
26.684 Hz, while the value reduced 2.8% and 2.5% for the specimens produced with RUC
(RUCB) and PRC (PRCB), respectively, with 20% rubber content. To the simply supported
beams in the similar test condition reported by Zheng et al. [42], the reduction of the natural
frequency was almost the same with that in this test. Compared with NCB, under the
stress level of 0.8, the natural frequency reduced 23.7% for NCB and 25–27.0% for RUCB
and PRCB.
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The natural frequency is a major dynamic parameter of concrete, which is mainly
affected by dynamic elastic modulus and unit weight of the specimen. With the increase of
rubber content, the natural frequency of concrete specimens decreases slightly since the
reduction of dynamic elastic modulus is smaller than that of unit weight. The reduction of
dynamic elastic modulus is the representation of development in concrete damage [53,59].
The natural frequency of concrete specimens decreases notably with the increase of stress
level, which can be attributed to the increasing reduction of dynamic elastic modulus with
the increase of damage accumulation (stress level).

3.3.3. Flexural Dynamic Stiffness

The concrete dynamic elastic modulus (Ed2) can also be determined through the free
vibration test of cantilever beams, as listed in Table 3. There were some differences between
Ed1 and Ed2, but all of the differences are less than 11.2%, and less than 10.0% reported
by Zheng et al. [42]. Therefore, it was an effective way to obtain the dynamic elastic
modulus of concrete with some damage, and the flexural dynamic stiffness of specimens
were determined by Equation (10). Compared with NCB, the flexural dynamic stiffness
calculated with Ed1 and Ed2 of PRCB with 20% rubber content reduced by less than 15.0%
and 11.6%. The flexural dynamic stiffness calculated with Ed2 reduced by 41.8% for NCB
with the stress level of 0.8 and about 43.1–47.2% for RUCB (PRCB).

The effects of stress level on the damage (degeneration of flexural dynamic stiffness,
DI = 1 − EI) of these specimens are shown in Figure 11. Notably, the values of DI
were approximate at the same stress level when the rubber content changed from 5% to
20%. This is understandable since the stress level has already included the influential
factor of rubber content on the stiffness. Generally, the increase of stress level will lead
to further concrete damage. During the concrete failure process, the redistribution of
microstructure and stress is happening for each micro unit of concrete, and the rigid element
transforms into the plastic element gradually with the increase of cumulative damage [60].
Therefore, the specimen can bear greater strength, but the stiffness reduces significantly.
Kaewunruen et al. [21], Najim and Hall [43], and Akono et al. [61] reported that there was
a correlation between stiffness (dynamic elastic modulus) and the compressive strength of
concrete. According to much research into concrete fatigue behavior and the performance of
damaged concrete, the stress level was an important parameter of concrete damage [62,63].
As shown in Figure 11, the data are limited by the number of experimental groups, but the
trend of DI with the increase of stress level is similar to the typical curve of stiffness in the
shape of an inverted “S”.
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In this test, the relationship of DI and stress level can be expressed with a cubic
equation, as shown in Figure 11. With this equation, the trend of DI with the increase of
stress level can be predicted approximately, and the predicted point of inflection is 0.275
near the cracking stress level of concrete, which is as expected. This also confirms using
the stress level to predict concrete damage related to the increase of the load.

3.3.4. Damping Ratio

As the typical logarithmic attenuated curves of the acceleration obtained in this test
show in Figure 9, the decay of acceleration increases with the increase of rubber content
and stress level. The energy dissipation capacity of the specimens increased with the
increase of rubber content and stress level. The damping ratio quantitatively expresses the
energy dissipation capacity of concrete, and is determined based on these curves of the
acceleration with Equation (8).

The pretreatment of rubber particles had little influence on the damping ratio in this
test. The cantilever beams exhibited an obvious increase in damping ratio with the increase
of rubber content and stress level. Compared with NCB, the damping ratio increased
10.6%, 24.5%, 44.4%, and 59.8% for RUCB and 6.3%, 19.5%, 40.5%, and 55.5% for PRCB
when the rubber content was 5%, 10%, 15%, and 20%, respectively. In some reported
references [26,42] under similar test conditions for undamaged specimens, the rise of
damping ratio with the increase of rubber content was approximately the same. When the
stress level was 0.6 and 0.8, the damping ratio increases by 60.0% and 179.7% for NCB, as
well as 70–170% and 200–300% for RUCB and PRCB with 5–20% rubber content.

The addition of rubber particles will enhance the viscous energy dissipation capability
of the cement matrix composite [39,40]. A large number of micro-interfaces were formed
between rubber particles and the cement matrix because of the poor bonding between
them [56,57], and the rubber particles distributed on the micro-interface of concrete in-
creased Coulomb friction damping. Therefore, the damping ratio of PRC increased with
the increase of rubber content, as shown in Figure 12.

In general, the higher the strength of concrete, the relatively worse are its deformation
and dynamic properties [50,54]. The damping ratio of the specimen increases significantly
with the increase of pretreated rubber content. It has been indicated that the compressive
strength of PRC with 15% rubber content had reached 14.8% below that of NC. Therefore,
the method of the superficial pretreatment of rubber particles provided in this paper can
improve the strength of RUC to a certain extent, and ensure the original deformation and
dynamic properties of RUC. In the field of current civil engineering where the requirement
of strength is not too high, and the deformation and dynamic properties requirements are
relatively strict, PRC has a good prospect of application.
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The increase of damping ratio is slight in the elastic and elastic–plastic stage before the
specimen cracking (σ < 0.3), since the small deformation can only dissipate a small amount
of energy. After the appearance of cracks (0.3 ≤ σ < 0.6), the damping ratio increases
evidently due to the friction of Coulomb. Then the damping ratio increases rapidly with
the increase of cracks and the continuous development of cracks (0.6 ≤ σ < 0.8). The
upward tendency of damping ratio during destruction is similar to the test result reported
by Wang et al. [64]. The ratio of the cracking and ultimate moment (Mc/Mu) of the specimen
decreases with the increase of rubber content, and the concrete failure period is prolonged.
Therefore, the specimen will dissipate more energy with the increase of rubber content
before its failure.

Recently, the measurement and calculation of the modal damping ratio of structures
were advisable, and the damping ratio of the reinforced concrete structure was a function of
displacement [50,65–67]. These methods reference measuring and calculating the damping
ratio of concrete material [42,64,68,69].

However, the analysis of the damping ratio of RUC and PRC with the displacement
during the destruction has some limitations, since the effect of rubber content on the
displacement of the concrete specimens is significant. To the concrete specimens with
different rubber content, with the same displacement, their cumulative damage widely
differs from each other.

In this test, DI represented the degeneration of flexural dynamic stiffness and quanti-
tatively expressed the degree of concrete damage. For all the specimens in this test, their
values of DI have been obtained through the free vibration test. In order to show the effects
of the damage and rubber content on the damping ratio of the specimens more intuitively,
the three-dimensional Figure 12 was provided in this paper. The damping ratio showed
linear growth with the increase of DI and rubber content, respectively. The relationship
among ξ, DI and ρ can be expressed with a mathematical equation approximatively, as
showed in Figure 12. Note that the equation is of great significance for reference in evaluat-
ing the damping ratio of rubberized concrete with some damage through the method of
this paper.

4. Conclusions

The dynamic properties of PRC during the destruction were studied through a free
vibration test with small cantilever beams under incremental loading in this paper. Also, a
brief research of the static mechanical properties of PRC was also made. Some conclusions
were obtained as follows:
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• The pretreatment of rubber particles with sodium hydroxide enhanced the strength,
the ductility, and crack resistance of the rubberized concrete, and the optimum content
of pretreated rubber particles was about 15%.

• With the same mix proportion, the concrete dynamic elastic modulus was larger
than the static elastic modulus, and the reduction of dynamic elastic modulus was
smaller than that of static elastic modulus with the increase of rubber content. Both
the anti-vibration and deformation of PRC were more satisfactory than that of NC.

• The natural frequency and flexural dynamic stiffness of PRCB decreased significantly
with the increase of cumulative damage, and the stiffness curve was in the shape of an
inverted “S” with a point of inflection near the cracking stress level.

• Both the rubber content and the cumulative damage affected the concrete damping
ratio significantly, and the damping ratio showed linear growth with the increase
of DI (less than 0.8) and rubber content, respectively. PRC is a good choice where
the requirement of strength is not too high, and the deformation as well as dynamic
properties are relatively strict.

The research of dynamic properties presented in this paper is of great significant for
reference to evaluate the dynamic properties of rubberized concrete with some damage.
Moreover, considering the limitation of the test data, improvement of the test setup and
specimens, to verify further applicability and validity of the method to measure the concrete
dynamic properties, the extended numerical tests are the focus of our next work.
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Nomenclature

NC Normal concrete
σ Concrete stress level
Mr Flexural cracking moment
EI Dimensionless flexural dynamic stiffness
σc The sectional concrete maximum compressive stress
NCB The cantilever beam produced with NC
PRCB The cantilever beam produced with PRC
RUC Rubberized concrete;
ξ Damping ratio
Mu Flexural ultimate moment
PRC Pretreated rubberized concrete
f Natural frequency
EI Flexural dynamic stiffness
DI Degeneration of flexural dynamic stiffness
σcu The concrete ultimate stress
RUCB The cantilever beam produced with RUC
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