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Abstract: An in-depth study of the failure of granular materials, which is known as a mechanism
to generate defects, can reveal the facts regarding the origin of the imperfections, such as cracks in
the carbon anodes. The initiation and propagation of the cracks in the carbon anode, especially the
horizontal cracks below the stub-holes, reduce the anode efficiency during the electrolysis process.
The failure analysis of coke aggregates can be employed to determine the appropriate recipe and
operating conditions in order to avoid the formation of cracks in the carbon anodes. In this paper,
it will be shown that a particular failure mode can be responsible for the crack generation in the
carbon anodes. The second-order work criterion is employed to analyze the failure of the coke
aggregate specimens and the relationships between the second-order work, the kinetic energy, and
the instability of the granular material are investigated. In addition, the coke aggregates are modeled
by exploiting the discrete element method (DEM) to reveal the micro-mechanical behavior of the
dry coke aggregates during the compaction process. The optimal number of particles required for
the failure analysis in the DEM simulations is determined. The effects of the confining pressure and
strain rate as two important compaction process parameters on the failure are studied. The results
reveal that increasing the confining pressure enhances the probability of the diffusing mode of the
failure in the specimen. On the other hand, the increase of strain rate augments the chance of the
strain localization mode of the failure in the specimen.

Keywords: carbon anode production; crack generation; discrete element method; failure analysis;
second-order work criterion; strain localization

1. Introduction

Carbon anodes are part of the chemical reaction of the alumina reduction and they are
consumed during the Hall-Héroult electrolysis process. The mechanical and chemical qual-
ities of the carbon anodes directly affect the technological, economical, and environmental
aspects of the aluminum production process. The carbon anode production accounts
for 17% of the total cost of the aluminum smelting [1]. In addition, to produce one ton
of aluminum, theoretically, 334 kg of carbon would be required. However, in practice,
the required carbon is higher and roughly about 415 kg per ton of aluminum [2]. Hence,
improving the chemical and mechanical properties of the anode not only reduces the
cost of aluminum production, but it also reduces the environmental impact of aluminum
production by consuming less carbon and, thus, producing fewer greenhouse gases.

The carbon anodes are composed of three major parts, i.e. the calcined petroleum coke
(65 wt.%), the recycled anode (butt, 20 wt.%), and the coal tar pitch (15 wt.%). Initially, the
coke particles are crushed and sieved to the required size distribution, and they are mixed
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with the granulated recycled butts. The dry aggregates are then heated to about 160 ◦C
and mixed with the coal tar pitch at 150–180 ◦C. The coal tar pitch binds the coke and butt
particles. The obtained mixture is called the anode paste. The anode paste goes through
the vibro-compaction or the pressing process to form the green anode blocks. The green
anodes are baked at a temperature of 1100 ◦C to improve the mechanical strength and
electrical conductivity. Subsequently, the obtained baked anodes can be used as electrodes
in the aluminum smelters [3].

High mechanical strength and electrical conductivity, homogeneity, as well as low
reactivity towards carbon dioxide and air are the important quality indices of the carbon
anodes [4]. The main parameters determining the final anode quality are categorized into
two essential groups; the material properties and the process parameters [5]. One of the
most significant challenges in the anode manufacturing industry is that its raw materials do
not always have the same properties. This quality variation is due to the fact that the raw
materials come from different sources. When the material properties are changed, the paste
formation and process parameters, including the mixing variables and the compaction
parameters, should be re-adjusted in such a way to compensate for the effects of the
variations and to keep the anode quality consistent. Moreover, the sufficient mixing power
and time, the optimized speed of the vibro-compaction, and the confining pressures, as
well as the proper temperature, are the most important process parameters determining the
mixing effectiveness and the anode quality. An efficient mixing results in a homogeneous
distribution of the coke and the coal tar pitch, and lower porosity in the paste that improves
the anode characteristics, such as the density and thermal shock resistance [4]. In addition,
any changes in either the speed and load of pressing forming or the frequency and dead-
weight of the vibro-compaction process influence the homogeneity of the density of the
green anodes, as well as the quality of the baked anodes [6]. Similarly, the higher baking
temperature leads to larger crystallite sizes and a more homogeneous structure of the
pitch-coke, which reduces the electrical resistivity and consumption rate of the carbon
anodes [7].

Any defects, such as the internal and the external cracks and the density distribution,
affect the carbon anode consumption rate and remarkably increase the process costs [6].
The presence of the cracks reduces the mechanical strength and the electrical conductivity
of the baked carbon anode, thereby reducing the life of the carbon anode, disrupting the
cell stability, and increasing the greenhouse gas emissions [5]. Given that all of the steps of
anode production are done at high temperatures and the components of the anode paste
are opaque, it is not easy to investigate the origins of the cracks. Three major types of cracks
can develop in the carbon anodes: corner, vertical, and horizontal cracks [8]. The corner
cracks predominantly appear after the anode is set into the electrolysis cell due to the
thermal shock [9]. The vertical cracks are mainly created during the baking process. The
high temperature gradient inside the carbon anode due to the high heating rate provides
the tensile stresses that are required to create the vertical cracks [7]. The horizontal cracks
of the anodes are the most detrimental to the electrolysis operation [8]. Under normal
circumstances, the stresses that are caused by the thermal shock cannot generate these
types of cracks [8]. These defects should already appear as small horizontal cracks that
are likely to occur during the formation process [8]. Boubaker et al. [10] reported a kind
of the horizontal cracks below the stub-holes of the baked carbon anodes. In Figure 1,
the baked carbon anodes are cut from the middle and shows the horizontal cracks under
the stub-holes. Although these cracks are not present in all the anodes, they are accidentally
observed beneath the stub-holes. However, in the compaction process, the compression
stresses around the stub-holes appear to be higher than in other parts of the carbon anode.
Hence, It seems strange to have these types of cracks where they are probably denser than
elsewhere in the anode [11]. On the other hand, because these cracks are the opening
type, the tensile stresses perpendicular to the direction of the crack growth is required to
generate them [12]. However, the origin of these tensile stresses beneath the stub-hole is
not known [10].
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Figure 1. (a) Images of the horizontal cracks under the carbon holes of the anodes, which were obtained after cutting the
anodes made in the Alcoa Deschambault Québec (ADC) (The size of the cracks has been magnified for greater clarity),
(b) Images of the cracked area by Scanning Electron Microscope (SEM).

Many investigations have been conducted to find the cause of the formation of the
cracks [11,13].The experimental investigations are not easily performed because of the
high temperature of the forming process and the opacity of the carbon anode paste.
Chaouki et al. [11] proposed a constitutive law to simulate the anode paste during the
compaction process. Although this model can reveal the density gradient due to the
stub-hole, it is not capable of demonstrating the formation of the horizontal cracks below
the stub-hole [11,13]. This limitation stems from the fact that the granularity nature of
the anode paste cannot be taken into account by phenomenological models such as finite
element methods [14]. On the other hand, several attempts have been made to investigate
the behavior of anode paste using the discrete element method (DEM), which considers
grains as the basic element from which the mechanical behavior of granular materials
originates [5,15]. Despite the fact that modeling anode paste with all its complexities,
including different size distribution, particle shape, solid-fluid interaction, and coal-tar
pitch dependence on temperature, is a challenging task, DEM has shown that it is able
to successfully simulate some properties of the anode coke aggregates, such as the bulk
density [16] and the electrical resistivity [17]. However, investigating the causes of the
horizontal cracks under stub-holes requires more in-depth analysis. Hence, a comprehen-
sive study of the distinct behaviors of granular materials that are subjected to compression
loading conditions can shed light on the hidden truth of this problem.

The granular materials are generally defined as materials that consist of the smaller
particles and their mechanical behavior is governed by the interaction between their par-
ticles [14]. When the granular material is exposed to a compression load, it reaches a
stress state wherein it is no longer able to sustain any deviatoric load increment. At such a
limited condition, if even a small additional load is applied to the material, it will suddenly
undergo the occurrence of large deformations, cracks, fragmentation, etc. [18]. This cir-
cumstance, which is associated with a sudden decrease in the number of grain contacts,
is called failure [19]. The sudden reduction in the grain contacts will be accompanied by a
significant increase in the number of degrees of freedom. This means that the probability
of rapid relative displacements between the particles increases. Accordingly, the failure
can be interpreted as a physical phenomenon, in which a quasi-static regime can be trans-
formed into a dynamical regime while the loading parameters remain constant [20]. For the
materials with an associative flow rule, as it is generally assumed for metals, the symmetry
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of the elasto-plastic tensor leads to the compelling fact that the failure occurs in the plastic
limit condition. However, for granular materials, which are known to have non-associated
flow rules and, consequently, non-symmetry in the elasto-plastic tensor, the failure can be
met before the plastic limit condition (Mohr–Coulomb criterion) [21]. The mathematical in-
terpretation of the failure is usually attributed to the existence of a limit load that cannot be
exceeded for a given mechanical system under some boundary and initial conditions [22].

The failure in the granular materials is initiated by the instability of these materials [23].
The instability can be either geometric, such as structural instability [24], or material, such
as constitutive behavior and force chains buckling [21,25]. The geometric instability is
associated with the tendency of the configuration to pass from one deformation pattern to
another [24]. For instance, the critical condition of a long, slender column that is axially
loaded is a state of transition from pure compression to a combination of compression and
bending. Therefore, this type of instability is a function of the geometry of the specimen
and its loading [26]. On the other hand, the material instability is defined as a property of
the material that converts an initially homogeneous deformation field into a heterogeneous
deformation field [27]. The material instability is related to the size of the materially
intrinsic length scales, which is called microstructure, and the magnitudes of the length
scale of the initial perturbations [25,27]. For example, local buckling of particle force chains
is considered to be a material instability [25,28].

The material instability causes the underlying governing equation not to have a
unique solution, thus it will become a bifurcation problem [29]. When a mechanical state
pertains to the bifurcation domain, the possibility of failure in addition to the loading
parameters, loading history, and imperfection in the system, is strongly dependent on
small disturbances [18]. Hence, the dependence of failure on small perturbations makes it
possible to consider it as a phenomenon of instability in the original sense of Lyapunov [30].
The Lyapunov definition of stability expresses that, for a given rate-independent material,
a stress–strain state for a given strain history is called stable if any small change in any
acceptable loading results in a slight change in the response. However, the main question
that comes to mind is, according to Lyapunov’s definition of stability, how can be shown a
stress-strain state is unstable strictly inside the plastic limit surface?

Two concepts of failure are built around the above-mentioned question of describing
the failure. The first one is the notion of controllability [31] and the second one is the
sustainability of equilibrium states [32]. Nova [31] defines the controllability as the ability
of a material (or a model) to supply one, and only one, response (uniqueness and existence)
under any given loading path. Accordingly, the granular materials lose their controllability
at a certain stress level and, after that point, they do not give rise to a unique material
response under any arbitrary incremental loading program. At this point, the stiffness
tensor is no longer positive definite. It has been shown that, as soon as the stiffness tensor
becomes positive semi-definite, there is a particular program that leads to infinite solutions
and unconditional controllability is lost [33]. Therefore, as the notion of controllability
applies to a given loading program, this is not an intrinsic characteristic of the mechanical
state of the system [31]. On the other hand, another interpretation of the Lyapunov
definition of stability is regarding the sustainability of the mechanical state of the system. In
this interpretation, if a loaded mechanical system can be converted from a given equilibrium
state to another mechanical state, while the control parameters are fixed, the equilibrium
state of the material will not be sustainable; consequently, the state of the mechanical
system belongs to a bifurcation domain [32]. From a mechanical point of view, it means
that a system that is initially in equilibrium can generate kinetic energy spontaneously and
without any external disturbances [22,32].

Because of the difficulty with Lyapunov definition of stability, there was a need for
a related manageable criterion of failure for the practical use in the investigation of the
granular materials [34,35]. To compensate for this issue, Hill’s second-order work criterion
of stability has been introduced. Hill’s criterion [36] states that a stress-strain state is
stable if it can maintain its state against infinitesimal disturbances in the absence of an
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external energy source. Although Hill’s criterion and Lyapunov’s definition of stability
are not related in a general manner [37], the concepts of controllability and sustainability
are equivalent to the Hill’s criterion in the classical elasto-plasticity [31] and the failure of
granular materials [35,38]. Therefore, in spite of the fact that this criterion does not specify
the mode of material failure [20], it can predict the necessary conditions for the occurrence
of a failure in the granular materials.

Various modes of failure in granular materials have been observed in practice. Thanks to
experimental observations, there are two broad classes of failure modes that arise in the
granular materials due to some instabilities [39]. In the granular materials, excluding flut-
ter instabilities, two material failure modes are of interest: localized and diffuse failure
modes. The localized failure is a mode of failure in which the strain pattern of a mate-
rial change from homogeneous to heterogeneous, being characterized by the emergence
of a system of bands in which the strain is concentrated [20,40]. These narrow zones
where deformation is concentrated are called localized bands. Shear, dilation, or com-
paction bands may be developed, depending on the loading path and their kinematic
attributes [41]. While the shear bands are predominated by shearing, the dilation and
compaction bands are primarily formed by volumetric deformation and they are character-
ized by local volume expansion and local volume reduction, respectively [41]. The strain
localization of the granular materials has been studied by many researchers through the-
oretical [40,42], experimental [43–48], and numerical methods [49–52]. There have been
attempts to simulate the phenomenon of the strain localization in the granular material,
especially in the sand samples, based on either continuum mechanics by using the finite
element method (FEM) [49,50] or micro-mechanics by using the discrete element methods
(DEM) [47,51]. The finite element methods (FEM) require the constitutive relation of the ma-
terial, while there are no reliable constitutive laws that can accurately predict the behavior
of the granular materials [53]. It should be noted that the constitutive laws that are derived
from the classical continuum mechanics do not take into account the dimensions of the
granular elements [14,54]. Consequently, these constitutive laws suffer from pathological
mesh-dependency when they are employed in the failure analyses [55,56]. However, the
discrete element method can provide applicable equipment for considering the internal
length scale of the granular material without involving the sophisticated mathematics of
the non-classical continuum mechanics [57]. In addition, a combination of the latter two
methods, called multi-scale methods, is also used to model the strain localization in the
granular materials, which benefits from both FEM and DEM [14,52,56,58,59].

On the contrary, the diffusing failure mode corresponds to a homogeneous occurrence
of the failure in which no visible pattern of localization exists [60]. A chaotic, unstructured
strain field dominates [37]. This failure mode can mostly be observed in the loose sand
specimens for classical tests [61]. Diffusing failure does not occur in the dense sand under
undrained conditions [62]. For instance, an isochoric triaxial test performed on a loose
sand specimen showed that applying an infinitesimal loading disturbance to the sample,
when it is at the peak of deviatoric stress, causes a collapse of the specimen without any
specific pattern of localization [34,60]. While the localized failure is predicted by the
vanishing values of the determinant of the acoustic tensor [42], which is known as classical
bifurcation analysis, the second-order work criterion is mostly used as a proper indicator
of the diffuse failure mode [60]. Although there are differences in the kinematics properties
of the two failure modes, Ref. [63] showed that both localized and diffuse failure can be
predicted through the classical bifurcation analysis. Despite the difficulty in finding a
proper constitutive law that describes the granular material’s behavior, the bifurcation
analysis has been used widely to predict failure in the sands [50,64], the rocks [65], and the
fluid-saturated granular soils [66,67]. Moreover, it has been shown that the second-order
work criterion is capable of detecting both the diffuse and localized failure modes [20]. This
criterion, unlike the classical bifurcation analysis, does not necessarily require a constitutive
law to predict failure [68].
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Comprehension of failure as a mechanism to generate defects in granular material
can reveal the facts about the origin of the imperfections such as cracks in the granular
materials (e.g., see [41,69] and the references cited in them). In geology, the localized bands
are recognized as the main mechanism of fault formation in sandstone that precedes the
formation of the larger faults [70,71]. Because these localized bands are usually associated
with porosity reduction, they may provide a natural barrier to fluid flows and form hydro-
carbon reservoirs and aquifers [72,73]. Another type of localized bands, called compaction
bands, is formed by the accommodation of pure compaction (with little or no shear) in the
tabular zone perpendicular to the maximum compression direction in the sandstone or
the sedimentary rocks [74–76]. There are compelling evidence for the existence and the
formation of compaction bands in the granular materials that are exposed to the compres-
sive stress states both in the laboratory and in the theory [76]. Although compaction bands
were first recognized in the sandstone [74], similar phenomena appear to be common in
the other porous materials [77]. For instance, Bastawros et al. [78] were able to illustrate the
formation of the compaction bands in a cellular aluminum alloy upon axial compression
through a digital image correlation procedure. Similar observations had been reported for
steel foams [79] and polycarbonate honeycombs [80], in which inherent pore collapse has
mainly caused the formation of the compaction bands.

The characteristics of the compaction bands, such as being perpendicular to the max-
imum principal compression direction, as well as the similarity in the way of loading,
which is mainly compressive, have led us to the idea that these bands can generate the
horizontal cracks beneath the stub-holes in the carbon anodes. Figure 2 shows how internal
tensile stresses could generate inside the carbon anode, even in the absence of an external
load. When the compressive stresses are applied to the carbon anode paste, due to the
stub-hole shape effect, the areas below the stub-holes subject to more compaction than their
neighboring areas (Figure 2a). It is assumed that this additional compression can cause the
compressive strain to accumulate in a narrow rectangular region, resulting in a compression
band (dashed rectangle in Figure 2b). After removing the external load from the material,
due to the viscoelastic properties of the carbon anode paste, the compression that accu-
mulated in the compaction bands causes residual tensile stresses in the stub-hole region,
as well as residual compressive stresses in the neighboring areas (Figure 2c). Accordingly,
the compaction bands could be responsible for the tensile stresses that are required for the
generation of these type of cracks. This phenomenon is similar to the inclusion problem in
the elastic media described by Eshelby [81]. Although many researchers used an analogous
method to predict the initiating of the compaction bands in the porous rocks [75,82–84],
the factors influencing the various manifestations of the compression bands are still un-
known [76]. Therefore, understanding the failure behavior of the granular materials is of
great importance for finding the mysterious phenomena of compaction band formation.
In addition, due to the fact that detection of the compaction bands is difficult in either the
field or the laboratory [76], it is possible that compaction bands are present in virtually all
of the carbon anodes (even in the cases where there are no horizontal cracks). Although
some parameters, such as thermal shocks or shrinkage of the coal-tar pitch during the
baking process, affect the formation of the cracks in the carbon anodes, the compaction
bands are a mechanism that can create a susceptible region under the stub-holes to generate
the horizontal cracks. Therefore, it is necessary to determine the factors of the physical
conditions and the material characteristics that are associated with the formation of the
compaction bands in the case of a systematic investigation.
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(a) (b) (c)
Figure 2. Generation of the residual tensile stresses due to compaction band formation. (a) The carbon anode paste before
the compaction process. (b) The carbon anode paste during the compaction process and the formation of the compaction
band (dashed rectangle). (c) Creating residual stresses in the absence of the external pressure. (The red arrows indicate the
compression stresses and the blue ones show the tensile stresses).

As aforementioned, the existence of compaction bands in the visco-elastic anode
paste creates a susceptible area for the horizontal crack formation. While the temperature
and coal-tar pitch content affect the viscous part of the anode paste, the coke particle
characteristics influence the elastic part of the anode paste behavior [4]. Therefore, it seems
reasonable to only consider the coke particles for the failure analysis. In addition, the coarse
coke particles have been shown to form a skeleton that controls the main mechanical
behavior of coke aggregates [85]. Hence, for the sake of simplicity, we will consider
the coarse coke particles with spherical shape for our investigations. Figure 3 manifests
the strategy chosen for the coke aggregate failure analysis in this paper. Accordingly,
the second-order work criterion for the failure of the granular material will be reviewed
and the influence of failure on the kinetic energy of the system will be explained in Section 2.
In addition, the ability of the second-order work criterion in diagnosing the failure of the
granular material will be discussed. In Section 3, the concept of the discrete element method
will be presented. The criteria for choosing the proper representative volume element
(RVE) will be studied. In Section 4, the strain localization analysis is presented based on
the second-order work criterion and the evolution of the mode of the localized bands will
be discussed. Section 5 willl summarize and discuss the most salient results of this work.

Throughout this paper, the material time derivatives of any variable ψ will be dis-
tinguished by denoting Dψ

Dt and the particulate time derivative of ψ defined as ψ̇. The
first-order tensors (vectors) and the second-order tensors, respectively, denoted by lower-
case bold Latin (v) and upper-case bold Latin (F), while the italic form of Latin letters
indicates the components of the tensors. In addition, the scalar product of two first-order
tensors (vectors), v and u, and the double contraction of two second-order tensors, S and
R, are indicated by (v · u) and (S : R), respectively. Moreover, the subscript 3 throughout
the paper indicates the axial direction, while the subscripts 1 and 2 were designated as
lateral directions.
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Figure 3. The flowchart of coke aggregate failure analysis approaches (the gray boxes outline the selected strategy in
this paper).

2. Second-Order Work Criterion

In mechanical systems for which a potential energy function can be defined, the stabil-
ity of the system is guaranteed if this potential function has a strict minimum. Because of
the complex physical phenomena and dissipation mechanism, there is no potential en-
ergy function in the mechanical problems that are associated with the granular media [34].
Therefore, the material instabilities in the granular materials cannot be investigated through
the potential energy function analysis. In other words, these instabilities are linked to the
inherent deformation mechanisms of the granular material and they do not depend on the
potential energy. In addition, the theoretical investigations, the numerical analyses, and the
experimental results highlight that the concept of failure is related to the development of
kinetic energy [22,62,86,87]. As a consequence, it is necessary to have criteria that relate the
kinetic energy of granular material to the control parameters (such as strain or stress at the
boundaries). Hence, the issue of stability will be investigated using Hill’s second-order
work criterion [36]. This sufficient condition of failure states that a stress–strain state is
stable if, for all (δP, δF) in the semi-Lagrangian formulation or (δσ, δε) in Eulerian formula-
tion (by assuming small deformations and neglecting geometrical aspects) linked by the
constitutive relation, the second-order work is strictly positive [88]:

d2W =
∫∫∫

V0

δPij δFij dV0 > 0 (semi-Lagrangian expression) ,

d2W =
∫∫∫

V

δσij δεij dV > 0 (Eulerian expression) ,
(1)

where Pij is the first Piola–Kirchhoff stress tensor, Fij the general term of the deformation
gradient tensor, σij the Cauchy stress tensor, and εij is the strain tensor. Hence, according
to Hill, a stress–strain state will be unstable when there is at least one loading direction
that can be converted to another state in an infinitesimal manner without any external
energy [89]. In fact, Hill’s sufficient condition of stability states that vanishing of the
second-order work, regardless of the type of material constitutive relations, can lead to a
loss of controllability of the loading program [33]. Although this sufficient condition does
not originate from thermodynamic principles, it is known as a valuable tool for describing
any type of quasi-static material instability, especially for granular materials, because its
use does not necessarily require the constitutive relationships of the materials [34].
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Kinetic Energy of the Granular System and External and Internal Second-Order Work

An attempt for the definition of the failure in the granular material was made in the
previous section, and this related to a transition (bifurcation) from a quasi-static regime
toward a dynamic one. In this section, the mathematical description of the second-order
work criterion is developed and the conditions in which the kinetic energy of the granular
material system may increase will be investigated. For this purpose, a system consisting of
granular material, with a volume, V0, and a surface boundary, S0, initially in a configuration,
C0, is considered. With a loading history, the system is in a current configuration, C,
with volume, V, and the surface boundary, S, in equilibrium under a prescribed external
load. Each material point in the volume V0 is transformed into a material point in the
volume V (Figure 4). All of the material points in the volume V0 are displaced along with
the deformation of their geometric properties, including the surface vector, the area, and
the volume. During this transformation, the material is subjected to a rigid body motion,
along with the pure strain that is induced by the stretching and the spinning deformations.
If large amounts of strain take place, the initial configuration, C0, will be significantly
different from the current configuration, C.

Because the Cauchy stress tensor is not objective (in the rigid body transformation,
it gives different values), the first Piola–Kirchhoff stress tensor and the conservation of the
mechanical energy in the material description are used [90,91]. It should be noted that the
first Piola–Kirchhoff stress vector is the vector t0(X, t, n0), which is parallel to the Cauchy
stress t(x, t, n), but it measures the force per unit undeformed area (see Figure 4). The
balance of the kinetic energy of a system with neglecting the body force in the material
description (configuration C0) can be derived as [92]:

D
Dt
K(t) = Pext(t)−Pint(t) , (2)

or
D
Dt

∫∫∫
V0

(
1
2

ρ0v · v
)

dV0 =
∫∫
S0

Pn0 · vdS0 −
∫∫∫

V0

P : ḞdV0 . (3)

Equation (3) expresses that the rate of change of the kinetic energy, K(t), is equal
to the difference between the power of the external forces, Pext(t), and the power of the
stresses, Pint(t). The stress power, P : Ḟ, given in term of the first Piola–Kirchhoff stress
tensor P = JσF−T and the deformation gradient F. Note that the stress power P : Ḟ refers
to the unit undeformed volume. By taking the time derivative of Equation (3) yields:

D2

Dt2

∫∫∫
V0

(
1
2

ρ0v · v
)

dV0 =
∫∫
S0

(
Ṗn0 · v + Pn0 · v̇

)
dS0 −

∫∫∫
V0

(
Ṗ : Ḟ + P : F̈

)
dV0 . (4)

Furthermore, the two-order Taylor expansion of the kinetic energy reads:

K(t0 + ∆t) = K(t0) + ∆tK̇(t0) +
(∆t)2

2
K̈(t0) + H.O.T. (∆t) . (5)

Because the velocity of the system in the initial time is equal to zero (quasi-static),
the amount of the kinetic energy K(t0) and its first time derivative K̇(t0) must be equal
to zero [87]. In addition, if ∆t is considered to be small, then the higher-order terms of ∆t
(H.O.T. (∆t)) can be ignored. Therefore, by substituting in Equation (5), the kinetic energy
in a very small time interval could be predicted as:

K(t0 + ∆t) =
(∆t)2

2
K̈(t0) . (6)
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Figure 4. Definition of the First Piola–Kirchhoff stress tensor and Cauchy stress tensor and transfor-
mation of a material system.

Therefore, by combining Equations (4) and (6), an approximation of the kinetic energy
changes in a quasi-static system will be obtained as a function of the external and the
internal stress powers.

K(t0 + ∆t) =
(∆t)2

2


Ṗext(t)︷ ︸︸ ︷∫∫

S0

(
Ṗn0 · v + Pn0 · v̇

)
dS0−

Ṗint(t)︷ ︸︸ ︷∫∫∫
V0

(
Ṗ : Ḟ + P : F̈

)
dV0

 . (7)

Based on Equation (7), the evolution of the kinetic energy of a granular system for
every time step can be expressed as the difference between the rate of the external and the
internal stress power. It should be noted that this approximation is only valid for small time
intervals. In addition, in Equation (7), it is important to distinguish the external stresses
that were applied to the boundary and the stresses inside the boundary.

Some simplification needs to take place for using Equation (7). Hereafter, we particu-
larize the analysis to a cubic representative volume element with dimension (L1 × L2 × L3)
as defined in Figure 5. The average external stress at the boundaries is determined by the
sum of the contact forces along the boundary, f, divided by the surface area of the rigid
boundary, Ai. Therefore, the average external stress of each side of the boundary for a 3D
model is equal to:

Ti =
fi
Ai

, (8)

where, fi is the equivalent external force on the side “i” and the Ai is the area of the surface
perpendicular to the direction “ei”, as mentioned in Figure 5. The displacement of each side
is denoted ui = u · ei. The deformation gradient tensor is defined as

[
Fij
]
= ∂xi

∂Xj
= 1 + ∂ui

∂Xj
.

No tangential displacement is assumed to take place. Therefore, the deformation gradient
tensor will be in its principal axes. It should be noted that at any material point of the system,
both the rate of the first Piola–Kirchhoff stress tensor (Ṗ) and the rate of the deformation
gradient tensor (Ḟ) are related by the constitutive equation Ṗij = Lijkl Ḟij, where the four-
order tensor L is the tangent constitutive tensor for rate-independent materials. Because
the first Piola–Kirchhoff stress tensor and deformation gradient tensor are each other’s
energy conjugate, the first Piola–Kirchhoff stress tensor will be, in principle, axes as well.
Against this background, it could be written:



Materials 2021, 14, 2174 11 of 32

〈F〉 =

〈F11〉 0 0
0 〈F22〉 0
0 0 〈F33〉

 and 〈P〉 =

〈P11〉 0 0
0 〈P22〉 0
0 0 〈P33〉

, (9)

where, 〈Y〉 denotes the mean value of the variable Y over the whole volume V0, which is
defined as:

〈Y〉 = 1
V0

∫∫∫
V0

YdV0 . (10)

For the deformation gradient tensor 〈Fii〉 = 1
V0

∫∫∫
V0

(
1 + ∂ui

∂Xj

)
dV0 by virtue of the

Green formula, the following hold:

〈Fii〉 =
1

V0

∫∫∫
V0

dV0 +
∫∫
S0

uieidS0

 = 1 +
Ai
V0

ui . (11)

The detailed mathematical calculations of the first and the second rate of the deforma-
tion gradient tensor are provided in Appendices A and B, respectively.

Figure 5. Cubic representative volume element.

By considering the rate of the external stress power, Ṗext(t), and the above assump-
tions, it could be simplified as:

Ṗext(t) =
∫∫
S0

[(
∂Ti
∂t

)(
∂ui
∂t

)
+ Ti

(
∂2ui
∂t2

)]
dS0 . (12)

Equation (12) can be written as:

Ṗext(t) =
3

∑
i=1

(
Ṫiu̇i + Tiüi

)
Ai . (13)

due to considering a fixed value of the external stress on each side of the boundary.
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On the other hand, the macro-homogeneity assumption makes it possible to invoke
the fundamental Hill identity [87], stating that

〈
PijFij

〉
=
〈

Pij
〉〈

Fij
〉
, consequently, by con-

sidering the mean value for the first Piola-Kirchhoff stress tensor and the deformation
gradient tensor, the rate of the internal stress power, Ṗint(t), could be written as:

Ṗint(t) =
∫∫∫

V0

(〈
Ṗij
〉〈

Ḟij
〉
+
〈

Pij
〉〈

F̈ij
〉)

dV0 . (14)

Combining Equations (11) and (14) gives:

Ṗint(t) =
(〈

Ṗij
〉〈

Ḟij
〉
+
〈

Pij
〉〈

F̈ij
〉)

V0 =
3

∑
i=1

(〈
Ṗii
〉
u̇i + 〈Pii〉üi

)
Ai . (15)

By substituting Equations (13) and (15) in Equation (7), an expression of the kinetic
energy as a function of the system’s second-order works is obtained:

K(t0 + ∆t) =
(∆t)2

2

3

∑
i=1

[(
Ṫi −

〈
Ṗii
〉)

u̇i + (Ti − 〈Pii〉)üi
]
Ai . (16)

The first term of the right-hand side of Equation (16) represents the difference between
external and internal second-order work. The second term ((Ti − 〈Pii〉)üi Ai) demonstrates
the effect of the inertia on the evolution of the kinetic energy. According to Equation (16),
the external stress vector (Ti) acting on the boundary of the specimen is equal to the internal
stress (〈Pii〉) acting within the specimen as long as the system is in the quasi-static evolution.
As a result, the measurable variables Ti and ui at the boundary can be considered to be the
constitutive response of the specimen. These variables are exactly the same information
that can be obtained from the laboratory experiments. Therefore, it can be inferred that
the laboratory data will reveal the constitutive response of the specimen as long as the
system is in a quasi-static state. On the other hand, when the material failure occurs,
the transition from the quasi-static to the dynamic regime, the information obtained from
the boundary is not the exact information of the material constitutive relations. In this
case, the specimen may undergo a heterogeneous deformation field due to the fact that the
external stresses are not being balanced by the internal stresses [87]. In addition, when the
failure occurs, the internal stress will be dropped and according to Equation (16), the terms(

Ṫi −
〈

Ṗii
〉)

and (Ti − 〈Pii〉) are greater than zero. Therefore, it leads to K(t0 + ∆t) > 0,
which describes an outburst in the kinetic energy [86]. Hence, a sudden release in the
kinetic energy of the system, could be an indicator of the material failure.

3. Discrete Element Method (DEM) Simulation

The discontinuous nature of the granular materials causes many phenomena, such
as the collapse of void space and the buckling of force chains, which cannot be modeled
by the phenomenological plasticity methods [57,58]. One possibility to obtain information
about the behavior of the granular materials is to perform simulations with the discrete
element method (DEM), as proposed by [93]. Because the DEM provides the opportunity
to track the motion of every single particle in the grain assembly, it can consider how the
microstructures affect the macroscopic properties of the granular material. In fact, what
makes the discrete element methods popular is the ability to describe the physics and
mechanics of granular materials whose behavior is influenced by their smaller components.
While it would be difficult to investigate the effects of these smaller components experi-
mentally. Therefore, it provides interesting information to describe the mechanisms of the
failure in the granular materials.

In this paper, the DEM computations were realized with the open-source software
YADE [94]. The particles are assumed to be rigid spheres with a diameter, dp. The use
of spherical particles increases the simulation efficiency. For instance, it simplifies the
collision detection calculations. In this case, the collision between two particles occurs
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when the distance between the centers of the two particles is less than the sum of their radii.
The interactions between the particles are simulated in the normal direction to the contact
by a linear elastic spring with a stiffness Kn = 681 MPa, and in the tangential direction by
a linear elastic spring with a stiffness (Kt/Kn = 0.385), and the tangential perfect plasticity
with a friction angle ϕ = 18◦ [5]. The normal and the tangential contact forces, fn and ft,
respectively, are given by [93]:

fn =Knδn fn > 0 ,

ft =Ktδt, ft 6 tan ϕ fn ,
(17)

where δn is the overlap at the contact point and δt is the incremental tangential displace-
ment. At the beginning of a computational time-step, the position of all the elements
and boundaries are known. The contacts are detected by the algorithm according to the
known position of the elements and so the magnitude of the possible overlaps between the
elements are discovered. The propagated contact forces and momentum on each sphere
are then calculated by the interaction law (Equation (17)). After that, the forces are inserted
in Newton’s second law of motion for each particle and the velocity and the acceleration of
the particles are calculated. Subsequently, the new positions of the spheres are calculated
by applying Newton’s second law of motion. The explicit integration method is used to
implement both Newton’s second law and the interaction contact law. The positions of all
the particles and the boundaries in the current time-step are determined by the obtained
values. This cycle of the calculations is repeated and solved at each time-step and, thus, the
flow or the deformation of the material is simulated (Figure 6).

Figure 6. The computation cycle of a discrete element method (DEM) modeling.

The simulation results presented in this paper were all obtained from two boundary
conditions, the periodic and the solid boundary conditions. In the periodic boundary
conditions, the particles can go through the boundaries, although the total number of
the particles is constant. It is useful for the bulk properties modeling, because it ignores
the boundary effect on the behavior of the material [95]. Meanwhile, the solid boundary
conditions are used for the failure analysis, which is strictly controlled by the boundary
effects [96]. Here, it is assumed that the solid boundaries are frictionless. Therefore,
the interaction of the spheres and the walls will be in the normal direction of their contacts.
The specimens are generated by randomly inserting grains within a cubic domain (each
side is Dinitial = 8 cm long) with the possibility of overlap until a target void ratio is
achieved. Afterwards, specimens are left to stabilize. Because the time required to complete
the calculation depends on the number of particles, determining the optimum number of
particles is a challenging part of our work.

3.1. Determination of a Proper Representative Volume Element (RVE)

The modeling of the real size of the carbon anode is not practical because of the high
computational cost of the DEM simulation. Therefore, we need to perform our simulation
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on the optimum number of particles, which could represent the mechanical behavior
of the whole material with an acceptable statistical error [97]. Accordingly, six different
representative volume elements (RVE) are considered, each of which contains 150, 300, 500,
1000, 2000, 3000, and 4000 particles, respectively. The particle diameter is the same and
is equal to 3.74 mm. This is the average diameter of the coarse coke (4–8 US mesh) [15].
Table 1 also provides the properties of the materials. All of the RVEs are then consolidated
to the same initial confining pressure P0 = 100. Because of the mechanical properties of the
RVEs are intended here, their shear responses are examined under a drained conventional
triaxial compression loading path. Hence, the load is applied through the displacement-
controlled boundaries in the z-direction (ε̇3 = 0.05 s−1), while the lateral boundaries are
stress-controlled and maintain a constant value for the lateral stresses (σ1 = σ2 = 100 kPa).
Various criteria have been considered to quantify the RVE size, including having a more
homogeneous force path network, having a smother stress–strain diagram, having a
repetitive shear behavior, and having a higher chance of capturing the strain localization.
Below, they will be explained in detail.

Table 1. Coke properties which are used in the discrete element method (DEM) model [5].

Radii (mm) Density (kg/m3) Elastic Modulus (MPa) Poisson Ratio Friction Angle (rad) Damping Ratio

1.87 1377 681 0.3 0.31 0.4

3.1.1. First Criterion: Having a More Homogeneous Force Chain Network

All of the particles will not participate equally in the deformation of the granular
materials. However, when the forces between the particles are more symmetrical, the
mechanical behavior of the material will be closer to the bulk state. Figure 7 shows the
force chain network of RVEs with a different number of particles in which the RVEs are
under confining pressure (P0 = 100 kPa) and have periodic boundary conditions. To have
an accurate explanation for Figure 7, the average of inter-particle forces and the standard
deviation of the inter-particle forces are represented in Table 2. It is observed that the
average of the inter-particle forces and their standard deviation are almost the same for all
of the RVEs. In addition, the results show that increasing the number of particles does not
lead to an increase in the inter-particle forces. This can be due to the fact that the stress on
the RVEs is the same. Hence, as the number of particles increases, both the boundary areas
and the number of particles that apply force to the boundaries increase in order to keep
the stresses felt at the boundaries constant. Therefore, this criterion does not lead us to a
specific conclusion for selecting the appropriate number of particles in the RVE.

Table 2. The average of inter-particle forces and their standard deviation for the different size of the
representative volume elements (RVEs) RVEs.

Number of the Particles in the RVE Average Force (N) Standard Deviation (N)

150 13.72 10.68
300 12.65 9.94
500 12.84 10.55

1000 12.76 9.69
2000 12.71 10.13
3000 12.49 9.39
4000 14.53 9.87
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(a) (b)

(c) (d)

(e) (f)
Figure 7. Force chain network for the RVEs with (a) 150, (b) 300, (c) 500, (d) 1000, (e) 2000, and (f)
3000 particles and the periodic boundary conditions.

3.1.2. Second and Third Criteria: Smooth the Stress-Strain Curve and Repetitive Behavior

For quantifying the smoothness and repetitive behavior, the shear response of the
RVEs with a different number of particles is simulated and for each RVE this simulation
is repeated five times, and then their average is calculated. Figure 8 shows the average
shear behavior of the RVEs with different number of particles, and the error bars represent
the standard deviation from the average behavior. The periodic boundary conditions
are employed because the bulk behavior of the RVEs is desired. The results show that
increasing the number of particles leads to a reduction in the standard deviations and makes
the average stress-strain behavior of the RVEs smoother. This is because as the number
of particles increases, so does the number of particles taking part in the deformation.
Additionally, since the deformation of the granular material is associated with buckling of
the force chains and rearrangement of the particles, there are more particles to replace in
the new force chains, so that they can withstand the external loads. As a result, fewer stress
fluctuations are felt at the boundaries. Therefore, the stress-strain curve will be smoother.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 8. The average of shear behavior of the RVEs with (a) 150, (b) 300, (c) 500, (d) 1000, (e) 2000, (f) 3000, and (g)
4000 particles and periodic boundary conditions. The error bars indicate the standard deviation for five times of simulation
for each RVE.



Materials 2021, 14, 2174 17 of 32

To quantify this phenomenon, D0/dp is considered in which D0 is the size of the RVE
at the beginning of the compaction process and dp is the diameter of the particles. Based
on [98], for the RVEs with higher D0/dp, the fluctuations of the stress-strain diagram are
reduced. We define another parameter, in which the ratio of the maximum of the standard
deviation to its average stress is considered as the error parameter. The error parameter is
as follows:

error =
Max(δσi)

σi
× 100 , (18)

where Max(δσi) is the maximum of the standard deviation and the σi is the average stress
that belongs to the maximum standard deviation. In addition, Oda and Kazama [28], by
using photoelastic pictures taken from a biaxial test on a two-dimensional assembly of oval
rods, indicated that the thickness of localized bands is at least 7 times of the mean particle
size. Therefore, the RVEs with 150 and 300 particles in which D0/dp is less than 7 will be
refused for this criterion. Moreover, according to Evesque and Adjemian [98], if the number
of particles increases, the error will be decreased. In Figure 9, the error parameter is plotted
in terms of the parameter D0/dp for the RVEs with different number of particle. For the
RVEs with 2000, 3000, and 4000 particles, the error is 4.9%, 3.9%, and 3.28%, respectively.
In addition, the parameter D0/dp for the RVEs with 2000, 3000, and 4000 particles is 12.27,
14.023, 15.41, respectively. Therefore, these three RVEs can be considered to be candidates.
It is worth mentioning that, to achieve an error of less than 1%, an RVE with at least
107 particles must be used [98].

Figure 9. The maximum error of the stress-strain fluctuation versus D0/dp for the different RVEs
with the different number of particles.

3.1.3. Fourth Criterion: Higher Chance of Capturing the Strain Localization

If the size of the RVE increases, the resolution for capturing the strain localization
inside the RVE increases, according to Stroeven et al. [97]. In other words, by increasing
the number of particles, the localized zone will be more distinguishable. To examine this
issue, the RVEs with the mono-size particles and the solid boundary conditions with the
different number of particles are considered. The initial position of particles inside the
RVEs is random. The particles are initially compressed by a confining pressure of 100 kPa.
While the axial pressure is applied through the upper displacement-controlled boundary
(ε̇3 = 0.05 s−1), the micro-strain is calculated for each particle.

The micro-strain tensor for a particle is defined as a function of the displacement of its
neighboring (but not necessarily contacting) particles that form a polygonal domain Vµ

(Figure 10) [99,100]. This definition is based on a continuous system, which is equivalent to
the granular system (see Figure 10). The boundary of this equivalent continuum passes
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through the center of the surrounding particles. The average displacement gradient in the
equivalent continuum, which contains the polyhedral domain Vµ, is as follows:

〈∇u〉µ =
1

Vµ

∫∫∫
Vµ

∂(u)
∂x

dVµ =
1

Vµ

∫∫
Sµ

u · n dSµ , (19)

where Vµ and Sµ are the volume or the surface area of the cell, du is the translation vector
of the boundary point, and n is the outwards unit normal vector of the boundary of the cell
at the same point. In addition, the amount of du for the point c is equal to the difference
between m and n nodes translation. Therefore, by applying the ∆uc = un − um and using
dc, the complementary area vector belonging to the c the pair of grains (see [100,101] for
more detail), the average displacement gradient for the particle p will be:

〈∇u〉µ =
1

Vµ
∑

c
∆ucdc, (20)

and the micro-strain is the symmetric part of Equation (20) and is as follows:

〈
εij
〉

µ
=

1
2Vµ

∑
c

(
∆ui

cdj
c + ∆uj

cdi
c). (21)

Figure 10. The particle-centered domains for the definition of micro-strain.

The micro-strains are visualized for the different RVEs in Figure 11, and it roughly
shows that localized areas are more recognizable as the number of particles increases.
Hence, as shown in Figure 11, it is easier to detect the localized areas in the RVEs with 3000
and 4000 particles than in the RVEs with 1000 and 2000 particles. However, this judgment
is based on the visualization (color difference in Figure 11) and mathematically it could not
be cited. Hence, we need a rational criterion to select the RVE with the most probable of
the strain localization formation.

As explained in Section 2, the granular material failure is a transition state (a bifur-
cation) between a quasi-static regime and a dynamic one; consequently, the changing
procedure of the kinetic energy could be a reliable indicator of the granular material fail-
ure [86,87]. Therefore, by pursuing of the kinetic energy of a granular system, its failure
can be recognized. In addition, as Oda and Kazama [28] explained, the particles which
are located in the localized zone have the rotation one order of the magnitude more than
the rotation of the particles outside of the localized zone. Hence, the onset of failure will
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be accompanied by a jump in the kinetic energy of the granular system [86]. The kinetic
energy of a granular system is:

K(t) =
N

∑
i=1

[
1
2

mp(vp)2 +
1
2

ωp
(

IpωpT
)]

, (22)

where mp is the mass of the particle p, vp is the linear velocity of the particle p, Ip is
the inertia tensor transformed to the global frame, and ωp is the angular velocity of the
particles p. The total number of the particles in each RVE is denoted by N. In view of the
fact that the compaction process carried out in the quasi static manner, the kinetic energy
of all the RVEs will remain close to zero (10−2 µJ), except when the failure occurs in them.

(a) (b)

(c) (d)

Figure 11. The magnitude of the micro-strain inside the RVEs with (a) 1000, (b) 2000, (c) 3000, and (d) 4000 particles.

It should be noted that the discrete element method is a dynamic method (in each step,
DEM solves Newton’s second law of motion for each particle to find the new interactions
and position of particles), hence the initial kinetic energy of the system is not exactly zero
(the initial kinetic energy is in the order of 10−2 µJ). Therefore, the outburst of the kinetic
energy is an indicator of the higher probability of the failure (localization) in the RVEs.
Figure 12 shows the kinetic energy evaluation of the RVEs with a different number of
particles. For the RVEs with 2000, 3000, and 4000 particles, the kinetic energy diagram has
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a jump when the strain equal to 0.044, 0.07, and 0.093, respectively. The local maximums
of Figure 12 reveal the bucking of the small force-chains in the RVEs [102]. Therefore, the
RVEs with 2000, 3000, and 4000 particles can be treated as candidates.

Figure 12. The evolution of the total kinetic energy of different RVEs during the compaction process.

All of the criteria that are considered in this paper show that, as the number of
particles increases, the RVE behavior will be more reliable. On the other hand, increasing
the number of particles dramatically affects the computational cost. Therefore, selecting
the size of the RVE size is a trade-off between the computational cost and the reliability
of the results. The computational cost for DEM simulation is a function of the number of
particles, strain rate, the hydrostatic pressure, and the Central Processing Units (CPU) of
the system used for the simulation. For example, the computational cost for the RVE with
1000 particles, confining pressure equal to 100 kPa, and the strain rate equal to 0.05 s−1 is
approximately 10 h. This time for the RVE with 4000 particles is nearly four days. Therefore,
the computational cost is the most effective limiting factor for considering more particles.
According to our criteria, the error and smoothness of the RVE with 3000 and 4000 particles
are almost the same. Hence, the RVE with 3000 particles will be considered for further
investigations to reduce the computational cost.

4. Failure Analysis

The confining pressure and the speed of compaction process have a significant effect on
the final density of the carbon anodes. To investigate the effect of the confining pressure and
the strain rate on the failure of the carbon anodes, numerical simulations were conducted
on three three-dimensional specimens S1, S2, and S3, which are compacted uniformly by
confining pressure equal to 100 kPa, 250 kPa, and 100 kPa, respectively. All of the specimens
are cubical in shape and contain 3000 spherical particles of radius 1.87 mm enclosed within
six rigid frictionless walls. They were compressed from initially sparse arrangements of
the particles to an isotopic state by moving the six rigid frictionless walls until the desired
confining pressures are reached. The desired confining pressures for specimens S1 and S3
are σ1 = σ2 = σ3 = 100 kPa and for specimen S2 is σ1 = σ2 = σ3 = 250 kPa. They are then
subjected to a drained conventional triaxial compression loading path.

The specimens are loaded by applying a constant strain rate in the axial direction,
while the stresses are kept constant and equal to confining pressures in the lateral directions.
The axial strain rate for specimen S1 and S2 is ε̇3 = 0.05 s−1, for specimen S3 is ε̇3 = 0.15 s−1.
The initial porosity of both specimens S1 and S3 are the same and equal to φ = 0.466. The
initial porosity of the specimen S2 is equal to φ = 0.463. It should be noticed that porosity
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is defined as φ = VT−Vs
VT

, in which Vs is the volume of spheres and VT is the total volume of
specimen.

The evolution of both the axial stress σ3 and the volumetric strain εv versus the axial
strain ε3 are shown in Figure 13a,b, respectively, for all three specimens. For specimen S1,
the axial stress increases continuously (positive hardening regime) toward a limit plateau
at which σ3 = 203 kPa, and its volumetric strain increases when the strain reaches to 0.0825.
By increasing the confining pressure for specimen S2, the hardening regime augments and
its axial stress increases, until it reaches to the strain ε3 = 0.122. The maximum of the axial
stress at this strain is σ3 = 511 kPa. Its volumetric strain grows after axial strain reaches to
ε3 = 0.067. The shear behavior of specimen S3 is similar to specimen S1, except that the
hardening regime for specimen S3 is shorter than specimen S1 and it reach to its maximum
level of stress when the axial strain is equal to 0.0365. Moreover, the reduction of volumetric
strain for specimen S3 is less than specimen S1, and it attains its minimum value at the
axial strain ε3 = 0.92. These analyzes are based on the behavior of the granular material
at the boundaries. Although our information in the laboratory experiments is also based
on the information which are obtained from the boundaries, when the granular materials
fails, the information at the boundaries does not properly delineate the behavior of the
material. Therefore, the second-order work analysis requires examining the behavior of the
specimens at their critical points.

(a)

(b)

Figure 13. (a) Theshear stress behavior and (b) the volumetric strain behavior of specimens S1, S2,
and S3.

4.1. Second-Order Work from Macroscopic Variables

In Section 2, the two distinct formulations of the second-order work have been re-
viewed. It was shown by [38] that the semi-Lagrangian and the Eulerian expressions of the
second-order work are equivalent as long as the deformation is quasi static. In addition,
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the second-order work for a granular material can be calculated using by either macro-
scopic variable or inter-particle variables (microscopic variables) [35]. Ref. [38] shown that
the macroscopic second-order work Equation (1) (the variables that are measured at the
boundaries) and the microscopic expression (which takes into account the forces between
the particles and the micro displacement gradient) are in good agreement. Therefore, in
this paper, the Eulerian expression of the second-order work with macroscopic variable
will be used.

In order to compute the second order work from the macroscopic variables, three stress
states that are defined by their deviatoric stress ratio η = (3(σ3 − σ1)/(σ1 + σ2 + σ3))
are considered (represented by the points (A1, B1, C1), (A2, B2, C2), and (A3, B3, C3) in
Figure 13a for specimens S1, S2, and S3, respectively). These arbitrary stress states are
chosen before the maximum stress condition (Mohr–Coulomb condition) is reached (see
Table 3). In particular, A1, A2, and A3 correspond to the isotropic state for each specimen.
The strain states which are specified in Table 3 will constitute initial states on which stress
probes (as first introduced by [103]) are performed. It should be noted that, due to fric-
tionless boundaries of specimens and the fact that lateral stresses are kept equal, the stress
probe will be written as:

∆~σ =‖ ∆~σ ‖ (cos(α)~e1 + cos(α)~e2 + sin(α)~e3) . (23)

By exposing this stress probe to the specimens, the strain response will be directly obtained
from DEM as:

∆~ε = (‖ ∆~ε1 ‖)~e1 + (‖ ∆~ε2 ‖)~e2 + (‖ ∆~ε3 ‖)~e3 . (24)

Table 3. Deviatoric stress ratio η and axial strain ε3 corresponding to the critical points of specimens
S1, S2, and S3.

Specimen S1 Specimen S2 Specimen S3

A1 B1 C1 A2 B2 C2 A3 B3 C3

ε3 0 0.0413 0.0833 0 0.0365 0.067 0 0.04 0.092
η 0 0.69 0.74 0 0.62 0.76 0 0.65 0.75

Because the components of the stress probe are equal in the lateral direction, it can
be represented by two values, the norm of the stress probe, ‖ ∆~σ ‖, and an angle, α,
which shows the angle between the stress probe vector and the plane perpendicular to the
axial direction. Figure 14 shows the components of stress probe applied to the specimen
and its strain response. The norm of the stress probe is assumed to be 10 kPa. The angle
α is increased from 0◦ to 360◦ by increments of 10◦ to check different stress directions.
The maximum axial strain rate for applying the stress probe for specimens S1 and S2 is
equal to 0.05 s−1, and for the specimen S3 is equal to 0.15 s−1. The corresponding strain
response vector, ∆~ε, for each value of the angle α is then calculated by DEM. Subsequently,
by using the Eulerian expression of Equation (1), the normalized form of the second-order
work associated with each angle α is calculated, as follows:

d2W̄ =
∆~σ · ∆~ε

‖ ∆~σ ‖‖ ∆~ε ‖ . (25)

It is worth mentioning that the value of normalized second-order work is in the range
of [−1, 1]. Figure 15 represents the value of the normalized second-order work for the
specimens S1, S2, and S3 at their critical stress state. The dashed circles shown in Figure 15
demonstrate the zero value for the second-order work. Therefore, when d2W̄ is negative
the plot is inside the dashed circles, whereas plot is outside the dashed circles for positive
values of d2W̄.
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(a) (b)

Figure 14. (a) The stress probe is applied on the specimens, (b) the strain response of the specimens is calculated by DEM.

(a) (b)

(c)
Figure 15. Circular diagrams of the normalized second-order work of (a) specimen S1 (confining pressure P0 = 100 kPa and
strain rate ε̇3 = 0.05 s−1), (b) specimen S2 (confining pressure P0 = 250 kPa and strain rate ε̇3 = 0.05 s−1), and (c) specimen
S3 (confining pressure P0 = 100 kPa and strain rate ε̇3 = 0.15 s−1) for different values of η.

All of the specimens have a positive second-order work in the isotropic stress state
(points A1, A2, and A3). In the other words, all of the specimens are in the stable stress state
at the begging of the compaction process. For the specimen S1, the cone of the unstable
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stress directions (inside the dashed circle zone in Figure 15a) are found for σ3 = 173.5 kPa
when its correspond α is in the range of [225◦, 248◦]. In addition, the stress states of point
C1, in which the tangent of the volumetric strain diagram (Figure 13b) is zero, are unstable
when α in the range of [227◦, 254◦]. By increasing the confining pressure for specimen
S2 to P0 = 250 kPa, all of the stress states associated with point B2 are stable. Moreover,
the unstable stress is discovered for the σ3 = 445 kPa when its corresponding α is in
the range of [249◦, 251◦]. The results indicates that by enhancing the confining pressure,
the stable zone for the compaction process increases, and the specimen could be tolerated
more stress without any failure inside. In a similar way, by increasing the strain rate to
ε̇3 = 0.15 s−1, the cone of the unstable stress directions are found when the axial stress
is equal to 174.1 kPa (Figure 15c). The unstable corresponding α for this stress state is in
the range of [229◦, 231◦]. By comparison the range of the unstable α for the points B1 and
B3 reveals that the unstable zone diminishes when the strain rate enhances. However,
by analyzing the response of the stress state at the point C3, the unstable stress directions
are detected when the range of α is [226◦, 253◦], which is almost similar to the range of
the unstable α for the point C1 of the specimen S1. The second-order work criterion does
not specify the instability mode of specimens, as we discussed in Section 2. Therefore,
the micro-strain contours are plotted during the compaction process to identify which type
of failure modes (localization or diffusing failure) is happened inside the specimens.

4.2. Failure Mode along the Drained Compression Path

The evidence of failure in the granular system can be seen when the system exceeds
the general stress limit. This evidence for the strain localization failure is in the form of
localized bands and unloading areas. While, in the diffuse failure, no specific pattern can
be seen [104]. Diagnosis of failure mode in the granular materials, in general, requires
special laboratory equipment such as X-ray tomography. While the discrete element method
enables us to numerically observe the evolution of the failure state in a specimen. Therefore,
thanks to the use of micro-strain contours inside the specimens, the mode of failure inside
the specimen can be detected according to the stress-strain state on its boundaries.

Figure 16 represents the evolution of the micro-strain of specimen S1 during the axial
compaction. As discussed in the previous section, specimen S1 fails when the axial stress
and the axial strain are equal to 173.5 kPa and 0.0413, respectively. At the beginning of the
compaction, the micro-strain inside the specimen is uniform. By increasing the compaction
in the z-direction, the micro-strain localizes in the specimen. Because the initial angle
between the localized band and the the maximum principal stress plane (here XY-plane)
is not zero (θ1

∼= 47◦), there are shear stresses within the localized zone. It means that
the localized zone is a shear band. By increasing the compaction, the angle decreases to a
value that is very close to zero (θ5 ' 0). The zero angle means that there is no shear stress
in the localized band. Hence, the localized band is a compaction band at the end of the
compaction. In other words, the shear band becomes the compaction band. These results
are consistent with the results of Das et al. [105]. Hence, the compaction parameters (here
the confining pressure, P0, and the axial stress rate, ε̇3) for specimen S1 will lead to the
formation of a compaction band in the specimen. Therefore, given what has been discussed
previously, these compaction parameters will create a compaction band that is prone to
horizontal crack formation.
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Figure 16. The evolution of micro-strain of specimen S1 during the compaction process according to its stress-strain diagram
(P0 = 100 kPa and ε̇3 = 0.05 s−1, θi = the angle between the localized band and the maximum principal stress plane).

In Figure 17, the micro-strain contours are depicted for specimen S2 during the axial
compaction process. The micro-strain contour inside specimen S2 reveals that, like speci-
men S1, specimen S2 initially has a homogeneous deformation. According to Figure 15b,
specimen S2 fails when it reach to the axial stress 471 kPa and the axial strain 0.067. From
this point on, the deformation of specimen S2 is no longer homogeneous. However, due
to the micro-strain contours inside the specimen, no specific localization pattern could
be seen inside the specimen. Hence, the compaction parameters of specimen S2 cause a
diffusing failure in it. In addition, by comparing its compaction parameters of specimens
S1 and S2, it could be deduced that when confining pressure increases, the failure mode of
the specimen intends to be a diffusing failure. In this case, no compaction band is created
and thus the possibility of forming a susceptible area to generate the horizontal cracks will
be reduced. It is worth know that the dead-weight of the vibro-compactor in the anode
production indicates the confining pressure. Consequently, enhancing the dead-weight of
the vibro-compactor can be used as a proposed solution to prevent the strain localization
in the carbon anodes.

On the other hand, according to Figure 15c, specimen S3 fails when its axial stress and
axial strain are equal to 189 kPa and 0.092, respectively. Figure 18 shows that the strain
localization mode of failure is predominant in specimen S3 and similar to the compaction
process of specimen S1, the localized band of specimen S3 is a type of shear band at the
beginning of the compaction process. The angle between the shear band and the maximum
principal stress plane (here XY-plane) at the axial strain ε3 = 0.1 is equal to 42◦. Although
the shear band angle (θi) decreases as the axial strain increases, the shear band remains
a shear band at the end of the compaction process (θ5 ∼= 18◦). It means that increasing
the axial strain rate will postpone the formation of the compaction bands. Therefore,
the compaction process can be continued further until the shear band angle reaches close
to zero (the shear band turns to a compaction band). Hence, by taking the fact that the
vibro-compactor frequency in the anode production process represents the amount of the
axial strain rate into account, increasing the frequency can be a suggested solution to inhibit
the formation of compaction bands in the anode production process.
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Figure 17. The evolution of micro-strain of specimen S2 during the compaction process according to its stress-strain diagram
(P0 = 250 kPa and ε̇3 = 0.05 s−1).

Figure 18. The evolution of micro-strain of specimen S3 during the compaction process according to its stress-strain diagram
(P0 = 100 kPa and ε̇3 = 0.15 s−1, θi = the angle between the localized band and the maximum principal stress plane).

5. Conclusions

This paper presents a theoretical aspect of the failure analysis in the granular material
and a numerical investigation to find the failure in the mono-sized spherical coke aggregate
under different compaction conditions. Some conclusions can be summarized, as follows:

• It has been shown that the strain localization could happen in the carbon anodes during
the compaction process and if this localized zone is a type of the compaction band,
it could be responsible for the crack generation under the stub-holes in the carbon
anodes. Because the carbon anode paste behavior during the compaction process is
too complex for consideration, the dry mono-sized spherical coke aggregates have
been examined.



Materials 2021, 14, 2174 27 of 32

• When considering failure as a bifurcation from a quasi-static regime to a dynamical
one, a failure criterion was inferred, and the notion of the bifurcation domain was
specified. The relationship between the kinetic energy of the granular materials and
the internal and external second-order work has been evolved. It has been shown that
when the failure occurred, the stresses that sense at the boundaries cannot reflect the
real stress inside the material.

• Using the DEM simulation, the optimum number of particles which could represent
the bulk material for the failure analysis is justified. Four criteria, including having a
more uniform force path network, having a smother stress-strain diagram, repetitive
behavior of the RVE, and a higher chance of the capturing the strain localization, have
been exploited. It has been proved that the RVE with 3000 particles could represent
the bulk material behavior in failure analysis.

• The second-order criterion was used for finding the failure threshold in the specimens.
The evolution of the shear band to the compaction band was investigated. Moreover,
the effect of the confining pressure and the strain rate on the failure of the specimens
have been studied. It revealed that, by enhancing the confining pressure, the failure
mode of the specimen would be of the diffusing type. However, by increasing the
strain rate, the mode of the failure would be the localized type. In addition, the
strain rate could postpone the formation of the compaction band, which can generate
a susceptible area for the crack generation. The results highlighted that increasing
the confining pressure and the axial strain rate could be suggested solutions for
preventing the localization or postponing of the formation of the compaction bands in
the carbon anode.

This article focuses on the study of the failure behavior of the dry mono-sized coke
aggregates. However, the coke aggregates are very complex, as they are composed of
particles of different sizes, different shapes, different materials, etc. In the next step, the role
of the size distribution and particle shape on the failure of the coke aggregates will be
explored by using DEM simulation.
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Nomenclature

ε the strain tensor
σ the Cauchy stress tensor
〈ε〉µ micro-strain tensor
dc complementary area vector belonging to the c the pair of grains (m2)
F the deformation gradient tensor
P the first Piola-Kirchhoff stress tensor
u displacement vector (m)
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v velocity vector (m/s)
X position vector in material configuration
x position vector in spacial configuration
K kinetic energy (J)
ωp angular velocity of particle (rad/s)
φ porosity
P0 confining pressure (Pa)
θi the angle between the localized band and the maximum principal stress plane (◦)
ϕ friction angle (rad)
Ai the area of the surface perpendicular to the direction of ei (m2)
C current configuration
C0 initial configuration
d2W̄ the normalized second-order work
d2W the second-order work (J)
D0 initial size of RVE (m)
dp diameter of particle (m)
fi external force in the direction of ei (N)
δn overlap at the contact point (m)
δt incremental tangential displacement at the contact point (m)
Ip inertia tensor transformed to the global frame(kgm2)
Kn tangential spring stiffness (N/m)
Kt normal spring stiffness (N/m)
mp mass of particle (kg)
S surface boundary in current configuration (m2)
S0 surface boundary in initial configuration (m2)
t time (s)
N number of particle
Ti external stress in the direction of ei (Pa)
V volume in current configuration (m3)
vp linear velocity of particle (m/s)
V0 volume in initial configuration (m3)
Vµ volume of polyhedral domain (m3)

Appendix A

Let us consider, at a given time t, a homogeneous granular assembly of volume V
in equilibrium under prescribed boundary conditions. Then, the rate of the deformation
gradient tensor can be obtained as [92]:

Ḟ = ∇v F. (A1)

In the other hand, we can use a pull-back transportation to bring the differential from
the spatial configuration to the material configuration as:

∇v =
∂v
∂X

∂X
∂x

=
∂v
∂X

F−1. (A2)

By substituting Equation (A2) in (A1), it comes:

Ḟ =

(
∂v
∂X

F−1
)

F =
∂v
∂X

. (A3)



Materials 2021, 14, 2174 29 of 32

Then, the mean value of the rate of the deformation gradient tensor (
〈

Ḟij
〉
) by using

Green formula is equal to:

〈
Ḟij
〉
=

1
V0

∫∫∫
V0

∂vi
∂Xj

dV0

 =
1

V0

∫∫
S0

vi NidS0

 =
Aiu̇i
V0

. (A4)

Appendix B

By using a similar process, we can calculate the second rate of the deformation gradient
tensor by using a time derivative of Equation (A3):

F̈ =
∂

∂t

(
∂v
∂X

)
(A5)

Because X is independent of t, it can be written:

F̈ =
∂

∂X

(
∂v
∂t

)
. (A6)

Then, by using Green formula, the mean value of the second rate of the deformation
gradient tensor (

〈
F̈ij
〉
) is equal to:

〈
F̈ij
〉
=

1
V0

∫∫∫
V0

∂

∂Xj

(
∂vi
∂t

)
dV0

 =
1

V0

∫∫
S0

(
∂vi
∂t

)
· Nj dS0

 =
Aiüi
V0

. (A7)
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