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Abstract: Microwave devices with polarization conversion and band-pass filtering response have
great application prospects on radomes. Here, the concepts of band-pass filters and cross-polarization
converters are combined to realize a band-pass filtering cross-polarization converter with an ex-
tremely high polarization-conversion ratio. Most importantly, the device has an excellent out-of-band
rejection level, above 30 and 40 dB for the lower and upper edges, respectively. In addition, the
transmission zeros of the passband can be flexibly tuned independently. The band-pass filtering
polarization converter was simulated, fabricated, and measured, and the measured results were
found to be in good agreement with the simulation results.

Keywords: band-pass filtering; cross-polarization converter; transmitarray

1. Introduction

Polarization is one of the basic properties of electromagnetic (EM) waves, and EM
polarization manipulation is widely used to design antennas and radomes; thus, polar-
ization converters have been extensively investigated [1–3]. In recent years, metasurfaces
have been widely employed in polarization converters, since they are thinner and have
improved performances compared with traditional wave plates based on natural materials
and anisotropic material [4]. Reflective metasurface polarization converters are usually
dual-band or multi-band, broadband, and highly efficient [5,6]. Transmissive polarization
converters are required in some applications to avoid the interference between the reflected
and incident waves. They are usually obtained via multilayer meta-structures, leading to a
complex design process and a simple function [7,8]. Recently, a simpler design method for
transmissive polarization converter was proposed using coupling-propagation-decoupling
structures [9]. Through this method, multifunctional polarization converters with beam
redirection or vortex beam generation were obtained [10–12]. These beam reshape func-
tions base on the phase tuning. However, phase tuning cannot be applied to achieve
frequency selective functions.

Frequency selective surfaces (FSSs) have a filtering response and have been widely
used in antenna radomes [13–19]. However, most FSS designs have an out-of-band rejection
below 20 dB at the lower and upper edges of the passband, which can hardly satisfy
the requirements of recent radar systems. In addition, few FSSs can simultaneously
achieve frequency selection and polarization conversion. A band-pass frequency-selective
polarization converter was proposed using anisotropy structures, but the obtained roll-off
frequency response is poor [20]. Another FSS with polarization conversion was designed
based on a substrate-integrated waveguide (SIW) [21]; however, it exhibits only one
transmission zero in the lower stopband, leaving a low out-of-band rejection at higher
stopband. Therefore, multifunctional FSSs with polarization conversion, a sharp roll-off
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frequency response, and a superior out-of-band rejection in both the lower and upper
stopbands are still required.

In this work, a band-pass filtering cross-polarization converter with an enhanced
frequency selectivity and a high polarization-conversion ratio was realized. Inspired
by aperture-coupled transmitarrays, the designed band-pass filtering cross-polarization
converter can operate from 5.87 to 6.13 GHz with a cross-polarized transmittance higher
than −1 dB and a co-polarized transmittance lower than −55 dB. Furthermore, transmission
zeros were introduced in both the lower and upper stopbands at 5.72 and 6.72 GHz,
respectively. Notably, the band-pass filtering response exhibits an excellent out-of-band
rejection, over 30 and 40 dB for the lower and upper stopbands, respectively. Moreover, the
positions of the transmission zeros at the lower and upper stopbands can be independently
tuned, which makes it a fixable design for different applications. To confirm the proposed
method, the designed band-pass filtering cross-polarization converter was simulated,
fabricated, and measured.

2. Band-Pass Filtering Cross-Polarization Converter Design

The designed band-pass filtering cross-polarization converter is composed of four
layers of dielectric and five layers of metal patterns, as shown in Figure 1a. The dielectric
substrate is Taconic TLY-5, which is characterized by a relative dielectric constant of 2.2 and
a loss tangent of 0.0009. The structure of the proposed band-pass filtering cross-polarization
converter unit cell is depicted in Figure 1b. Here, the blue and yellow regions denote
the dielectric substrate and the copper sheet, respectively. The values of the geometric
parameters of the design are listed in Table 1.
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Figure 1. (a) Configuration of the proposed band-pass filtering cross-polarization converter unit cell; (b) five layers of
copper sheets; (c) simulated Tcr, Rco, Tco and Rcr of the unit cell. Simulated Tcr and Rco of the unit cell under oblique
incidence in the (d) transverse electric (TE) modes and (e) and transverse magnetic (TM) modes.
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Table 1. Geometric parameters of the unit cell.

Parameter C1 C2 d du d1 h1 h2 La Lf L1

Value (mm) 0.7 0.2 5.0 1.6 5.0 1.524 0.508 8.2 7.1 3.3

Parameter Lu L1 L2 P P1 r Wf Wu W1 W2

Value (mm) 9.35 3.3 3.0 20 16 0.2 0.2 0.8 2.2 0.3

The proposed design has a relatively high efficiency since only the top and bottom
layers resonate, thus significantly reducing the insert loss caused by resonances. The
top and bottom layers are patches which couple and decouple the incident EM waves,
respectively. The bottom layer of the unit cell can be obtained from the top layer via a
rotation of 90◦. Notably, in contrast to the bottom layer, a shorting pin is embedded on the
top layer and passes through the top two layers of the dielectric substrates. This shorting
pin introduces a transmission zero at the lower stopband. These patches can be regarded
as slot-coupled patch antennas [22] with a U-slot and decide the overall working frequency.
The coupling slots are located on the ground layer (the second and fourth metallic layers).
Figure 2 shows the E-field distribution at 6.1 GHz, when y-polarized incident EM waves
propagating along z-axis hit the unit cell, the patch in top layer resonates as shown in
Figure 2a and then couples the incoming EM waves to the metallic line on the middle layer
through the coupling slot. Figure 2b show the E-field distribution in the second layer, it
can be seen that the E-field near the coupling slot is strong and has a tangential component.
The metallic line, constructed of an L-shaped stripline and two patches with different
dimensions, can be consider as a filter structure based on stepped-impedance resonators
(SIRs) [23,24]. This SIR filter structure in the middle layer results in a transmission zero at
the upper stopband of the passband. The structure in the middle layer can transform the
wave propagation along the y-axis into a wave propagation along the x-axis. The wave
propagation along the x-axis is then coupled to the bottom layer through the coupling slot
on the fourth layer since the tangential E-field excites the propagation mode in the stripline,
as shown in Figure 2c. Figure 2d show the E-field in the fourth layer, we can observe that the
E-field around the coupling slot has a tangential component. Eventually, the bottom layer
decouples the wave into a space wave propagation with a crossed polarization as shown in
Figure 2f. Furthermore, through the procedure of coupling-propagation-decoupling used
in this design, an excellent band-pass filtering response is achieved via the two transmission
zeros, which will be discussed later.

The simulation results are shown in Figure 1c–e, where T represents the amplitude of
the transmission, and R denotes the reflection. The subscripts cr and co stand for cross- and
co-polarized, respectively. Figure 1c shows the simulation results for normal incidence. It
can be seen that the proposed design can achieve transmissive cross-polarization conversion
and band-pass filtering in the range of 5.87–6.13 GHz; additionally, Tcr is close to 0.94,
and Rco is below −12 dB in the operating band. At the same time, the co-polarized
transmittance Tco and cross-polarized reflectance Rcr are both below −55 dB, approximating
to zero, which ensures an extremely high polarization purity of the transmitted wave. The
transmission zeros of the lower and upper stopbands are located at 5.72 and 6.73 GHz,
respectively. Notably, the out-of-band rejection of the lower and upper stopbands of the
passband are higher than 30 and 40 dB.
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and (f) E-field distribution in the unit cell.

In addition, the properties of the proposed band-pass polarization converter were
explored under different incident angles in the transverse electric (TE) and transverse
magnetic (TM) modes. The simulated Tcr and Rco are shown in Figure 1d,e, respectively,
where α denotes the angle of incidence. Figure 1d depicts Tcr and Rco in the TE mode.
When the α value increases up to 45◦, Tcr is 0.9 and Rco slowly rises to −10 dB; thus, the
proposed band-pass polarization converter has still a good filtering capacity. The simulated
Tcr and Rco in the TM mode are shown in Figure 1e. In this case, it can be observed that the
proposed band-pass polarization converter can retain a good filtering response only for
incident angles below 30◦.

3. Band-Pass Filtering Mechanism and Discuss

The filtering mechanism of the proposed device is explained by comparing it with
two other structures, namely (I) the designed unit cell without the SIR filter structure and
(II) the unit cell without the shorting pin.

Figure 3 shows the simulated Tcr and Rco in cases (I) and (II). As shown in Figure 3a,
a transmission zero exists in the lower stopband of the passband; however, no transmission
zeros are visible in the upper stopband. Additionally, Tcr is 0.74 resulting from a higher
Rco value of 0.64. Thus, the shorting pin leads to the transmission zero being in the
lower stopband of the passband. Furthermore, the filter structure on the middle layer
influences both the impedance matching and the transmission zero in the upper stopband,
as will be discussed later. Regarding case (II), the model has the same dimensions as
the final design without the shorting pin. The introduced SIR filtering structure can be
adjusted to achieve optimized filtering response and impedance matching. The simulated
transmission response of the model in case (II) is shown in Figure 3b. It can be seen that
the impedance matching is improved, and a transmission zero is introduced in the upper
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stopband of the passband. Thus, combining cases (I) and (II) results in a superior frequency
selective performance.

Materials 2021, 14, x FOR PEER REVIEW 5 of 11 
 

 

Figure 3 shows the simulated Tcr and Rco in cases (I) and (II). As shown in Figure 3a, 
a transmission zero exists in the lower stopband of the passband; however, no transmis-
sion zeros are visible in the upper stopband. Additionally, Tcr is 0.74 resulting from a 
higher Rco value of 0.64. Thus, the shorting pin leads to the transmission zero being in the 
lower stopband of the passband. Furthermore, the filter structure on the middle layer in-
fluences both the impedance matching and the transmission zero in the upper stopband, 
as will be discussed later. Regarding case (II), the model has the same dimensions as the 
final design without the shorting pin. The introduced SIR filtering structure can be ad-
justed to achieve optimized filtering response and impedance matching. The simulated 
transmission response of the model in case (II) is shown in Figure 3b. It can be seen that 
the impedance matching is improved, and a transmission zero is introduced in the upper 
stopband of the passband. Thus, combining cases (I) and (II) results in a superior fre-
quency selective performance. 

 

(a) (b) 

Figure 3. (a) Tcr and Rco simulated for case (I); (b) Tcr and Rco simulated for case (II). 

In order to clarify the mechanism for generating the transmission zero in the lower 
stopband, Figure 4 shows the E-field distribution on the U-slot patch at 5.72 GHz for the 
unit cell with and without the shorting pin. As shown in Figure 4a, the resonance mode 
of the U-slot patch with the shorting pin is similar to that of a dipole. The EM waves cannot 
couple to the metallic line through the coupling slot, as the E-field near the stripline is 
always along the normal direction and ignores the stripline, as shown in Figure 4b,c. As 
illustrated in Figure 4d, the E-field distribution of the U-slot patch without the shorting 
pin is multipole. This results in a tangential E-field in the U-slot which excites the propa-
gation mode in the stripline, as shown in Figure 4e,f. Therefore, EM waves can be first 
coupled into the stripline, and then be decoupled from the bottom U-slot patch leading to 
an undesired transmission. According to the above analysis, the transmission zeros in the 
lower and upper stopbands are caused by the shorting pin and the SIR filtering structure, 
respectively. 
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In order to clarify the mechanism for generating the transmission zero in the lower
stopband, Figure 4 shows the E-field distribution on the U-slot patch at 5.72 GHz for the
unit cell with and without the shorting pin. As shown in Figure 4a, the resonance mode of
the U-slot patch with the shorting pin is similar to that of a dipole. The EM waves cannot
couple to the metallic line through the coupling slot, as the E-field near the stripline is
always along the normal direction and ignores the stripline, as shown in Figure 4b,c. As
illustrated in Figure 4d, the E-field distribution of the U-slot patch without the shorting pin
is multipole. This results in a tangential E-field in the U-slot which excites the propagation
mode in the stripline, as shown in Figure 4e,f. Therefore, EM waves can be first coupled into
the stripline, and then be decoupled from the bottom U-slot patch leading to an undesired
transmission. According to the above analysis, the transmission zeros in the lower and
upper stopbands are caused by the shorting pin and the SIR filtering structure, respectively.
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4. Discussion

To demonstrate the independent tunability property of the transmission zero positions
in the lower and upper stopbands, a parametric study for the proposed design was carried
out. It is believed that this study will also be beneficial for design of different applications
using the proposed method. The results are shown in Figure 5, where the colored solid line
denotes Tcr, while the dashed line represents Rco.
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The effect of the shorting pin was investigated first. As shown in Figure 5a, the change
of d1 has a slight effect on both the resonant frequencies and the transmission zero at lower
frequency. When d1 increases from 4.9 to 5.1 mm, the transmission zero moves towards a
higher frequency, and a declined out-of-band rejection is observed in the lower stopband
in the passband. Furthermore, the sharp roll-off frequency response is retained during
this process. From Figure 5b, it can be observed that the resonance frequencies and the
transmission zero in the lower stopbands change clearly upon varying r: when the shorting
pin has a bigger radius, the sharp roll-off rate in the lower stopband improves significantly;
however, the out-of-band rejection quickly drops to 20 dB. Meanwhile, the transmission
zero in the lower stopband moves towards a higher frequency and causes a narrower band.

The effect of the SIR filter structure geometry was then investigated. As shown in
Figure 5c, when L1 varies from 2.8 to 3.8 mm, the transmission zero in the upper stopband
moves towards a lower frequency, and the roll-off rate remains unchanged. However, the
out-of-band rejection level drops with a bigger L1. In addition, as L1 varies, the roll-off rate
and the position of the transmission zero in the lower stopband remain fixed. L1 also has a
influence on the impedance matching. The effect of W1, was also studied. From Figure 5d,
variations of W1 only cause a change of the transmission zero at the upper stopband and of
the resonance frequency for higher frequencies. A lager W1 results in the transmission zero
shifting towards a higher frequency. Notably, in contrast to varying L1, varying W1 has
little impact on the impedance matching. With reference to Figure 5e,f, it can be observed
that L2 and W2 have similar effects with L1. Therefore, an independent adjustment of the
transmission zeros in the lower and upper stopbands can be achieved through optimizing
the shorting pin and the SIR filter structure, respectively.

5. Measurement Results

To confirm the viability of the proposed design, the band-pass filtering
cross-polarization converter with a high conversion ratio was fabricated via the Printed
Circuit Board (PCB) process. Due to the limitation of the size of the dielectric substrate,
the dimension of the sample was of 220 × 300 mm2, and it contained 11 × 15 unit cells.
Figure 6a shows the measurement setup, while Figure 6b show the front- and back-view of
the fabricated sample.
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The transmittance and the reflectance were measured using a vector network analyzer
(Agilent E8363b). Three horn antennas were used for exciting and receiving antennas.
The fabricated sample was placed on a platform and surrounded by the absorbers. When
measuring Rcr and Rco of the proposed band-pass filtering cross-polarization converter,
the two horn antennas above the sample were used as exciting and receiving antenna. The
distance between these two horn antennas and sample is 2.5 m. The horn antenna located
under the platform served as the receiving antenna during the measurement process of Tcr
and Tco, and the distance from this antenna to the sample is 0.7 m. The measured results are
shown in Figure 6c,d for α = 0◦. The measured transmission zeros of the lower and upper
stopbands are located at 5.69 and 6.52 GHz, respectively. The measured transmittance of
the cross-polarization is −1 dB. The transmission zero of the upper edge moves towards
a lower frequency due to the machining error on the SIR filter structure. This results in a
narrower operating band and a lower cross-polarization transmittance. From Figure 6d,
it can be seen that both the measured Tco and Rcr are below −40 dB; the measured and
simulated Tco and Rcr are not very consistent due to insufficient dynamic range of the
experimental equipment and the machining error. However, the measured Tco and Rcr
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still retain an extremely low level, approximately zero, indicating that a high efficiency of
the cross-polarization conversion can be ensured. Figure 6e,f show the measured Tco and
Rcr under different incident angles in the TE and TM modes, respectively. Thus, it can be
concluded that the fabricated band-pass filtering cross-polarization converter exhibits a
high polarization-conversion ratio and an excellent band-pass filtering response.

6. Conclusions

In conclusion, a band-pass filtering cross-polarization converter with a high polariza-
tion conversion ratio was designed, fabricated, and measured. The design was inspired
by transmitarrays with a multi-layer structure. A cross-polarization conversion and a
band-pass filtering from 5.87 to 6.13 GHz could be achieved, as well as a cross-polarized
transmittance over 0.94 and a co-polarized reflectance below −12 dB. On the other hand,
the cross-polarized reflectance and the co-polarized transmittance were always found to
be below −55 dB. Thus, the polarization purity of the transmitted wave could be ensured.
The transmission zeros were found to be located at 5.72 and 6.73 GHz. In addition, by
varying the size and position of the shorting pin and the SIRs, the two transmission zeros
could be tuned independently.
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