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Izabela Lubowiecka and

Ewa Magnucka-Blandzi

Received: 24 March 2021

Accepted: 16 April 2021

Published: 17 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering,
Guangzhou 510225, China; zhicheng.yang@zhku.edu.cn (Z.Y.); lvjiangen77@163.com (J.L.)

2 Wind and Vibration Engineering Research Center, Guangzhou University, Guangzhou 510006, China;
liuar@gzhu.edu.cn

3 School of Engineering, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia; jie.yang@rmit.edu.au
4 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon,

Hong Kong, China; sk.lai@polyu.edu.hk
5 Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology

Research Center, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
* Correspondence: jyfu@gzhu.edu.cn

Abstract: In this paper, we present an analytical prediction for nonlinear buckling of elastically
supported functionally graded graphene platelet reinforced composite (FG-GPLRC) arches with
asymmetrically distributed graphene platelets (GPLs). The effective material properties of the FG-
GPLRC arch are formulated by the modified Halpin–Tsai micromechanical model. By using the
principle of virtual work, analytical solutions are derived for the limit point buckling and bifurcation
buckling of the FG-GPLRC arch subjected to a central point load (CPL). Subsequently, the buckling
mode switching phenomenon of the FG-GPLRC arch is presented and discussed. We found that
the buckling modes of the FG-GPLRC arch are governed by the GPL distribution pattern, rotational
restraint stiffness, and arch geometry. In addition, the number of limit points in the nonlinear
equilibrium path of the FG-GPLRC arch under a CPL can be determined according to the bounds of
successive inflexion points. The effects of GPL distribution patterns, weight fractions, and geometric
configurations on the nonlinear buckling behavior of elastically supported FG-GPLRC arches are
also comprehensively discussed.

Keywords: limit point buckling; bifurcation buckling; elastically supported FG-GPLRC arch;
analytical solutions

1. Introduction

Functionally graded material (FGM) structures, characterized by a continuous change
in the material compositions along one or multiple directions, have attracted extensive at-
tention from both research and industrial communities owing to their excellent stiffness and
strength-to-weight properties as compared with homogeneous composite structures [1–3].
To better understand the performance of FGM structures in practical engineering applica-
tions, researchers have conducted a series of investigations on the structural behavior of
FGM structures. For instance, Ke et al. [4] presented analytical solutions for the nonlinear
vibration responses of FGM beams with different end supports and discussed the influence
of bending-stretching coupling on the nonlinear vibration of FGM beams. Librescu et al. [5]
analyzed the vibration and stability of FGM thin-walled beams under a high-temperature
environment. Yan et al. reported analytical solutions for the dynamic instability [6] and
dynamic responses [7] of FGM beams with open-edge cracks. They investigated the crack
depth and location effects on the mechanical behavior of such beams. Nguyen et al. [8] stud-
ied the mechanical buckling of stiffened FGM plates by using the finite element method.
They found that the addition of stiffeners to the FGM plate could significantly reduce
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the weight of the FGM plate. Chen et al. [9] investigated the imperfection sensitivity in
the nonlinear vibration of initially stressed FGM plates. According to their results, the
effects of the initial stress, geometric imperfection, and volume fraction index were quite
significant on the nonlinear vibration behavior of the FGM plate. Hao et al. [10] employed
an asymptotic perturbation method to analyze the nonlinear oscillations, bifurcations,
and chaotic motions of FGM plates. More relevant studies to investigate the significant
performance of FGM structures could be found from the open literature [11–17].

Graphene, as an emerging high-performance nanofillers, has attracted considerable
attention in aerospace, mechanical, thermal, and electrical engineering fields. It has been
demonstrated by researchers that the reinforced performance of graphene nanoplatelets
(GPLs) is significantly superior to other reinforcement materials. Adding a low concen-
tration of GPLs can improve the stiffness and strength of reinforced composites signifi-
cantly [18–23]. By introducing GPLs to FGM materials, novel FG GPLs-reinforced compos-
ite (FG-GPLRC) structures have been developed recently and have since attracted extensive
attention in both research and engineering communities [24]. Yang and his co-workers
conducted pioneering studies on the mechanical behaviors of FG-GPLRC structures, such
as beams [25–28], shells [29,30], and plates [31,32]. Focusing on the stability analysis
of FG-GPLRC arches, the authors devoted extensive efforts to the investigation of such
structures, including the characteristics of nonlinear static buckling, dynamic buckling,
and free vibration for FG-GPLRC arches with different boundary conditions and external
loads [33–39]. In addition, Liu et al. [40] analyzed the nonlinear behavior and stability
of functionally graded porous (FGP) arches reinforced by GPLs and obtained the critical
buckling load under a uniform load. Zhao et al. [41] discussed the linear buckling, funda-
mental frequency, and dynamic instability of porous arches using an analytical method.
Li et al. [42] further investigated the mechanics of the confined porous arches by including
the thermal effect. Hitherto, to the best of our knowledge, far too little attention has been
paid to the nonlinear buckling behavior of elastically supported FG-GPLRC arches with
asymmetric distributed GPLs under a central point load (CPL).

Therefore, to fill this research gap, the nonlinear buckling behavior of elastically
supported FG-GPLRC arches under a CPL is investigated in this study. The effective
material properties of the FG-GPLRC arch are formulated by the modified Halpin–Tsai
micromechanical model, because the Young’s modulus of the FG-GPLRC arch predicted by
this model agreed well with the experimental results [19]. Subsequently, the principle of
virtual work is employed to derive the nonlinear buckling load for the limit point buckling
and bifurcation buckling modes, from which the critical geometric parameters to identify
the buckling load and the number of limit points can also be determined. In addition, the
influences of GPL distribution patterns, GPL weight fractions, geometric configurations,
as well as the flexibility of the rotational constraints on the nonlinear buckling behavior
of the arch are discussed in detail. The bifurcation stability criteria presented in this work
can provide essential information for the structural/material design of FG-GPLRC arches
that have great potential in various engineering applications, for example, arch-shaped
micro-electromechanical devices as sensors and transducers [43], and dielectric elastomer
actuators as lightweight speakers [44,45]. In addition, the presence of analytical solutions
is useful to engineers and researchers for benchmarking the convergence and validity of
numerical methods for arch buckling analysis.

2. Effective Material Properties

In Figure 1, we consider an elastically restrained FG-GPLRC arch with multiple layers,
NL, under a CPL Q. The rectangular cross section of the arch is b × h (width × thickness).
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Figure 1. Configuration and coordinate system of an elastically supported functionally graded
graphene platelet reinforced composite (FG-GPLRC) arch.

It is assumed that the reinforcement of GPLs is uniformly distributed in the isotropic
polymer matrix, so each individual GPLRC layer can be regarded as an isotropic and
homogeneous material. The variation of GPLs is continuous along the arch thickness in
accordance with the power law distribution. The GPL volume fraction of the kth GPLRC
layer Vk

GPL is formulated as follows:

Vk
GPL = V∗GPL

[
1
2
+

(
k− 1

NL − 1

)n]
(1)

where NL is the total number of the GPLRC layer, and n is the power law index that
characterizes the distribution of GPLs. When n = 0, it corresponds to a uniform distribution
of GPLs reinforcements in the thickness direction. V∗GPL is the total GPL volume fraction
which can be determined using:

V∗GPL =
WGPL

WGPL + (ρGPL/ρm)(1−WGPL)
(2)

where WGPL is the GPLs weight fraction and ρGPL and ρm are the mass densities of GPLs
and matrix, respectively.

According to the modified Halpin–Tsai micromechanical model [43], the effective
Young’s modulus Ek of the kth GPLRC layer is given by

Ek =
3
(

1 + ξLηLVk
GPL

)
8
(
1− ηLVk

GPL
) × Em +

5
(

1 + ξTηTVk
GPL

)
8
(
1− ηTVk

GPL
) × Em (3)

with
ηL = (EGPL/Em)−1

(EGPL/Em)+ξL
, ηT = (EGPL/Em)−1

(EGPL/Em)+ξT

ξL = 2(aGPL/bGPL)× ξT/2, ξT = 2(bGPL/tGPL)
(4)

where EGPL and Em are the Young’s moduli of GPLs and matrix, respectively. aGPL, bGPL,
and tGPL are the length, width, and thickness of GPLs, respectively.

The Poisson’s ratio υk of each GPLRC layer is determined by the rule of mixture
as follows:

υk = υGPLVk
GPL + υm

(
1−Vk

GPL

)
(5)

where υGPL and υm are the Poisson’s ratios of GPLs and matrix, respectively.
Consider GPLs with the material properties EGPL = 1010 GPa, ρGPL = 1062.5 kg/m3,

υGPL = 0.186, aGPL = 2.5 µm, bGPL = 1.5 µm, and tGPL = 1.5 nm, and epoxy (polymer matrix)
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with Em = 3 GPa, υm = 0.34, and ρm = 1200 kg/m3 [25], the effective Young’s moduli of
the FG-GPLRC arch with 10 GPLRC layers under various GPLs distributions (different
power law indices) are shown in Figure 2.
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Figure 2. Effective Young’s modulus of an elastically restrained FG-GPLRC arch.

3. Mathematical Modeling

As shown in Figure 1, an elastically supported FG-GPLRC arch with an angle 2Θ, a
radius R, and an arc length S under the effect of a CPL is studied in this section. The stiffness
of the elastic rotational constraints at both ends is k, the radial and axial displacement of
the arch are v and w, respectively, and θ is the angular coordinate. By using the Donnell’s
shallow shell theory [39], the nonlinear strain-displacement relations for the FG-GPLRC
arch are adopted as follows:

ε = w̃′ − ṽ +
ṽ′2

2
− z

R
ṽ′′ with ṽ = v/R and w̃ = w/R (6)

where ( )′ = d( )/dθ.
According to the principle of virtual work, the governing equation is established as:

δW =
∫ Θ

−Θ
Rb
∫ h/2

−h/2
Ekεδε dzdθ −

∫ Θ

−Θ
δD(θ)QRδṽ dθ + ∑

i=±Θ
kṽ′iδṽ′i = 0 (7)

where δD(θ) is the Dirac delta function [27].
Substituting Equation (6) into Equation (7), one obtains

δW =
∫ Θ

−Θ

[
−NR

(
δw̃′ − δṽ + ṽ′δṽ′

)
−Mδṽ′′ − δD(θ)QRδṽ

]
dθ + ∑

i=±Θ
kṽ′iδṽ′i = 0 (8)

with the axial force

N = −A11

(
w̃′ − ṽ +

ṽ′2

2

)
+

B11

R
ṽ′′ (9)
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and the bending moment

M = B11

(
w̃′ − ṽ +

ṽ′2

2

)
− D11

R
ṽ′′ = −

(
D11 −

B2
11

A11

)
ṽ′′

R
− B11

A11
N (10)

where

{A11 B11 D11} = b
h/2∫
−h/2

Ek
{

1 z z2
}

dz = b
NL

∑
k=1

zk+1∫
zk

Ek
{

1 z z2
}

dz. (11)

As the present model is derived in accordance with the classical Euler–Bernoulli
theory, so that A11, B11 and D11 are Ek-based constants.

From Equation (8), the boundary conditions for the elastically supported FG-GPLRC
arch are given by

ṽ(Θ) = ṽ(−Θ) = w̃(Θ) = w̃(−Θ) = 0

−M(Θ) + kṽ′Θ = −M(−Θ)− kṽ′−Θ = 0
(12)

Substituting Equations (9) and (10) into Equation (8), obtains the equilibrium equations
as follows:

(NR)′ = 0 (13)

NR +
(

NRṽ′
)′ −M′′ − δD(θ)QR = 0 (14)

Inserting Equations (9), (10) and (13) into Equation (14) yields the radial equilibrium
equation as follows:

ṽiv

µ2 + ṽ′′ =
δD(θ)QR2

κµ2 − 1 with κ = D11 −
B2

11
A11

and µ2 =
NR2

κ
(15)

where κ is effective bending stiffness of the FG-GPLRC arch.
Solving Equation (11) and considering the boundary conditions of the elastically

support of the arch, the analytical solution of the dimensionless radial displacement can be
determined as follows:

ṽ = β2−µ2θ2

2µ2 + β(cos µθ−cos β)K1
µ2 + B(cos µθ−cos β)K12

R

+ P
µ2β

[K2 cos µθ − β + K3 + H(θ)(µθ − sin µθ)]
(16)

where β = µΘ, B = B11/A11, and α is the flexibility of the rotational constraints defined as:

α =
κ

kS
(17)

The dimensionless CPL is defined as:

P =
QR2Θ

2κ
(18)

and the parameters K1, K2, K3, and K12 are given as:

K1 = − 2α+1
2αβ cos β+sin β , K2 = 2αβ sin β−cos β+1

2αβ cos β+sin β

K3 = 1−cos β
2αβ cos β+sin β , K12 = 2αβ

2αβ cos β+sin β

(19)

In Equation (16), H(θ) is a step function defined by [33] as:

H(θ) =

{
−1 θ < 0
1 θ ≥ 0

(20)
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Substituting Equation (16) into Equation (9), obtains the nonlinear equilibrium rela-
tionship as:

A1P2 + B1P + C1 = 0 (21)

where A1, B1, and C1 are determined as:

A1 = Ξ1K2
2 − Ξ2K2 + Ξ3 (22)

B1 = 2β2Ξ1K1K2 − β2Ξ2K1 − K2 cos β

β3 + sin β−K3
β3

+ B0
λ

[
(2K2Ξ1 − Ξ2)β3K12 +

K2 sin β+cos β−1
β2

] (23)

C1 = β4Ξ1K2
1 −

1
6 +

β2r2
11

λ2 +
B2

0
λ2

(
β6Ξ1K2

12 + βK12 sin β
)

+ B0
λ

(
2β5Ξ1K12K1 + K1 sin β + 1

) (24)

with B0 = B11/A11h, r11 = rx/h, rx =
√

κ/A11, and λ is the arch geometrical parameter as

λ =
RΘ2

h
=

S
h

Θ
2

(25)

The parameters Ξ1, Ξ2, and Ξ3 are given as

Ξ1 = β−sin β cos β

4β5 , Ξ2 = (cos β−1)2

2β5 ,

Ξ3 = sin β cos β+3β−4 sin β
4β5

(26)

4. Nonlinear Buckling Analysis
4.1. Limit Point Buckling

When the FG-GPLRC arch buckles in a limit point instability mode, the limit point
loads may be either local maxima or local minima on the nonlinear equilibrium path, which
are derived from Equation (21) as:

A2P2 + B2P + C2 = 0 (27)

with {
A2 B2 C2

}
=

∂

∂β

{
A1 B1 C1

}
(28)

Accordingly, the solutions of the limit point load and nonlinear equilibrium path of
FG-GPLRC arches under a CPL can be determined by solving Equations (21) and (27).

4.2. Bifurcation Buckling

When the FG-GPLRC arch buckles in a bifurcation mode, the equilibrium equation for
the arch can be derived by substituting the critical states {ṽ + ṽb, w̃ + w̃b, N + Nb, M + Mb}
for the bifurcation buckling into Equation (14), we obtain:

ṽiv
b

µ2 + ṽ′′b = 0 (29)

The general solution of Equation (29) is solved as:

ṽb = E1 sin µθ + E2 cos µθ + E3θ + E4 (30)

where E1, E2, E3, and E4 are unknown coefficients.
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Substituting the boundary conditions of the arch into Equation (30) yields the follow-
ing characteristic equation for the coefficients E1, E2, E3, and E4 as:[

sin β

2α
+ β2

(
sin β− cos β

2αβ

)](
cos β +

sin β

2αβ

)
= 0 (31)

From Equation (31), for the first case, it is true that the first term becomes zero, from
which the critical axial force parameter βb for the bifurcation buckling is solved as:

βb = ηbπ (32)

and the corresponding axial force is obtained as:

Nb =
µ2

bκ

R2 =
(ηbπ)2κ

(S/2)2 = NE2 (33)

Substituting Equation (32) into Equation (21), the bifurcation buckling equation is
determined as:

A3P2 + B3P + C3 = 0 (34)

where
A3 = A1, β=ηbπ , B3 = B1, β=ηbπ , C3 = C1, β=ηbπ (35)

from which the bifurcation load is solved as:

P =
−B3 ±

√
B2

3 − 4A3C3

2A3
(36)

The existence of real solutions in Equation (36) requires B2
3 − 4A3C3 ≥ 0, this condition

gives a critical geometric parameter λb1 that can trigger the bifurcation buckling of the arch.
Consider the second case of Equation (31) (i.e., the second term is zero), we may obtain

the critical axial force parameter βsn as follows:

βsn = ηsnπ (sn = s1, s2, s3, . . . , ) (37)

Following similar procedures, a critical geometric parameter λsn that governs the
number of inflection points in the nonlinear equilibrium path of the FG-GPLRC arch can
also be determined. It is worth noting that the CPL corresponding to the first (as well as
the lowest) axial force parameter βs1 is also the lowest buckling load of the arch whose
geometric parameter is λs1. When the FG-GPLRC arch has λ ≤ λs1, the arch becomes a
slightly curved beam and does not perform typical nonlinear buckling behavior.

5. Numerical Studies and Discussion

In this section, the nonlinear buckling behavior of the FG-GPLRC arch with a cross
section of b × h = 0.03 m × 0.025 m and 10 GPLRC layers is investigated. The material
properties of GPLs and matrix are adopted as the same in Section 2. To verify the present
solutions, a finite element (FE) analysis conducted by ANSYS 17.0 is used to obtain the
nonlinear equilibrium path of the FG-GPLRC arch. In numerical modeling, the SHELL181
element is used to establish a multi-layer FG-GPLRC arch model. The COMBIN14 element
is adopted to model elastic end restraints whose rotational restraint stiffness k is defined
by Equation (17). The section commands are used to define the layered structures which
can provide the input options for specifying the thickness, material, and orientation of
each layer. The FG-GPLRC arch model is meshed by 100 elements along the arch length
direction, and 10 layers are considered to be in the thickness direction, as depicted in
Figure 3.

As a large deflection and rotation may occur during the whole deformation of the
arch, the NLGEOM command is used for nonlinear analysis when considering the effect



Materials 2021, 14, 2026 8 of 14

of geometric nonlinearities. In addition, the arc-length method activated by the ARCLEN
command is, then, used to trace the nonlinear equilibrium path of the FG-GPLRC arch
with a load step of 200, as specified by the NSUBST command. By setting the minimum
and maximum multipliers for the arc-length radius, the subsequent displacement and load
proportional factors and the increment size can be adjusted and computed automatically
using the arc-length radius.

For comparison, the FE and present results for the limit point buckling path and
bifurcation buckling path are plotted in Figure 4, in which NE0 = the critical bifurcation
axial force NE2 of the pure epoxy arch, and vc/f = the dimensionless displacement of the
arch crown with f being the rise of the arch. It should be mention that, for triggering
the bifurcation buckling behavior of the FG-GPLRC arch, an antisymmetric geometric
imperfection of 0.1% arch length is introduced to the arch in the bifurcation buckling
analysis. It is observed that the present analytical solutions agree very well with the
FE results.
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Next, we discuss the buckling load of the elastically supported arch, i.e., the limit
point buckling load (the first upper limit point load) for brevity, unless stated otherwise.
Figure 5 shows the influence of the power law index on the buckling load and the effective
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bending stiffness of the arch for α = 2. In Figure 5b, “D110” is the bending stiffness of
the pure epoxy arch. It is found that the buckling load and the effective bending stiffness
significantly decrease as the power law index increases, but the effect of the power law
index tends to be less pronounced when the power law index is higher than three. This is
because a higher content of GPLs would be concentrated on the bottom and less on other
layers when the FG-GPLRC arch has a higher power law index, thereby leading to a lower
bending stiffness of the arch.
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Table 1 lists the buckling load of the arch having different GPL weight fractions. It
is found that, by comparing with a pure epoxy arch (i.e., WGPL = 0.0%), GPLs have a
remarkably reinforced effect on improving the buckling bearing capacity of the FG-GPLRC
arch and the buckling load of the arch increases with an increase in WGPL. In addition, the
effects of the geometry and size of GPLs on the buckling load are depicted in Figure 6. For
bGPL/tGPL = 103, the reinforced effect of GPLs on improving the buckling bearing capacity of
the FG-GPLRC arch becomes stable under different ratios of aGPL/bGPL. Figure 7 presents
the flexibility of the rotational constraints on the buckling load of the FG-GPLRC arch. It
is noted that, in all cases, the buckling load decreases as the flexibility of the rotational
constraints increases, and the fixed FG-GPLRC arch has the highest one, as expected.

Table 1. Buckling loads of the FG-GPLRC arch having different weight fractions of distributed
graphene platelets (GPLs).

WGPL (%) n = 0 n = 0.5 n = 1 n = 3

0.0 0.5088
0.2 1.0157 0.8679 0.8313 0.7846
0.4 1.5227 1.2213 1.1454 1.0503
0.6 2.0300 1.5730 1.4567 1.3123
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Figure 6. Effect of geometry and size of GPLs on the buckling load.
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Figure 7. Effect of the flexibility of the rotational constraints on the buckling load.

Figure 8 displays the nonlinear equilibrium path of the FG-GPLRC arch in a load-
displacement curve form to discuss the phenomenon of buckling mode switching. It is ob-
served from Figure 8a that, when the arch has a smaller geometric parameter (e.g., λ = 2.6),
the bifurcation point is located behind the limit point, so the buckling mode of the arch is
the limit point instability mode. However, when the FG-GPLRC arch has a higher geomet-
ric parameter (e.g., λ = 5.5), its bifurcation point is located before the limit point, as shown
in Figure 8b, leading to a bifurcation buckling mode of the arch instead of a limit point
buckling mode. Accordingly, a critical geometric parameter λb2 is defined to identify the
buckling mode of the arch, whose value is determined by solving Equations (27) and (34)
at β = βb simultaneously. When the FG-GPLRC arch has λ > λb2, the buckling mode of
the arch is bifurcation mode.
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Figure 8. Nonlinear load-displacement curve of an elastically restrained FG-GPLRC arch.

The effects of the rotational constraints and the power law index on the critical
geometric parameters to distinguish the buckling mode are presented in Figure 9. As
shown in this figure, in Region 1 (λ > λb2), the buckling mode of the arch is bifurcation
mode. In Region 2 (λb1 ≤ λ ≤ λb2), the buckling mode of the arch is either limit point
instability mode or bifurcation mode, depending on which mode would occur first. In
Region 3 (λs1 ≤ λ < λb1), the buckling mode of the arch is limit point instability mode. In
Region 4 (λ < λs1), no buckling occurs in the arch. It should be mentioned that there is no
solution to λb2 for α = 0 which refer to the fixed support, it implies that the FG-GPLRC
arch with fixed ends cannot buckle in a bifurcation mode.
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Figure 9. Critical geometric parameters for the buckling mode of an elastically restrained FG-GPLRC arch.

The nonlinear equilibrium paths of the FG-GPLRC arch, having the geometric pa-
rameters λ = λs2 = 4.0861 and λ = λs3 = 5.7552, are given in Figure 10. The number of
limit points of the arch, in which the flexibility of the rotational constraints is set as two,
is indicated in the figure. Note that we can determine the number of limit points within
the bounds of successive inflexion points. When λ < λs1, there is no limit point in the
nonlinear equilibrium path. When λs1 < λ < λs2, there are two limit points in the non-
linear equilibrium path. When λs2 < λ < λs3, there are four limit points in the nonlinear
equilibrium path, and so on. Hence, the first 18 limit points and the corresponding critical
geometric parameters λsn of the arch with the power law index n = 1.5 and n = 3 are plotted
in Figure 11 for further clarification.
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Figure 10. Nonlinear load-axial force curve of an elastically restrained FG-GPLRC arch.
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6. Conclusions

In this paper, we studied the nonlinear buckling behavior of elastically supported
FG-GPLRC arches with asymmetric distributed GPLs under a CPL. Analytical solutions
for the limit point buckling, bifurcation buckling, and mode switching were derived. A
finite element analysis was also employed to verify the present results, showing good
accuracy of the present method for predicting the nonlinear buckling of the FG-GPLRC
arch. According to the numerical studies, the influences of the distribution of GPLs, weight
fractions, geometric configurations, as well as boundary restraints are discussed. It is found
that the nonlinear buckling load of the FG-GPLRC arch decreases as the power law index
or the flexibility of the rotational constraints increases. Switching of the buckling mode of
the FG-GPLRC arch is quite sensitive to the power law index, the flexibility of rotational
constraints, and the arch geometry. It is also found that, according to the present analytical
method, the number of limit points in the nonlinear equilibrium path of the FG-GPLRC
arch under a CPL can be easily determined.
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