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Abstract: In this research, the tribological properties of different microstructures of medium carbon
steel produced by either an austempered process or quenched-tempered process are investigated.
The as-received samples with annealed microstructure (spherodized) are austempered to obtain a
bainite microstructure or quenched-tempered to obtain a tempered martensite microstructure. The
tribological performance of these microstructures was studied using a ball-on-disk UMT3 tribometer.
The results indicated that both bainite microstructures and tempered-martensite microstructures
produced better wear resistance than pearlite microstructures. At the same hardness level, the
austempered disk specimens have less cracking due to higher fracture toughness compared to
quenched and tempered steel. For the disks, tempered martensite microstructures produced more
plastic deformation compared with bainite microstructures. Mild abrasive wear was observed on the
harder disks, however, smearing wear was observed on the softer disks. Adhered debris particles
were observed on the balls.

Keywords: plastic deformation; adhered debris; wear; friction; heat-treatment

1. Introduction

Ferrite/pearlite, bainite, martensite, and austenite are common structures in carbon
steel and each has different mechanical properties [1]. To improve the service life and
durability of medium carbon steel, an understanding of the wear and friction properties
of the different microstructures of medium carbon steel during tribological tests is of
considerable importance for a number of engineering applications. Although medium
carbon steel has a relatively low tensile strength, it is inexpensive and easy to form. Medium
carbon steels have carbon content from 0.30% to 0.60%, making them malleable and ductile.
Steels with a carbon content of 0.40% to 0.60% are used for rails, railway wheels, and rail
axles. Substitutional alloy elements, such as chromium (Cr), manganese (Mn), molybdenum
(Mo), and nickel (Ni) are added to these steels to provide a higher hardenability and
improve the steels’ ability to be heat-treated including depth of hardening and resistance
to softening during tempering [2].

Heat treatment is a simple and low-cost way to produce various microstructures [3].
Austempering is a high-performance isothermal heat treatment that can impart superior
performance to ferrous metals. Keough et al. [4] studied the wear performance of carbidic
austempered ductile iron (CADI). In their wear tests, they found that CADI samples had
better wear resistance than samples made of austempered ductile iron. The mechanical
properties of materials can be significantly improved by isothermal heat treatment since it
produces the bainite microstructure [5–7]. Lower bainite results in higher ductility than
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upper bainite due to differences in their microstructures [8,9]. The mechanical properties
of these steels are also improved via a quenching and tempering process, producing
a tempered martensitic microstructure. Generally, steel properties are improved by a
quenching and tempering process, because of the precipitation of a fine dispersion of alloy
carbides during tempering [10,11].

Recently, many researchers have investigated the tribological properties of medium
carbon steel under different test conditions, surface treatments, and lubrication. Shashid-
hara et al. [12] studied the tribological behavior of AISI1040 using the vegetable oil Jatropha
(Jatropha curcas) and mineral oil using a pin-on-disk tribometer. Compared to mineral oil,
the Jatropha raw oil reduced both friction and wear for AISI1040 samples. Litoria et al. [13]
studied the wear behavior of AISI4140 steel samples with various surface conditions slid-
ing against DLC-coated boronized discs of AISI4140 steel. Singh et al. [14] studied the
tribological behavior of shot-peened quenched-tempered SAE-6150 steel specimens. Their
results indicated that if an optimized shot peening intensity was utilized, the shot peening
significantly reduced the wear rate of the steel.

A few researchers have studied the effect of different microstructures on the tribo-
logical performance of medium carbon steel. Han et al. [15] studied the effect of shot
peening on the tribological performance of AISI5160 steel austempered under different
conditions. The results showed that lower bainite results in higher wear resistance than
upper bainite. Chattopadhyay [16] studied the tribological performance of medium carbon
steels with pearlitic morphologies versus medium carbon steels with bainitic morphologies.
Isothermal annealing was used to produce the pearlitic and bainitic morphologies. The
samples were tested with varying normal loads from 20 N to 50 N under dry sliding. The
results showed the bainitic microstructures resulted in a lower wear rate compared with
the pearlitic microstructures. This was attributed to the higher hardness, higher dislocation
density, and much finer distribution of the austenite–cementite aggregate phase throughout
the bainite. In the present study, three different temperatures of isothermal heat treatment
were employed to produce bainite microstructures and quenching, and three different
temperatures of tempering were employed to produce tempered martensite microstruc-
tures using AISI6150 steel specimens. The temperatures of both treatments were chosen
in a range to achieve a comparable hardness of the microstructures for both austempered
and quenched-tempered samples. A UMT3 wear test machine was employed to study
the tribological behavior of bainite and tempered martensite microstructures using a ball
on disk sliding configuration. The wear volume and roughness were investigated using
3D profiles. A scanning electron microscope (SEM) was used to observe the surface after
tribo-tests.

2. Experimental Procedure
2.1. Material

The chemical composition of the AISI6150 steel is given in Table 1. As-received
samples were mounted and etched using 3% nital and then an optical microscope was
used to observe the microstructures. The as-received disks were found to consist of
annealed microstructure (spherodized) containing fine spherical carbides and ferrite, see
Figure 1. The samples were cut all cut from the same bar of steel and machined into a
round shape with a diameter of 30 mm and a thickness of 3.2 mm prior to heat treatment.
The samples were austenitized at 855 ◦C for 20 min by immersing in a salt bath and
then transferred quickly to another lower temperature salt bath maintained at 288 ◦C,
316 ◦C, or 343 ◦C respectively, for austempering. Then, the samples were cooled in oil
to room temperature. After austempering, 288 ◦C austempered disks had a hardness of
47.7 HRC, 316 ◦C austempered disks had a hardness of 45.6 HRC, and 343 ◦C austempered
disks has a hardness of 38.7 HRC, see Table 2. The quenched and tempered disks were
also austenitized at 855 ◦C for 20 min by immersing in the salt bath and then quenched
in oil. After quenching, to obtain the same hardness as the 288 ◦C, 316 ◦C, and 343 ◦C
austempered disks, the disks were tempered for one hour at 380 ◦C, 455 ◦C, and 585 ◦C. A
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salt bath is an ideal heat treatment medium because when disks are immersed in a salt bath,
air cannot contact the workpiece, therefore, oxidation and decarburization are prevented.
A schematic diagram of the austempered and quenched and tempered heat treatments
is shown in Figure 2. After the heat-treatment process, the volume fraction of retained
austenite was found using X-ray diffraction (XRD). A Bruker D8 XRD (Madison, WI, USA)
instrument using Cu radiation at 40 kV and 40 mA current were employed to perform the
measurements. The step scan was 0.04 and the speed was 2 K/min.

Table 1. Chemical composition of AISI6150 steel (wt. %).

C Cr V Mn P Si S Fe

0.51 0.95 0.15 0.80 0.035 0.22 0.04 Balance

Figure 1. Microstructure of As-Received AISI6150 steel.

Table 2. Hardness, HRC, of austempered and quenched-tempered disks after heat-treatment.

Austempered
Temperature (◦C) Hardness Quenched-Tempered

Temperature (◦C) Hardness

As received 85.2 HRB As received 85.2 HRB
288 47.7 HRC 380 48.2 HRC
316 45.6 HRC 455 43.8 HRC
343 38.7 HRC 585 38.3 HRC

Figure 2. Cont.
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Figure 2. Schematic description of (a) austempering process, and (b) quenching-tempering process.

2.2. Tribology Behavior

Tribology testing of the austempered and quenched-tempered AISI6150 disks was
carried out with a UMT3 reciprocating ball-on-disk wear tester at room temperature.
This tribo-tester slides a ball specimen against a disk specimen with a constant normal
load and fixed reciprocation rate. The ball specimens, with a diameter of 9.5 mm, were
made of AISI 52100 steel with 60 HRC and 0.2 µm arithmetic average roughness, Ra. To
achieve the hardness of 60HRC, AISI52100 specimens were austenitized at 840 ◦C +/− 5 ◦C
for 15 min, immersed in a salt bath, and then oil quenched to room temperature. The
specimens were then tempered at 180 ◦C for one hour. The disks with a surface roughness
of 80 nm ≤ Ra ≤ 150 nm were immersed in PAO4 (Synfluid, TX, USA) oil during testing.
A normal load of 320 N was applied to load the ball against the disk with a cyclic speed of
2 Hz and a displacement of 4 mm. The test duration was 10 min. Both disks and balls were
degreased and cleaned thoroughly in acetone prior to, and after tests. For each experiment,
a new ball and a new disk were used. At least three tests were carried out for each type
of disk.

The coefficient of friction was automatically monitored and collected by the UMT3
(Bruker, San Jose, CA, USA) wear tester. All the coefficient of friction data was averaged
for each test, and three tests were conducted for each disk at the same test condition. Three
different locations of the disk wear scars were measured by the 3-D profiler and averaged
for one disk to obtain the average cross-sectional area of the wear scar. Then, the average
wear area was multiplied by the wear scar length of 4 mm to obtain the wear volume. The
wear scars and subsurface damaged zone were observed by optical microscopy, 3D profiles,
and scanning electron microscopy (SEM).

3. Results and Discussion
3.1. Microstructure and Characterization

Optical microscopy was employed to observe the microstructures. Needle-like bainite
was formed when austempering at 288 ◦C, 316 ◦C, and 343 ◦C. Tempered martensite was
formed when tempering at 380 ◦C, 455 ◦C, and 585 ◦C. The microstructures of 343 ◦C
austempered disks and 585 ◦C quenched-tempered disks are shown in Figure 3. Undis-
solved carbides were observed in the 343 ◦C austempered disks and 585 ◦C quenched-
tempered disks, see Figure 4. The SEM image of 343 ◦C austempered disks shows that ferrite
precipitates at the grain boundaries and needle-like bainite was formed, see Figure 4a. A
high fraction of carbides and tempered martensite were observed on the 585 ◦C quenched-
tempered disks, see Figure 4b.
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Figure 3. Optical microscopy of the microstructure of AISI6150 steel: (a) 343 ◦C austempered disks, (b) 585 ◦C quenched-
tempered disks.

Figure 4. SEM images of microstructure of AISI6150 steel: (a) 343 ◦C austempered disks, (b) 585 ◦C quenched-tempered disks.

3.2. The Volume Fraction of Retained Austenite

Before the tribo-tests, the volume fraction of retained austenite was determined by
using XRD. Table 3 indicates that all the heat-treated disk samples contained only small
fractions of retained austenite.

Table 3. The volume fraction of retained austenite.

Austempered
Temperature (◦C)

Austempered Retained
Austenite (%)

Quenched-Tempered
Temperature (◦C)

Quenched-Tempered
Retained Austenite (%)

288 3.10 380 0.87
316 2.60 455 0.64
343 0.61 585 0.27

3.3. Hardness

The Rockwell hardness for each disk was measured at three different locations for each
disk. Since there were three disk specimens for each type of heat treatment, a total of nine
hardness values were measured and averaged. Depending on the Rockwell scale utilized,
the range of hardness values for each type of sample was +/−2 HRC or +/−2 HRB. After
the austempering process, all the disks had higher hardness than the as-received disks. As
the austempering temperature increases, the disks had lower hardness as shown in Table 2.
As the tempering temperature was increased for the quench-tempered disks the hardness
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also decreased. Tempering temperatures were selected based on previous experience and
trial and error to produce hardness values similar to the hardness values obtained for the
three austempering tempering temperatures as shown in Table 2.

3.4. Friction Performance

Figure 5 shows the average coefficient of friction and standard deviation of austem-
pered disks versus quenched-tempered disks. To find the average COF (coefficient of
friction), first, the mean COF was found for a given test. Then, the average COF for a given
heat treatment was found by taking the average of the mean COF for the 3 repeat tests.
The standard deviation was calculated using the average COF and mean COF for each
of the three repeat tests conducted for specimens with the same heat treatment. All the
heat-treated disks produced a higher coefficient of friction than that of as-received disks,
except for the 455 ◦C quenched-tempered disks which produced a similar coefficient of
friction as the as-received disks. For most cases, as the austempered or quenched-tempered
temperature increased, the coefficient of friction also increased. At the same hardness level,
the quenched-tempered disks produced a higher coefficient of friction than austempered
disks except for 455 ◦C quenched-tempered disks. A typical plot of COF versus sliding
time is shown in Figure 5b. For the 288 ◦C austempered disk, the beginning 80 s is the
running-in stage with the maximum COF reaching a value of 0.32. After the peaks on the
sliding surfaces were removed during the run-in, the COF reached a steady-state value in
the range of 0.20 to 0.23.

Figure 5. (a) Coefficient of friction of austempered disks and quenched-tempered disks; (b) COF vs. sliding time for 288 ◦C
austempered disk.
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3.5. Wear Performance

Figure 6 shows the average wear volume and standard deviation of austempered
disks versus quenched-tempered disks. The average wear value was calculated by aver-
aging the wear value for the three repeat tests for a given heat treatment. The standard
deviation was calculated using the average wear value and wear value for each of the
three repeat tests conducted for specimens with the same heat treatment. All heat-treated
disks produced lower wear volume than the as-received disks. The 288 ◦C austempered
disks and 380 ◦C quenched-tempered disks had the lowest wear volume as compared to
the other austempered and quenched-tempered disks, this is due to their high hardness.
As the austempered or quenched-tempered temperature increases, the wear volume in-
creased.The quenched-tempered disks overall had slightly higher wear volume than that
of austempered disks at the same hardness level.

Figure 6. Wear volume of austempered disks and quenched-tempered disks.

3.6. Pile Up

Figure 7 shows the pile up beside wear tracks of as-received disks and austempered
disks versus quenched-tempered disks. The pile-up was produced during the tests, due to
plastic deformation leading to material flow. 3D profiles were used to measure the amount
of pile-up. The total wear volume loss contributed to pile up and the remaining wear
volume loss resulted in wear debris. The 288 ◦C austempered disks generated lower wear
loss and higher pile-up compared with the 380 ◦C quenched-tempered disks. Therefore,
288 ◦C austempered disks produced less wear debris than 380 ◦C quenched-tempered disks,
see Figure 7b. The 316 ◦C/343 ◦C austempered disks generated lower wear loss compared
with the 455 ◦C/585 ◦C quenched-tempered disks. However, 316 ◦C/343 ◦C austempered
disks generated a similar pile-up as the 455 ◦C/585 ◦C quenched-tempered disks. Hence,
316 ◦C/343 ◦C austempered disks also produced less wear debris than 455 ◦C/585 ◦C
quenched-tempered disks, see Figure 7c,d. Figure 7a shows that the as-received disk
generates the highest wear loss and highest pile-up as compared to the heat-treated disks.
Therefore, the bainite microstructures and tempered martensite microstructures had higher
wear resistance than the annealed microstructure (spherodized) microstructures because of
the higher hardness.
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Figure 7. Pile up of: (a) as-received disks, (b) 288 ◦C austempered disks versus 380 ◦C quenched-tempered disks, (c) 316 ◦C
austempered disks versus 455 ◦C quenched-tempered disks, (d) 343 ◦C austempered disks versus 585 ◦C quenched-
tempered disks.

3.7. Ball Surface

Figure 8 shows the 3D profiles for balls run with the 288 ◦C austempered disks, 343 ◦C
austempered disks, 380 ◦C quenched-tempered disks, and 585 ◦C quenched-tempered
disks. Adhered material was observed on the balls which came from the austempered or
quenched-tempered disks. No detectable wear was observed on the balls.

Figure 8. Cont.
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Figure 8. 3D profiles showing the wear on the: (a) ball run with 288 ◦C austempered disks, (b) ball run with 380 ◦C quenched-
tempered disks, (c) ball run with 343 ◦C austempered disks, and (d) ball run with 585 ◦C quenched-tempered disks.

3.8. SEM Observations

After tribo-tests, the SEM observations of the worn surfaces are shown in Figure 9.
Obvious wear debris, plastic deformation, and smearing wear were observed on the as-
received disks, 343 ◦C austempered disks, and 585 ◦C quenched-tempered disks. The
ball with 60 HRC is significantly harder than the as-received, 343 ◦C austempered, and
585 ◦C quenched-tempered disks; see Table 2. The material near the surface of the disks is
plastically deformed, resulting in smearing wear and resulting wear debris. Some of the
debris adhered to the balls. The wear debris led to an increase in wear and the coefficient
of friction. The 288 ◦C austempered disks and 380 ◦C quenched-tempered disks have
high hardness compared with the high temperature austempered or quenched-tempered
disks, therefore, only mild abrasive wear was produced during these tests compared to the
high temperature austempered or quenched-tempered disks. The consequences of plastic
shear deformation due to friction on samples etched with 3% nital are shown in the cross-
section views in Figure 10. The plastic shearing produced an alignment of microstructural
features in the direction of the sliding close to the surface. The 288 ◦C austempered disks
had the lowest amount of plastic shearing compared with other disks and there are no
obvious cracks observed on the cross-section. However, cracks were observed on the
as-received disks, 316 ◦C austempered disks, and 455 ◦C quenched-tempered disks. This is
because the as-received disks, 316 ◦C austempered disks, and 455 ◦C quenched-tempered
disks have lower hardness compared with the 288 ◦C austempered disks and 380 ◦C
quenched-tempered disks. Bainite and tempered martensite microstructures have higher
wear resistance than the pearlite microstructure. The quenched-tempered disks resulted
in more plastic deformation than the austempered disks. At the same hardness level, the
austempered disk specimens have less cracking due to higher fracture toughness compared
to quenched and tempered steel [17].
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Figure 9. SEM observations on the: (a) as-received disks, (b) 288 ◦C austempered disks, (c) 380 ◦C quenched-tempered
disks, (d) 343 ◦C austempered disks, and (e) 585 ◦C quenched-tempered disks.
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Figure 10. SEM observations on the cross-sections of (a) as received disks, (b) 288 ◦C austempered disks, (c) 380 ◦C
quenched-tempered disks, (d) 316 ◦C austempered disks, and (e) 455 ◦C quenched-tempered disks. The red lines indicate
cracks and the yellow line indicates the plastic deformation zone.

3.9. Optical Observations

A typical white layer was only observed on the 343 ◦C austempered disk and 585 ◦C
quenched-tempered disk, see Figure 11. The white layer formed because the temperature
rises quickly when the disk is in contact with the ball and then quickly drops on the disk
when it is not sliding against the ball. Therefore, martensite was formed on the disk surface.
However, the martensite is brittle, therefore, cracks are easily formed on the top surface.
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Figure 11. Optical observations on the cross-section of: (a) 343 ◦C austempered disks, (b) 585 ◦C quenched-tempered disks.

4. Discussion

The frictional forces generated by the ball specimens sliding against the disks result
in high strains generated on the subsurface of the disks [18]. As the tests are run, the
plastic deformation zone below the surface will extend, depending on the hardness and
microstructures of the samples. Therefore, the softer disks had more significant plastic defor-
mation than the harder disks. At the same hardness level, the austempered disk specimens
have less cracking due to higher fracture toughness compared to quenched and tempered
steel [17]. Therefore, the austempered disks containing bainite microstructures produced
lower wear loss than the quenched-tempered disks containing tempered martensite.

Once the disk microstructures were subjected to very severe plastic strain, the subsur-
face crack nucleation and propagation lead to wear particles flaking off from the surface.
The cracks initiate under the extremely high residual strain gradients which occur in the
disk samples [18]. The harder disks have better anti-crack ability than the softer disks.
Hence, much more debris and obvious cracks were formed and observed on the softer
disks. Harder disks generated fewer cracks, therefore, less wear debris was produced.
The particles which flake off from the harder disks act as loose abrasive particles in the
tribological system and resulted in mild abrasive wear on the harder disks. The 288 ◦C
austempered disks produced less wear debris than 380 ◦C quenched-tempered disks, there-
fore, it generated less wear loss compared with 380 ◦C quenched-tempered disks. Because
the tested balls have much higher hardness than the softer disks the debris adhered to
the balls or smeared on the softer disks during the tribo-tests. The debris from the softer
disks generated third-body abrasive wear as well. Therefore, 343 ◦C austempered disks
and 585 ◦C quenched-tempered disks resulted in higher wear loss than other austempered
disks or quenched-tempered disks. The tested balls have higher hardness than the tested
disks, therefore, there was no obvious wear observed on the ball specimens.

5. Conclusions

In the present investigation, the lubricated sliding wear of different microstructures of
AISI6150 was studied. The friction and wear regimes were identified. The following points
can be highlighted.

1. The tempered martensite microstructure resulted in more plastic deformation and
more cracks, due to lower fracture toughness, as compared to the bainite microstruc-
ture. This resulted in more debris being produced on the surfaces of samples with
tempered martensite microstructure than with the bainite microstructure. There-
fore, the tempered martensite microstructure results in higher wear loss than the
bainite microstructure.

2. Severe smearing wear was observed on the top surfaces of 343 ◦C austempered disks
and 585 ◦C quenched-tempered disks. This is because these two disks contain a



Materials 2021, 14, 2015 13 of 13

more ferritic microstructure with low dislocation density which is soft and rather
deformable as compared to the other disk specimens which were tested. Therefore,
these two disks produced a higher coefficient of friction than the other disks.

3. Less debris was generated on the harder disks resulting in only mild abrasive wear.
However, more debris was smeared on the softer disks and third body wear particles
were produced resulting in relatively high wear of the softer disks.
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