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Abstract: The hydrolytic stability of ceramics based on Y2.5Nd0.5Al5O12 oxide with a garnet structure
obtained by the spark plasma sintering (SPS) method has been studied. The tests were carried out in
distilled water under hydrothermal conditions in an autoclave and, for comparison, in a static mode
at room temperature. The mechanism of leaching of Y and Nd from the ceramics was investigated.
It has been shown that at “low” temperatures (25 and 100 ◦C), the destruction of pores occured,
and the intensity of the leaching process was limited by the diffusion of ions from the inner part of
the sample to the surface. At “high” test temperatures (200 and 300 ◦C), intense destruction of the
ceramic grain boundaries was observed. It was assumed that the accelerated leaching of neodymium
is due to the formation of grain-boundary segregations of Nd3+ in sintered ceramics.

Keywords: ceramic matrices; immobilization of radioactive wastes; garnet; hydrolytic tests; leach-
ing mechanism

1. Introduction

Handling of high-level waste (HLW) including minor actinides (MA) accumulated
over many years of nuclear power operation is an important task of modern radiochemistry.
The high-level waste generated after the extraction of uranium and plutonium from spent
reactor fuel is known to contain radioactive isotopes of about 40 elements, 27% of which
are the Rare Earth Elements (REE). The study of such compounds is very important for
the immobilization of actinide elements (which constitute a special group of long-term
ecologically hazardous radionuclides) in order to isolate these ones from the biosphere
for the long time required for the storage and disposal. For this purpose, the world’s
leading laboratories are currently studying ceramic materials based on natural minerals [1]:
monazite [2,3], garnet [3–17], kosnarite [18–21], pyrochlore [10,22–25], scheelite [26], etc.
The garnet structure is one of the most promising matrices for the MA immobilization.

Garnets belong to a group of minerals with the general formula B2+
3R3+

2(XO4)3.
The garnet structure is stable in a very wide range of cationic substitutions, and in all
crystallographic positions. The position of the B2+ cation can be occupied by Mg, Fe, Mn,
Ca; actinides (including Pu (IV)) and REE; the concentration of the substitutes can achieve
4–16 wt% [5,6]). The position of the R3+ cation can be occupied by Al, Fe, Cr, and Ga, the
position of the X cation—by Al, Fe, Ga, and Si cations [3,6]. In addition, compounds with a
garnet structure have high hydrolytic and radiation stability [3,4,7–9,27].

In the present work, the hydrolytic stability of ceramics based on Y2.5Nd0.5Al5O12
(YAG/Nd) oxide with a garnet structure obtained by the spark plasma sintering (SPS)
method at elevated temperatures and pressures was studied. The SPS process is based
on high-rate heating of powders in vacuum or in an inert ambient by simultaneously
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applying a strong millisecond electric DC pulses and a constant pressure to a graphite
mold containing the powder [20,28–37]. An opportunity to reduce the sintering time
drastically (as a compared to conventional sintering process) while preserving a high
density of obtained material is an important advantage of SPS process, especially relevant
for the radioactive materials. High heating rates in SPS allow limiting the grain growth
considerably and provide conditions for the resulting phase composition of the sintered
ceramic to remain identical to the one of the initial powders. This affect positive the
hydrolytic, thermal, and radiation stability of the produced ceramics. This is true for simple
(oxide) compositions as well as for more complex saline ones composed of many kinds
of ions. In recent years, the technologies for producing the garnet-based ceramics the
developing rapidly and intensively. In [38], electron beam assisted synthesis was proposed
for producing the ceramics based on yttrium-aluminum garnet doped with lanthanides.
The ceramic production time was ~1 s. However, the photographs presented in [38] indicate
a structure inhomogeneity of the ceramics, which can affect its properties negatively.

The mechanisms of high-speed sintering of Y2.5Nd0.5Al5O12 ceramics with the garnet
structure were described in detail in [3,39,40]. In present work, a special attention was paid
to the problem of studying the high-temperature hydrolytic stability of ceramics with a
garnet structure. In [11], the hydrolytic stability of various garnet single crystals (including
pure yttrium–aluminum garnet not doped with lanthanides) was investigated at 200 ◦C
and a pressure of 150 bar for 28 days. The leaching rate of yttrium ranged from 1.29 × 10−3

to 5.64 × 10−4 g/m2·day. Note that there is almost no information on the hydrolytic
resistance of ceramics with the garnet structure at elevated temperatures (200–300 ◦C). This
makes it difficult to predict the long-term hydrolytic resistance of the ceramics obtained
by SPS.

2. Materials and Methods

The Y2.5Nd0.5Al5O12 garnet powder was obtained by the co-precipitation method.
An aqueous solution containing Y(NO3)3, Nd(NO3)3, and Al(NO3)3 was mixed with a 5%
ammonia solution. The resulting mixture was heated for dehydration up to 90 ◦C. The
dry residue was heated at 300, 500, 800, and 1000 ◦C for 6 h at each stage and subjected to
dispersing in an agate mortar after each thermostating (annealing) stage.

The ceramics were obtained by the SPS method on a Dr. Sinter® Model-625 system
(NJS Co., Ltd., Tokyo, Japan). The powders were placed in a graphite mold with the inner
diameter of 12 mm and heated by passing the of high power millisecond electric current
pulses (up to 3 kA). The sintering temperature was 1400 ◦C. It was measured with a Chino®

IR-AH pyrometer (Chino IR-AHS2 infrared, Chino Corporation, Tokyo, Japan) focused
onto the graphite mold surface. Sintering was carried out in vacuum (6 Pa). The heating
rate was 50 ◦C/min, the uniaxial pressure applied was 70 MPa. The uncertainly of the
temperature measurements was ±10 ◦C, the one of the pressure maintenance was 1 MPa.
The density of the obtained ceramics was measured by hydrostatic weighing in distilled
water on a Sartorius® CPA balance (Göttingen, Germany).

The phase composition of the obtained ceramics was studied by X-ray diffraction
(XRD) method using Shimadzu® LabX XRD-6000 diffractometer (Shimadzu, Kyoto, Japan)
with a Cu Kα-filter (the emission wavelength λ = 1.54078 Å) in the diffraction angler range
of 2θ = 20–60◦ with the step 0.02◦ and exposure 0.6 s at every point. The structure of the
ceramics was studied with a Jeol JSM-6490 scanning electron microscope (SEM, Jeol Ltd.,
Tokyo, Japan) with an Oxford Instruments INCA 350 energy dispersive spectrometer (EDS,
Oxford Instruments pls., Oxford, England). The average size of the grains and particles of
the second phase was determined with GoodGrains 2.0 software. The specimens for the
grain-structure study were mechanically polished with diamond suspension and finished
to roughness under 1 µm.

The hydrolytic stability of ceramics was studied under hydrothermal conditions in
an autoclave at temperatures of 100, 200, and 300 ◦C in distilled water. The tests were
carried out in a metal autoclave with an internal volume of 3000 cm3. the ceramic samples
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were placed in ceramic beakers placed inside the autoclave (the volume of the beakers
(100 cm3) was much less than the one of the autoclaves). The uncertainty of maintaining
the temperature was 5 ◦C. The tests were carried out at temperatures of 100 ◦C (pressure
0.1 MPa), 200 ◦C (1.56 MPa), and 300 ◦C (8.59 MPa). Thus, the tests were carried out
according to the scheme: Stage 1: 100 h, Stage 2: +200 h, Stage 3: +200 h, Stage 4: +200 h,
Stage 5: +300 h. For comparison, leaching was also carried out in a static mode at room
temperature (25 ◦C).

Water samples for testing were taken after testing, for a total time of 100 h, 300 h, 500 h,
700 h, and 1000 h. The concentration of elements passed into the solution during leaching
was determined by inductively-coupled plasma mass spectrometry (ICP-MS) using Thermo
Scientific® ELEMENTTM 2 high-resolution mass spectrometer (Thermo Scientific, Bremen,
Germany) within the framework of an external calibration. The calibration was carried
out using solutions in the ICP-MS-68A-A multielement standard (High Purify Standards,
North Charleston, SC, USA). Before the experiment, the ceramic samples surfaces were
mechanically grinded and polished to the roughness level Rz20 in order to remove graphite
residues.

To calculate the leaching rate of the cations, the weight losses of the component i
(normalized weight loss) were calculated using the formula:

NLi = aki / (Moi × S) , (1)

where NLi is the normalized weight loss of the ith component (in g/cm2), aki is the net
weight of the ith component passed into the solution during leaching (in g), M0i is the mass
concentration of the ith I component in the sample at the beginning of tests (in g/g), and S
is the open area of the sample surface (in cm2).

The leaching rate of the ith component Ri was calculated according to the formula:

Ri = NLi / tn, (2)

where tn represents the time interval (in days).
The leaching mechanism for Y and Nd from investigated ceramics was evaluated in

accordance with the de Groot-van der Sloot model [41], which can be represented as an
equation of a linear dependence:

lgBi = Algt + const, (3)

where Bi is the total yield of the ith element from the sample during the time of contact
with water (in mg/m2), and t is the contact time (in days).

The quantities Bi were calculated using Equation (4):

Bin = Cin (L/S)
√

tn/(
√

tn -
√

tn-1), (4)

where Cin is the concentration of ith element in the leaching solution by the end of nth
period (in mg/L); L/S is the ratio of the solution volume to the sample surface area (in
L/m2); tn and tn–1 are total contact times at the end of nth period and its beginning,
respectively (in days).

3. Results and Discussion

The powders obtained were pale violet colored with a polycrystalline sample. The
composites obtained contain easily destructible agglomerates ranging in size from ~1 to
~10 µm. The sintered ceramics had a dense fine-grained microstructure with an aver-
age grain size of 3–10 µm (Figure 1). The relative density of the sintered samples was
~99.5–99.7% of the theoretical value (ρth = 4.77 g/cm3). There were no microcracks on the
surface of the sintered samples. Few pores of micron and submicron sizes were observed
on the fracture of the sample (see, for example, Figure 1; the large pores are marked with
yellow arrows).
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the materials of the autoclave. Holding in distilled water at a 200 °C for 1000 h led to a 
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to note that the destruction areas on the sample surface were arranged along the grain 
boundaries (in Figure 3c, such an area is framed by a yellow dashed rectangle).  

Figure 1. SEM image of a fracture of a sintered ceramic sample.

The ceramics were identified to be single phase materials with a garnet structure (sp.
gr. Ia3d, ICDD Card No. 08-0178). There were no changes in the phase composition during
leaching (Figure 2).
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Figure 2. XRD curves for ceramics Y2.5Nd0.5Al5O12 before (initial) and after leaching.

The study of the microstructure of the samples after the leaching tests has shown
the test temperature to affect the nature of the surface destruction significantly. At “low”
test temperatures (25 and 100 ◦C), a destruction of the surface near the pores is observed
(Figure 3a,b). Some light deposits were observed on the surface of the samples. Most
likely, these ones were formed as a result of the interaction of the test environment with the
materials of the autoclave. Holding in distilled water at a 200 ◦C for 1000 h led to a drastic
increase in the etching intensity of the sample surface (Figure 3c). It is important to note
that the destruction areas on the sample surface were arranged along the grain boundaries
(in Figure 3c, such an area is framed by a yellow dashed rectangle).
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Figure 3. SEM images of the ceramic samples surface after hydrolytic tests for 1000 h at room temperature (a) at 100 ◦C (b)
at 200 ◦C (c) and at 300 ◦C (d).

With further increase of the test temperature up to 300 ◦C, the destruction intensity at
grain boundaries increased. After 1000 h of testing, the entire surface of the sample was
covered by traces of the “intergranular corrosion” (Figures 3d and 4a). Thus, the mecha-
nisms of surface destruction at “low” and “high” test temperatures differ significantly. At
“low” temperatures, the destruction is observed mainly near the pores whereas at “high”
temperatures the destruction of ceramic grain boundaries took place. We assume that there
are two factors promoting accelerated destruction of grain boundaries in hot water: (i)
the special composition of the ceramic grain boundaries; (ii) special chemical reactions of
water with ceramics at elevated temperatures leading to “intergranular corrosion”. In our
opinion, both of these factors are important since “intergranular corrosion” was observed
at elevated temperatures only. At present, it is difficult to identify which of these two
factors is most important.



Materials 2021, 14, 2152 6 of 11
Materials 2021, 14, x FOR PEER REVIEW 6 of 11 
 

 

  
(a) (b) 

Figure 4. SEM images of a ceramic sample surface after hydrolytic tests for 1000 h at 300 °C. 

This conclusion is confirmed by the assessment of the leaching mechanism according 
to the de Groot and van der Sloot model. The smallest leaching rates of yttrium and 
neodymium are given in Table 1. The graph of the normalized weight loss and of the 
leaching rates Ri vs the time t are shown in Figures 5 and 6. As one can see from the data 
obtained, the leaching rates of cations under hydrothermal conditions were significantly 
higher than the ones in the static regime at room temperature. Furthermore, it increased 
with increasing temperature up to 200 °C. However, the leaching rates of cations remained 
almost unchanged with further increasing test temperature up to 300 °C. The leaching 
rates achieved characterize the samples studied as having a high hydrolytic stability. The 
leaching rate of yttrium was comparable to the data obtained for the YAG single crystal 
[11]. We assume the insignificant differences observed are associated, first of all, with the 
presence of residual porosity as well as with more accelerated destruction of grain 
boundaries in YAG/Nd ceramics sintered. Because of the low leach rates measured and 
the flexibility of various garnet structures to incorporate a wide range of REEs, the 
investigated garnet are promising as viable waste forms for hosting minor actinides from 
nuclear wastes. 

 

 
Figure 5. The normalized weight loss NLi vs the time t for Y (a) and Nd (b). 

(a) (b) 

Figure 4. Surface of a ceramic sample after hydrolytic tests for 1000 h at a temperature of 300 ◦C (magnification: (a) ×1000,
(b) ×10,000).

Probably, one of the factors promoting the accelerated destruction of grain boundaries
in YAG/Nd ceramics is segregation of neodymium at these ones. As shown in [42], the
grain boundaries of the YAG/Nd ceramics obtained by the high isostatic pressure (HIP)
method contained a higher neodymium concentration than the crystal lattice inside the
grains. This assumption, according to [43], can explains a number of anomalies in the
optical properties of YAG/Nd ceramics.

This conclusion is confirmed by the assessment of the leaching mechanism according
to the de Groot and van der Sloot model. The smallest leaching rates of yttrium and
neodymium are given in Table 1. The graph of the normalized weight loss and of the
leaching rates Ri vs the time t are shown in Figures 5 and 6. As one can see from the data
obtained, the leaching rates of cations under hydrothermal conditions were significantly
higher than the ones in the static regime at room temperature. Furthermore, it increased
with increasing temperature up to 200 ◦C. However, the leaching rates of cations remained
almost unchanged with further increasing test temperature up to 300 ◦C. The leaching
rates achieved characterize the samples studied as having a high hydrolytic stability.
The leaching rate of yttrium was comparable to the data obtained for the YAG single
crystal [11]. We assume the insignificant differences observed are associated, first of all,
with the presence of residual porosity as well as with more accelerated destruction of
grain boundaries in YAG/Nd ceramics sintered. Because of the low leach rates measured
and the flexibility of various garnet structures to incorporate a wide range of REEs, the
investigated garnet are promising as viable waste forms for hosting minor actinides from
nuclear wastes.

Table 1. Minimum achieved leaching rate of cations.

Experimental Conditions T (◦C)
Leaching Rate Ri (at 1000 h), g/(cm2·d)

Y Nd

Static Mode 25 7.11 × 10−10 4.14 × 10−10

Hydrothermal Conditions
100 1.08 × 10−8 1.38 × 10−8

200 1.75 × 10−7 4.99 × 10−7

300 2.46 × 10−7 4.97 × 10−7
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The analysis of the data presented in Table 1 shows that at elevated temperatures
(100–300 ◦C) the rate of neodymium leaching is higher than the one for yttrium. This cannot
be due to differences in the diffusion coefficients of Y and Nd in the YAG crystal lattice.
According to [44], the effective diffusion coefficient of Nd3+ in fine-grained YAG ceramics
can be calculated using the equation: DNd = 177 × exp(−623 [kJ/mol]/RT) (in m2/s).
In [45,46], it was reported that the diffusion activation energy and diffusion coefficients
of Nd3+ in YAG/Nd ceramics are close. The activation energy of diffusion of Y3+ in YIG
(yttrium–iron garnet) is ~502 kJ/mol, and the diffusion coefficient of Y in YIG garnet is
much higher than the one of Nd in YAG [45]. In [47], the highest values of the diffusion
coefficient of Y3+ in YAG (2.43 × 10−10 cm2/s at 1750 ◦C) were reported. It [48], the
activation energy of grain boundary diffusion of yttrium Y3+ for YAG garnet was reported
to be ~565 kJ/mol. It is less than the activation energy of grain boundary diffusion of
Nd3+ (~637 kJ/mol). Also, a low activation energy for Y3+ diffusion in the YAG lattice was
reported to be ~530 kJ/mol [49].

Thus, the accelerated leaching of Nd observed in the sintered ceramics cannot be
explained by differences in the diffusion coefficients of Nd3+ and Y3+ ions: the analysis of
the literature shows that the diffusion coefficient of Y3+ in YAG exceeds the one of Nd3+. In
our opinion, the leaching of neodymium observed during the hydrolytic tests is due to an
increased segregation of Nd3+ at the grain boundaries of garnet (see above).
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To clarify the mechanism of leaching of Y and Nd from the ceramics, the de Groot
and van der Sloot dependence were plotted (Figure 7). The slopes of the approximating
straightline point to the predominant leaching mechanism. Earlier, the values of coefficient
A in Equation (3) were shown to point to the following leaching mechanisms: A < 0.35—
leaching from the surface; A = 0.35–0.65—diffusion from inner layers; A > 0.65—dissolution
of the surface layer [50,51]. The leaching of Y and Nd in the static mode and under
hydrothermal conditions at 100 ◦C was found to be due to diffusion from the inner layers
of the ceramic (A = 0.4–0.54, Figure 7). At 200 and 300 ◦C under hydrothermal conditions,
leaching from the ceramic surface took place (A ~0.01, Figure 7).
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lattice [52,53]. This suggests the diffusion of diffusion of Y and Nd ions to the surface to
occurs mainly along the grain boundaries.

In conclusion, it should be noted that such an intergranular nature of fracture may
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