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Abstract: A convolutional neural network (CNN), which exhibits excellent performance in solving
image-based problem, has been widely applied to various industrial problems. In general, the CNN
model was applied to defect inspection on the surface of raw materials or final products, and its
accuracy also showed better performance compared to human inspection. However, surfaces with
heterogeneous and complex backgrounds have difficulties in separating defects region from the
background, which is a typical challenge in this field. In this study, the CNN model was applied
to detect surface defects on a hierarchical patterned surface, one of the representative complex
background surfaces. In order to optimize the CNN structure, the change in inspection performance
was analyzed according to the number of layers and kernel size of the model using evaluation metrics.
In addition, the change of the CNN’s decision criteria according to the change of the model structure
was analyzed using a class activation map (CAM) technique, which can highlight the most important
region recognized by the CNN in performing classification. As a result, we were able to accurately
understand the classification manner of the CNN for the hierarchical pattern surface, and an accuracy
of 93.7% was achieved using the optimized model.

Keywords: class activation map; convolutional neural network; hierarchical pattern; region of
interest; surface inspection

1. Introduction

The surface defect inspection system for initial materials or final products is an impor-
tant process for quality control and customer satisfaction. Most surface defect inspections
are carried out using optical quality control and machine vision [1,2]. Currently, surface
defect inspection in many industries is performed by humans using the above technology.
However, human inspection at the fast pace of modern industry can cause human errors
due to fatigue, which is a financial burden for the company. Automated defect detection
(ADD) is applied by categorizing several defects so that the defects can be distinguished
from the background of the target surface automatically [3]. Therefore, some major compa-
nies are performing defect detection using ADD system. However, this method also has a
disadvantage that it is difficult to apply to a surface with a complex background, and a
lot of effort by experts is required to select and define the categories. Therefore, the need
for a stable and reliable inspection technologies for surfaces with complex backgrounds
has emerged.

Recently, with the development of industrial artificial intelligence along with com-
puter technology, many studies have been reported using artificial intelligence to detect
surface defects. The convolutional neural network (CNN) is an image-based deep learning
algorithm and is a representative model used to surface inspection [4–9]. By repetitive
training, features that define surface defects are automatically extracted without expert
assistance. This method is called an end-to-end method, and if image information is input
to the CNN model, it displays good or bad as output. Because the CNN shows outstanding
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performance in image-based classification problems, it is widely used in various fields
such as medical care [10,11], semiconductor [12], manufacturing [13,14], and infrastructure
inspection [15]. Representatively, Chen et al. [16] demonstrated that it is possible to detect
six kinds of defects on solar cell surface using the CNN. For accurate classification, a
multispectral solar cell CNN structure was applied, and it exhibited better performance
than the conventional inspection method. In addition, a study reported that combining
the Naïve Bayes classifier with the basic CNN structure can effectively perform the sur-
face crack detection [17]. Kim et al. [18] reported that surface defects can be effectively
detected by applying weights of the ImageNet model to new problems by transfer learning
with fine-tuning.

As described above, the CNN has been accurately applied to surface inspection
problems [19–21]. However, there is a limitation that the user cannot know what basis
or criteria were used for the CNN’s classification due to the nature of the end-to-end
model [22]. If we are able to understand the principle of the CNN discrimination, the
CNN structure can be elaborately optimized by user. Based on this necessity, an algorithm
called the class activation map (CAM) has been recently developed [23,24]. CAM image is
a kind of heat-map obtained by adding a global average pooling (GAP) layer at the end
of the CNN model. The CAM image can be used to indirectly understand the internal
principles of the CNN because it highlights areas that the CNN perceives as the important
part of discrimination. Many attempts have been made to understand the classification
criteria for the CNN model by using the CAM. Sun et al. [25] developed a model to detect
vibrations caused by equipment aging using the CNN combined with the CAM. They
showed that artificial intelligence can replace sensor-based fault diagnosis. Additionally,
it was revealed that the region where vibration occurred was accurately captured by the
CAM. Chen et al. [26] and Li et al. [27] also showed that by applying the CNN together
with the CAM for the surface defect inspection, the CNN’s classification criterion can
be indirectly understood. CAM images confirmed that various types of defects located
locally on the fibers, wood, solar cell and LED chips surfaces are accurately captured and
classified. Furthermore, Chen et al. [26] proposed a new spatial attention class activation
map (SA-CAM) to improve segmentation adaptability by generating more accurate heat-
map. As such, due to the high availability of CAM, the development of surface inspection
technology using the CAM is actively progressing.

With increasing interest in multi-functional surfaces, the researches on the fabrication
methods for hierarchical patterns have been conducted [28,29]. The representative function
of hierarchical patterns is the water-repellent surface, which means that the solid surface
repels water. The hierarchical patterns are defined as patterns in which two or more kind
of patterns coexist, and generally consist of a macro (or micro) sized primary pattern and
a micro (or nano) sized secondary pattern [30]. Recently, we presented that when the
hierarchical pattern is formed on the aluminum surface by imprinting using pattern mold
produced by electric discharge machining (EDM), the hydrophobicity can be imparted to
the aluminum surface [31]. At this time, the hierarchical pattern formed on the aluminum
surface consists of a regular primary pattern and an irregular secondary pattern. These
complex surface structures are a major obstacle that causes considerable difficulty in
discriminating between background and defects.

In this study, a surface with hierarchical patterns was fabricated through the imprint-
ing process. The CNN model was designed to identify surface defects in the fabricated
specimens. In order to optimize the CNN architecture, CAM images were used to elab-
orately analyze the change of the CNN classification manner according to the number
of layers and kernel size. Accordingly, the structure could be optimized based on our
in-depth understanding of the model. In addition, due to the hierarchical characteristics
of the specimen surface, it was possible to analyze the region of interest in the CNN dis-
crimination according to the geometric characteristics of each class and the changes in the
model structure. To the best of our knowledge, this is the first research which solves and
analyzes the defect inspection for hierarchical pattern surface using the CNN coupled with
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the CAM approach. As a result, the accuracy of up to 93.7% was achieved using a precisely
optimized CNN model.

2. Methods
2.1. Imprinting Process

Figure 1a shows the set of dies used in the imprinting system. The die-set consists of
upper and lower dies. A 10 mm × 10 mm pattern mold and a 20 mm × 40 mm aluminum
specimen with a thickness 2 mm are fixed to the upper and lower dies, respectively. By
jogging the upper die, the pattern mold can press the aluminum specimen. As a result, the
structure of the pattern mold is replicated on the aluminum surface.
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Figure 1. Schematics depicting (a) imprinting die-set and (b) two-stage imprinting processes.

Figure 1b shows the sequence of the imprinting process. The imprinting is performed
in two steps. In the 1st imprinting, the rough electrical discharge texture (EDT) surface is
duplicated on the aluminum surface using an EDT surface mold. Thereafter, the groove
pattern is replicated using a 3D groove pattern mold in the 2nd imprinting. Through these
imprinting processes, the hierarchical pattern is formed on the aluminum surface. Here, the
EDT surface mold is the mold in which a rough discharge surface is formed on the mold
surface fabricated by EDM, and the 3D groove pattern mold refers to the mold in which
the groove pattern is formed on the mold surface fabricated by wire electrical discharge
machining (WEDM). This study was carried out by applying a 3D groove pattern mold
having a pitch of 600 µm. Detailed information on each mold shape and process can be
found in the reference [29].

Figure 2 shows the surface of the aluminum specimen fabricated through imprinting.
As shown in Figure 2a, the pattern surface is divided into peaks and valleys, and each
surface roughness was measured as Ra equal to 10.0 µm and 2.5 µm, respectively. The peak
regions that the replicated EDT surface formed in the 1st imprinting are maintained even
after the 2nd imprinting, and have a rougher morphology than the valley. This is because
the rough surface is effective in increasing the water repellency, so that the duplicated EDT
surface is deliberately maintained. Therefore, if the replicated EDT surface on the peak
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region is crushed due to excessive pressing during the 2nd imprinting, the water repellency
decreases. Figure 2b,c shows a photograph of the specimen surface taken with an optical
microscope, and Figure 2c is taken when the specimen is placed in water. It was found that
the air layer is formed in the valley regions. The stable formation of air layer has a great
influence on the increase of water repellency, and is a major factor that makes it possible
to use the prepared water repellent surfaces for various applications such as anti-icing,
anti-fouling, drag-reduction, etc.
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Figure 2. Imprinted aluminum surface: (a) measured by SEM, (b) measured by optical microscope. (c) is a photograph
taken when the aluminum specimen is put in water.

Figure 3 shows three types of the imprinted specimens. If too little or much pressure is
applied during the 2nd imprinting, the groove pattern is not sufficiently formed (less press,
# 1, 2), or the replicated EDT surface on the peak is crushed (over press, # 3, 4). In addition,
when the parallelism between the specimen and the pattern mold does not match during
imprinting, or if there is a problem such as foreign matter or damage on the pattern mold
surface, the above two defects may occur locally. In general, such defects are inspected by
humans using a microscope. However, it is difficult to perform uniform inspection due to
the ambiguity of the defect characteristics and human error.
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The CNN is a representative data driven model of the artificial intelligence that
performs feature extraction by itself. Thus, precisely prepared dataset is crucial to enhance
classification ability. Therefore, labeling of the surface images should be performed by
human with uniform criteria. From Figure 3, it can be clearly judged that #1 and #3 are less
and over press defects. On the other hand, there are ambiguous cases such as #2 and #4
compared to good products. Therefore, the author labeled as less press when the dark area
between the peak and valley connection is less than 50 µm. In the case of the over press, if
the replicated EDT surface of the peak region is crushed as shown in #4, it was labeled as
over press.

One of the most interesting points in this paper is to check whether the CNN’s
classification criteria are the same as human labeling, or not the same but use a higher level
or simpler manner.

2.2. Defect Detection Method Based on CNN with CAM

The CNN is the end-to-end model that performs feature extraction and classification
by itself through image-based learning. When a bundle of images is inserted as input data,
the kernels with specific size convolute the image horizontally and vertically. Thereafter,
they extract and deliver the calculated information to the next layer. This process is repeated
for the number of layers to perform classification.

After each convolutional layer, the results are transferred to the next layer in a form
of differentiable structure activated by a non-linear activation function. Frequently used
activation functions include sigmoid, hyperbolic tangent, and ReLu. In this study, the ReLu
function, which is known to be the most effective in image classification, was used [32].
The expression of the related function is as follows.

y =

{
x, x ≥ 0
0, x < 0

(1)

In the 3rd, 5th, and 6th layers, the maxpooling layers were applied to reduce the data
size and improve classification capability in this study. To prevent excessive disappearance
of input information, the maxpooling layer was not used in the 1st, 2nd, and 4th layers.

Since the CNN model is the end-to-end model, only the input information and clas-
sification results are known to the user. The internal feature extraction information and
classification process are hidden like a black box [24]. Hence, the assessment of CNN’s
classification ability can be done simply with some evaluation metrics without information
indicating where the CNN recognized as important. In order to improve these shortcom-
ings, the CAM has been recently developed, and many related applications are being
studied. The CAM images can be obtained by adding the GAP layer instead of the final
fully-connected layer of the general CNN structure. As shown in Figure 4, the information
(feature map in the figure) that was generally flattened and transferred to the dense layer is
transferred to the GAP layer without being flattened. The transferred information is kept in
the form of two-dimensional data and displayed like heat-map after some post-processing.
Using the CAM images, we can highlight the region that the CNN recognizes as important
in performing classification so that the user can indirectly understand the criteria for the
CNN’s determination.
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The principle of CAM is as follows. When there are k maps from the final convolutional
layer, a ω value per class is mapped to each feature map. The ω also learned through deep
learning. When there are k feature maps from the final convolutional layer and 3 classes in
output, the number of ω is k × 3. If the result of multiplying values of the feature map and
the ω are added to all unit k, the CAM corresponding to each class is calculated. After that,
all values of the CAM are added to make a single number and then classified by putting it
in the softmax classifier. Accordingly, the CAM image corresponding to the classification
result indirectly reflects the region of interest to identify classes. The related formula is
as follows.

Sc = ∑
k

ωc
k ∑

x,y
fk(x, y) = ∑

x,y
∑
k

ωc
k fk(x, y) (2)

Mc(x, y) = ∑
k

ωc
k fk(x, y) (3)

where Sc, ωc
k, fk(x,y), Mc(x,y) represent the class score for given class c, the weight corre-

sponding to class c for unit k, the feature map of unit k in the last convolution layer at a
spatial location (x, y), and the class activation map for class c. The Sc value obtained by
Equation (2) is applied to the final softmax classifier, and the equation is defined as follows.

Pc =
exp(Sc)

∑c exp(Sc)
(4)

where Pc represents the output probability.
The overall structure of the designed deep learning model was summarized in Table 1.

It consists of up to 6 convolutional layers. The kernel size of all convolutional layers is
basically designed as 10 by 10. It is noted that the structure will be changed in order to
analyze the effect of the number of convolutional layers and kernel size. The input data of
3rd, 5th, and 6th layers was reduced by half by designing the kernel size of the maxpooling
layer to be 2 by 2. The Nx and Ny dimension values of the output shape in the final GAP
layer are the same as the x and y dimensions of the output shape in the previous layer. The
k dimension of output shape in the GAP layer is 3 because there are three classes (good,
less press, over press).
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Table 1. Structure and parameters of CNN with CAM.

Name Structures Kernel Size Channel Output Shape
(x × y × k)

Input image - - 1 (gray) 360 × 360 × 1
1st layer Conv 1 10 × 10 64 360 × 360 × 64
2nd layer Conv 2 10 × 10 64 360 × 360 × 64

3rd layer Conv 3 10 × 10 64 360 x 360 x 64
Max pooling 1 2 × 2 - 180 × 180 × 64

4th layer Conv 4 10 × 10 64 180 × 180 × 64

5th layer Conv 5 10 × 10 32 180 × 180 × 64
Max pooling 2 2 × 2 - 90 × 90 × 32

6th layer Conv 6 10 × 10 32 90 × 90 × 32
Max pooling 3 2 × 2 - 45 × 45 × 32

GAP - - - Nx × Ny × 3

Figure 5 shows how to prepare the raw image as input images to be applied to the
model. The initial image at 1280 by 720 pixels was cropped to 360 by 360 pixels. The cropped
images were used as input images to reduce computation time and memory consumption.
This pre-processing is considered to have no effect on model training because the surface
has a regularly repeated pattern. In addition, there is the advantage in reducing over-fitting
problem by increasing the amount of dataset to use for model training. The number of
prepared input images is shown in Table 2. The ratio of the training dataset to the test
dataset was set to 8:2. The amount of good, less press, and over press was prepared at the
same ratio so that the amount of dataset did not affect each classification ability.
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Table 2. The type and number of dataset.

Type Training Set Test Set Sum

Good 1118 271 1389
Bad (less press) 1133 276 1409
Bad (over press) 1109 293 1402

Total 3360 840 4200

2.3. Evaluation Metrics

In order to evaluate the classification ability in detail, accuracy, precision, and recall
values were used in this study. To calculate each value, the factors of true positive (TP),
fault positive (FP), fault negative (FN), and true negative (TN) were used. The meaning of
each is shown in Table 3. For example, TP refers to the number of good surfaces that are
accurately judged to be good. Using the obtained TP, FP, FN, and TN values, the accuracy,
precision, and recall are calculated through Equations (5)–(7) [33,34]. The accuracy means
ratio of correct predictions over the total number of instances evaluated. On the other hand,
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the precision and recall indirectly represent the ability to accurately detect defects and the
ability to accurately detect good surfaces, respectively.

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Table 3. Parameters to evaluate inspection results.

- Actual Condition
Normal Fault

Predicted condition
Normal TP FP

Fault FN TN

In addition to the commonly used evaluation metrics above, true less press_rate
(TL_rate) and true over press_rate (TO_rate) were used to individually analyze the de-
tectability of the less press and the over press. TL_rate means the ratio accurately predicted
as less press among the images labeled as less press. TO_rate refers to the ratio accurately
predicted as over press among the images labeled as over press. By adding these values, it
was possible to analyze whether there is a difference in the detectability of the two kinds of
defects when the structure of the model is changed.

3. Results and Discussion
3.1. Effect of the Number of Convolutional Layers

Five kinds of the CNN models composed of 2 to 6 layers were trained to evaluate the
classification ability according to the number of layers. The kernel size of all convolutional
layers is fixed at 10 by 10. The training was performed using the deep learning model
package embedded in TensorFlow. The optimization was performed using AdamOptimizer
with a learning rate of 0.0001. The model was trained for 5000 epochs and 10 mini-batches.

Table 4 and Figure 6 show the results of inspection. By analyzing the evaluation
metrics, three main trends can be identified. First, the TO_rate is higher than the TL_rate
in all the number of layers. In other words, over press detection is better than less press
detection. Second, based on the accuracy, precision and recall metrics, these values increase
as increasing the depth of the CNN, so that they reach maximum values at 5 layers, and it
tends to decrease when it reaches 6 layers (The recall value is highest at 6 layers). Third,
the precision values tend to be higher or equal to the recall values except for the 2 layers.
This means that the ability to judge a defective surface as a defect is better than the ability
to judge a good surface as good. The reason for the difference in classification ability
according to the type of classes can be interpreted through CAM images.

Table 4. Defect inspection results according to the number of layers.

No. of
Layers Accuracy (%) Precision (%) Recall (%) TL_Rate (%) TO_Rate (%)

2 layers 78 75.6 82.7 66 75
3 layers 87.9 92.7 81.4 92.5 97.5
4 layers 88 96.4 82 97 98.7
5 layers 92.7 97.1 88 95 99
6 layers 92 92 92 94 96.4
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Figure 7 shows the CAM images according to the depth of the CNN model. For
accurate comparative analysis, CAM images for the same input image are presented. In
the figures, the region highlighted in red represents the important region for the CNN
classification. The interpretation using CAM for the three trends mentioned above are
listed below.
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3.1.1. The Reason Why TO_Rate Is Higher Than TL_Rate

The result in which TO_rate is higher than TL_rate can be explained by checking the
CAM image of 5 layers. In the case of the over press class, the CNN model mainly paid
attention to the dark region of the slope where the peak and valley are connected, and
relatively less attention was paid to the peak region (The dark area of the slope is a feature
that is uniformly observed in over press labeled images, and was not used as a criterion
for labeling by human. Therefore, it is meaningful criterion that learned by itself through
feature learning). Therefore, it can be interpreted that the over press defect is determined
by identifying the features of the local region. On the other hand, less press class are paid
attention to the entire surface area. This means that less press is identified based on the
information from global regions. The difference in accuracy is judged to occur depending
on whether the criteria for determining the two classes are local or global. Therefore, the
reason why TO_rate is higher than TL_rate is thought to be because the over press has a
locally clear and noticeable feature.

Additionally, for the less press class, the CNN model did not consider the dark and
narrow slope region, which was the criterion for labeling by human (50 µm or less in
width). Nevertheless, TL_rate shows a high value of about 95%. This means that the CNN
model has learned that the entire information including the peak and valley is a better
criterion for identifying the defects by less press.

3.1.2. The Effect of CNN Model Depth

In the case of the two layers, there is a slight difference between good and less press
CAM images. The low accuracy (78%) and TL_rate (66%) values were measured. In the case
of the over press, the region where the crushed EDT surface of the peak and the slope area
are accurately paid attention. However, since the other regions are also slightly highlighted,
the classification cannot be accurately performed and TO_rate was measured at 75%. When
the depth of CNN increased to 3 layers, a noticeable difference occurs between the CAM
images of good and less press. For the good class, a dark area in a thinly formed slope
region is used as a criterion for judgment without paying attention to the entire surface. On
the contrary, it can be found that less press was classified by paying attention to the entire
surface area. This can be interpreted as the CNN model with 3 layers are starting to detect
less press defect by paying attention to the entire surface, including the peak and valley.
In the case of the over press, the dark areas of slope are clearly paid attention but peak
regions are not. This means that from the CNN model with 3 layers, the model noticed that
the peak regions do not need to be considered for over press determination. As a result,
the TO_rate has increased significantly to 97.5%.

After that, as the depth of CNN increased, the accuracy also increased and reached a
maximum 92.7% in 5 layers. The CAM images in 5 layers have no distinct difference from
3 layers. It seems that the weight values were elaborately improved without big changes in
the classification criterion between 3 layers and 5 layers. When the depth of CNN reaches
to 6 layers, the precision decreased from 97.1% to 92%, and recall increased from 88% to
92%. This means that the ability to accurately classify the defective surfaces has decreased,
but the ability to accurately classify the good surfaces has increased. This result can be
explained through the CAM image of over press. Unlike the CAM images in the previous
number of layers, the highlighted range near the slope is significantly reduced. This is
considered to be because the local information around the slope was vanished as the depth
of the layers increased. For this reason, TO_rate was reduced from 99% to 96.4% and also
the precision decreased.

3.1.3. The Reason Why Precision Is Higher Than Recall

The high precision and low recall reflect that the model is more effective in detecting
defects than detecting good surfaces. This trend can be explained through CAM images.
As shown in 5 layers CAM images, the range and intensity of the highlighted region on the
good surface are smaller and weaker than the other two defective surfaces. This is believed
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to be due to the fact that less press and over press defects have clear characteristics such as
entire surface information for less press and slope range for over press, while good surface
has small and faint features that are difficult to distinguish. Moreover, complex surface
morphology by hierarchical pattern seems to make the detection of good surface more
difficult. As will be described in Section 3.2, this problem can be improved by reducing the
kernel size. Through the analysis on depth of model, it was found that the CNN model
with 5 layers shows the best classification ability.

3.2. Effect of the Kernel Size

In general, when the kernel size increases, more surrounding information of input
data are extracted [16]. Accordingly, the kernel size in the first convolutional layer has a
great influence on the characteristics of extracting information of the initial input image.
Therefore, the kernel size of the 1st convolutional layer was designed in various sizes
as shown in Figure 8. It can be seen that the smallest 3 by 3 kernel is smaller than the
dark region between peak and valley. The largest 40 by 40 kernel is large enough to
occupy half of the peak. Therefore, it makes possible to know how these initial kernel
characteristics affect inspection results. After training the modified CNN model with
5 layers, the classification was performed.
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Figure 8. Modification of kernel size at the 1st convolutional layer.

Table 5 and Figure 9 show the inspection result. The most noticeable result from the
analysis is that when the kernel size increases to 30 by 30 or more, accuracy and recall
dramatically decrease but the precision increases. This trend means that increasing the
kernel size is helpful in detecting defective surfaces. However, it has a negative effect on
accurately determining good surfaces. The cause of these results can be explained through
the CAM image in Figure 10. As can be seen in good class of the 30 by 30 kernel, although
there is a difference in intensity, both of the slope and the entire surface are highlighted
in red at the same time. This is equivalent to the region of interest for over press and less
press of 10 by 10 kernel, respectively. In other words, good surfaces could not be clearly
distinguished from the two bad classes. It is considered that this result occurred because
the kernel size was so large that it was impossible to extract important local information
from the 1st convolutional layer. In addition, the fact that recall shows the highest value
at the kernel size of 5 by 5 supports that a small kernel size is advantageous for detecting
good surfaces. This is because the dark region of the slope, which the CNN model uses
as the criteria for detecting good surfaces, is formed narrowly. It seems that a small size
of kernel is better to accurately extract the information of the narrow region of the initial
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input image. Therefore, the kernel size should not exceed 20 by 20, and 5 by 5 is the most
effective kernel size based on accuracy.

Table 5. Defect inspection results according to kernel size of 1st layer.

Kernel Size Accuracy (%) Precision (%) Recall (%) TL_Rate (%) TO_Rate (%)

3 × 3 92.7 90.5 95.4 88 92.2
5 × 5 93.7 91.7 96 83.5 95.7
7 ×7 92.4 93.2 91.4 90 98.9

10 × 10 92.7 97.1 88 95 99
20 × 20 91 94.2 87.4 94.4 98.5
30 × 30 75.7 98.7 52 99.2 96
40 × 40 60 94.1 21.4 100 97
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3.3. Compatibility

To check whether the trained CNN model identifies the same region of interest for a
pattern with different pitch size, the image of groove pattern with 1000 µm in pitch was
applied to the model. The results are shown in Figure 11. The CNN model with 5 layers
and 5 by 5 kernel for 1st convolutional layer was applied. As shown in CAM images, each
class was judged in the same manner described in Sections 3.1 and 3.2. The good surface
and over press defect were detected by paying attention to narrow or wide slope regions,
respectively. The less press defect was distinguished based on the entire information
including peak and valley by paying attention to the entire surface. It is concluded that
the CNN model for inspection of hierarchical patterns with complex backgrounds can be
applied to patterns with different pitches.
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3.4. Comparison with Other CNN Structures

In order to confirm that our CNN with CAM model (5 layers and 5 by 5 kernel for
1st convolutional layer) was optimized completely, a further experiment was conducted
using the solar cell CNN structure [16], which was recently introduced in the field of
surface inspection. The solar cell CNN, announced in 2020, was designed to apply surface
inspection of the solar cells, and it has been demonstrated that it can be effectively applied
for surface inspection of wood and metal [26].

The solar cell CNN was designed identically based on the paper [16], and the structure
is shown in Table 6. Briefly, it consists of 5 convolutional layers. Two fully-connected layers
are connected after 5th convolutional layer. A dropout was performed between the 2nd
fully-connected layers and the output layer. The dropout ratio during training was set to
0.5. The optimization was performed using AdamOptimizer with a learning rate of 0.0001.
The model was trained for 5000 epochs and 10 mini-batches.

Two additional CNN structures were added for precise comparative analysis. The
first is a CNN without CAM model in which the GAP layer is removed from the CNN with
CAM model and two fully-connected layers are added in the same way as the solar cell
CNN. The second is the solar cell CNN + CAM in which a GAP layer is added instead of
two fully-connected layers in the solar cell CNN. By adding those CNN models for our
comparison study, we tried to analyze not only the effect of the convolutional parameters
(kernel size), but also the effect of the fully-connected layers.
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Table 6. Architecture of the solar cell CNN. Adapted with permission from ref. [16].

Name Structures Kernel Size Channel Output Shape
(x × y × k)

Input image - - 1 (gray) 360 × 360 × 1

1st layer Conv 1 7 × 7 16 360 × 360 × 16
Max pooling 1 2 × 2 - 180 × 180 × 16

2nd layer Conv 2 5 × 5 32 180 × 180 × 32

3rd layer Conv 3 5 × 5 32 180 × 180 × 32
Max pooling 2 2 × 2 - 90 × 90 × 32

4th layer Conv 4 3 × 3 64 90 × 90 × 64

5th layer Conv 5 3 × 3 64 90 × 90 × 64
Max pooling 3 2 × 2 - 45 × 45 × 64

6th layer Fully-connected 1 - - 512
Fully-connected 2 - - 512

Output - - - 3

Table 7 shows the inspection results of the four kinds of CNN models. As can be
seen, both the solar cell CNN and the CNN without CAM, which has fully-connected
layers, showed remarkably low accuracy. It is believed that the inspection ability was
degraded because the location information of the defect region disappeared due to the
fully-connected layer. For example, when detecting a simple scratch (or defect) on a wood
surface, it can be detected by checking the scratch on the entire surface. However, the
classification in the hierarchical pattern requires not only presence or absence of defect
region, but also the location information indicating the location of the defect. For this
reason, the use of the fully-connected layer should be avoided in our surface inspection.
When the GAP layer was added to solar cell CNN instead of the fully-connected layers,
the accuracy increased from 46.4 to 76.4% compared to the basic solar cell CNN. However,
this is a significantly lower value compared to the result of the CNN with CAM. These low
accuracy of the solar cell CNN, which showed high accuracy for wood, metal, and solar
cell surfaces, is thought to be due to the lack of optimization of the CNN structure such as
kernel size and the number of layers. In other words, even if there is an existing model with
good performance, the hyperparameters of the model should be carefully optimized to
inspect the pattern surface with hierarchical structure introduced in this study. Therefore,
it can be concluded that the parameter optimization of our CNN with CAM model was
performed well.

Table 7. Different results according to CNN architectures.

Training Models Accuracy (%) Precision (%) Recall (%)

CNN with GAP 93.7 91.7 96.0
CNN without GAP 24.7 29.3 36.0
Solar cell CNN [16] 46.4 48.1 90.7

Solar cell CNN [16] + GAP 76.4 94.4 56.0

4. Conclusions

In this paper, we proposed the CNN with CAM model for surface inspection of the
hierarchical patterned surface with complex background. The optimization of the CNN
architecture was analyzed in detail using the CAM images along with several evaluation
metrics. Through this, it was possible to strictly analyze how the structure of the model rep-
resented by the number of layers and kernel size affects the feature extraction performance.
In addition, it was demonstrated that an in-depth understanding of CNN’s criterion can
suggest the direction of CNN structure optimization. In summary, it was confirmed that the
CNN with CAM model paid attention to the unique characteristics representing each class.
When the characteristics of small region play an important role in determining the classes,
a small kernel size is effective. In the opposite case, it is effective to extract the surrounding
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information by increasing the kernel size. In addition, by changing the number of layers of
the CNN model, it was confirmed how the criteria for discriminating each class changed.
Furthermore, based on CAM images, it was found that the classification was performed
by more effective criteria than the labeling criteria by humans. These results show the
possibility that the CNN with CAM can be used to extract features of defective products.
With respect to the future research, the target surface applied in this study has not many
kinds of classes, so there was no great difficulty in classification. Therefore, it is thought
that the classification problem for hierarchical patterns with many types of classes will be a
good research direction.
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