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Abstract: Intramolecular charge transfer (ICT) compounds have attracted wide attention for their po-
tential applications in optoelectronic materials and devices such as fluorescent sensors, dye-sensitized
solar cells, organic light emitting diodes and nonlinear optics. In this work, we have synthesized
a new ICT compound, dimethyl-[4-(7-nitro-benzo[1,2,5]thiadiazol-4-yl)-phenyl]-amine (BTN), and
have fabricated it into low dimensional micro/nano structures with well-defined morphologies.
These self-assembled nanostructures exhibit high efficiency solid state fluorescence via an aggrega-
tion induced emission mechanism, which overcomes the defect of fluorescence quenching caused
by aggregation in the solid state of traditional luminescent materials. We also explored and studied
the nonlinear optical properties of this material through the Z-scan method, and found that this
material exhibits large third-order nonlinear absorption and refraction coefficients, which promises
applications of the materials in the fields of nonlinear optics and optoelectronics.

Keywords: intramolecular charge transfer; aggregation induced emission; nonlinear optics; benzoth-
iadiazole

1. Introduction

When conventional organic fluorescent materials engage in π -stacking, the lumines-
cence is partially or completely quenched [1]. Such aggregation leads to aggregation-caused
quenching (ACQ), mainly due to the strong π-stacking among molecules and the formation
of excimer complexes. Aggregation induced emission (AIE), an intriguing phenomenon,
was first discovered and proposed by Ben Zhong Tang in 2001 [2]. AIE molecules, in con-
trast to conventional dyes, can emit light efficiently in the solid state, which fundamentally
solves the problem of ACQ and makes fluorescent materials rich, extended and devel-
oped [3]. At the same time, many mechanisms, such as the essential structure flattening,
restriction of intramolecular motions (RIM), restriction of intramolecular vibrations (RIV),
restriction of intramolecular rotations (RIR), twisted intramolecular charge transfer (TICT),
J-aggregation formation (JAF), excited state intramolecular proton transfer (ESIPT), excited
state intramolecular charge transfer (ESICT) and other theories [2,4–6] have been proposed
as the explanation of this phenomenon. After nearly 20 years of rapid development, AIE
has been applied in various areas of research and is currently an extensively studied
field [7]. Many AIE materials have been designed and synthesized for wide applications
in the fields such as organic light-emitting diodes, sensing and biological imaging [8,9].
However, most of the developed AIE materials are of short absorption and emission wave-
lengths, limiting their further developments and applications. In recent years, due to the
characteristics of high absorption intensity, narrow emission crest and easy modification,
small organic molecules featuring electron Donor (D)-Acceptor (A) characteristics have
been applied in near-infrared luminescent materials and devices. In our previous work, it
was found that the intramolecular charge transfer compounds were assembled into ordered
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aggregations with a well-defined morphology by the non-covalent weak interactions at
the supramolecular level, which could overcome the impact of fluorescence quenching
caused by disordered aggregation of materials while also displaying characteristics of
an optical waveguide [10–15]. To further study the intrinsic optical properties of such
materials, an intramolecular charge transfer (ICT) compound with nitro-group acting as an
electron acceptor and the nitrobenzothiadiazole unit as the electron donor was designed
and synthesized. Supramolecular aggregates with well-defined morphologies have been
constructed by simple self-assembly methods, and the effect of the nitro group on the
photoelectric properties of the molecule was investigated. The nonlinear optical properties
of this material were also explored and studied through the Z-scan method. It has been
found that this material exhibits large third-order nonlinear absorption and refraction
coefficients, which promises applications of the materials in the fields of nonlinear optics
and optoelectronics.

2. Materials and Methods
2.1. Chemical Materials

Phenylboronic acid pinacol ester, 4-bromo-7-nitrobenzothiadiazole and Pd(PPh3)4 are
the analytical pure reagents, K2CO3 and silica gel (200–300 mesh) are the chemical pure
reagents and all of the above reagents were purchased from Sigma Aldrich (Shanghai,
China) Trading Co., Ltd.

2.2. Experimental Equipment

The 1H, 13C nuclear magnetic resonance (1H NMR, 400 MHz; and 13C NMR, 100 MHz)
spectra were collected with the Bruker ARX400 MHz spectrometer (Leipzig, Germany). The
UV-Visible (UV-Vis) absorption spectrum was measured by Hitachi U-3010 UV-Visible spec-
trophotometer. The fluorescence spectrum was measured by Hitachi F-4500 fluorescence
spectrometer (Chiyoda-ku, Tokyo, Japan). Nano-scale images of the structure were taken
using a JEOL JSM 4800F field emission scanning electron microscope (SEM), atomic force
microscope (AFM) and the Multimode Nanoscope controller IIIa (Veeco Inc., New York,
United States). The Confocal fluorescence image was taken with the OLYMPUS FV1000-
IX81 Confocal Laser Microscope (Tokyo, Japan). The high resolution mass spectrometry
(HMRS) was measured by Varian 7.0T FTMS (Santa Clara, CA, USA).

2.3. Synthesis

The target nitro compound, dimethyl-[4-(7-nitro-benzo[1,2,5]thiadiazol-4-yl)-phenyl]-
amine (BTN), was obtained via the Suzuki coupling reaction between the 4-bromo-7-
nitrobenzothiadiazole [16] and phenylboronic acid pinacol ester under the catalysis of
Pd(PPh3)4 and K2CO3. The synthetic route is shown in Scheme 1, and the details are
described below.
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Scheme 1. Synthesis route to the target compound BTN.

4-(N,N-dimethylamino) phenylborate pinacol ester (123 mg, 0.50 mmol) and 4-bromo-
7-nitrobenzothiadiazole (129 mg, 0.50 mmol) were dissolved in a mixture of toluene (45 mL)
and ethanol (15 mL). After 30 min of agitation at room temperature under nitrogen atmo-
sphere, Pd(PPh3)4 (57 mg, 0.05 mmol) and K2CO3 (207 mg, 1.5 mmol) were added to the
reaction mixture, which was stirred for 6 h at 60 ◦C. After the reaction was finished, the
mixture was cooled to room temperature. H2O was added to quench the reaction, and
then dichloromethane was used to extract (2 × 100 mL). The combined organic extracts
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were washed with water and then dried. The solvent was evaporated, the crude product
was purified by silica gel column chromatography with dichloromethane as the eluent, to
afford the product as the red solid (34.5 mg, 0.245 mmol) with a yield of 49%. 1H NMR
(400 MHz, CDCl3): δ/ppm 3.10 (s, 6 H), 6.87 (d, J = 7.6 Hz, 2 H), 7.74 (d, J = 7.6 Hz, 1 H),
8.02 (d, J = 7.8 Hz, 2 H), 8.66 (d, J = 7.7 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ/ppm 154.4,
151.6, 147.8, 142.0, 136.5, 131.1, 128.7, 123.2, 122.9, 112.1, 40.2; HR GCT-MS: m/z: 323.0578
(M + Na+). Calc. Mass 323.0579. 1H NMR, 13C NMR and HMRS spectra were shown in
Supplementary Material Figures S1–S3.

3. Results and Discussion
3.1. Self-Assembly

Self-assembly is the process where molecules assemble into an ordered nanostructure
through the interactions between molecules, such as electrostatic attraction, hydrogen bond
and hydrophobic association [17,18]. This method is simple to operate and is suitable for
small organic molecular compounds [19]. Large scale, uniformed micro- and nano- scale
supramolecular aggregations can be obtained by the solution based self-assembly method
with the absence of additional templates, catalysts and surfactant [20,21]. In this study,
aggregated organic nano-scale structures were prepared by this method. Strong hydrogen
bonds, π-π and dipole-dipole interactions among BTN molecules were observed by single
crystal X-ray diffraction [22] (in Supplementary Materials). The saturated solution of BTN
in tetrahydrofuran was slowly cooled down in an oil bath from 70 °C to room temperature,
and stable one-dimensional wire-like structures were precipitated (Figure 1a,b). The widths
of these structures range from hundreds of nanometers to a few microns and the lengths
are of hundreds of microns.
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Figure 1. The self-assembled wire-like (a,b) and rod-like (c,d) aggregation structures of BTN.

The polarity of solvent has a great influence on the self-assembly of the compound.
When tetrahydrofuran was changed to dichloromethane, one-dimensional rod-like struc-
tures were obtained during the same cooling process (Figure 1c,d). When the saturated
refluxing solution of BTN was cooled at room temperature, self-assembly was expected
to occur due to the limited solubility. The aggregates of BTN tend to stack along one axis
due to the large dipole-dipole interactions and hydrogen bonds. The crystallization rate
of BTN-1 in the tetrahydrofuran is higher than that in dichloromethane, leading to the
different one-dimensional morphologies. Thus, the morphologies of BTN could be easily
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controlled through adjusting the different solvents. Powder X-Ray Diffraction (XRD) data
indicates that these wire-like and rod-like aggregation structures are highly crystalline
(Figure S4). The AFM image shows that the surfaces of these aggregation structures are
very uniform (Figure S5).

3.2. Crystal Structure

Single crystals of BTN were obtained by the two-phase solvent diffusion process with
tetrahydrofuran as the good solvent and hexane as the poor solvent. Single crystal X-ray
diffraction analysis was carried out to understand the crystal structures (Table 1). The
results show that the single crystal belongs to a monoclinic P21/n space group. The whole
molecule presents a distorted structure, and the angle between the benzothiadiazole unit
and the adjacent benzene ring is 26.6◦ (Figure 2a). As shown in the stacking diagram
(Figure 2c), a unit cell of BTN single crystal contains four molecules, two pairs of which are
stacked in opposite dipole directions. When viewed along the crystallographic b-axis, the
molecular accumulation presents two kinds of antiparallel stacking. The crystal stacking is
driven by the short heteroatomic forces such as S1···N2 (3.02 Å), N2···N2 (2.97 Å) between
adjacent 1,2,5-thiadiazole heterocycles (Figure 2b). There are also rich hydrogen bonds
between molecules, such as S1···H-C (2.93 Å) between the heteroatom S and the O···H-C
(2.67 Å, 2.58 Å) formed by the oxygen atom on nitro group with two hydrogen atoms from
two adjacent methyl groups separately. Combined with these forces, the molecules exhibit
a head-tail-head-tail stacking structure [23].

Table 1. Crystal structure data of BTN.

Formula C14H12N4O2S

CCDC number 1977053
Mr 300.34

crystal size (mm3) 0.40 × 0.20 × 0.07
crystal system Monoclinic
space group P21/n

a (Å) 13.053(3)
b (Å) 6.9678(14)
c (Å) 14.799(3)
α(deg) 90
β (deg) 106.85(3)
γ (deg) 90
V (Å3) 1288.2(4)

Z 4
F(000) 624

calcd (mg m−3) 1.549
(mm−1) 0.262

range (deg) 1.83 to 27.52
R1 [I > 2σ(I)] 0.0481

wR2 [I > 2σ(I)] 0.1163
goodness of fit 1.150

The change of the bond length on the N,N-dimethyl benzene ring can reflect the
degree of ICT between the acceptor and the donor. This can be shown by the value of δr
of benzoquinone [24]. δr is equal to 0 for benzene (see Figure 2a for the definition of the
bonds of a, a′, b, b′, c, c′). The δr of BTN is 0.029, which indicates that BTN shows a very
effective intramolecular charge transfer.

δr = [(a + a′)/2− (b + b′)/2] + [(c + c′)− (b + b′)]/2 (1)
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3.3. Theoretical Analysis of Compounds

According to the molecular orbital theory, the highest occupied molecular orbitals
(HOMO) and the lowest occupied molecular orbitals (LUMO) are the main orbitals that
contribute to the chemical stability of molecules and have an important influence on the
optoelectronic activity of compounds [25]. In order to further understand the spatial
configuration and electron cloud distribution of the molecule, density functional theory
(DFT) was applied to optimize the molecular configuration and evaluate the electron
cloud distribution of BTN in vacuum. The calculation was run by Gaussian 09 software
package with B3LYP and 6-31G* as the base group [26,27]. As can be seen from Figure 3,
the electron cloud on the HOMO orbital is more evenly distributed on the conjugated
surface of N,N-dimethyl-benzene ring, while the electron cloud on the LUMO orbital is
mainly located on the benzothiadiazole ring and the nitro group, with the electron cloud
density on the benzene ring significantly reduced. The HOMO to LUMO charge transfer is
mainly attributed to the n-π transition from donor to acceptor [28].
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3.4. Electrochemical Properties

The electrochemical properties of BTN were studied by cyclic voltammetry. The
experiment was carried out in dichloromethane with oxygen removed beforehand. The
glassy-carbon electrode was used as the working electrode, platinum wire as the opposite
electrode and saturated calomel electrode as the reference electrode. The solution con-
tained 0.1 M tetra-n-butylammonium hexafluorophosphate as the supporting electrolyte
and ferrocene as the internal standard. It can be seen from the cyclic voltammetry that
the compound has a reversible oxidation peak (0.98 V) in the oxidation region (Figure 4),
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which can be attributed to the oxidation of N,N-dimethyl units. In the reducibility area, a
reversible reduction peak and an irreversible reduction peak are present. The reversible
reduction peak (−0.85 V) can be attributed to the reduction of the receptor nitro group.
The irreversible reduction peak (−1.40 V) can be attributed to the reduction of benzothiadi-
azole unit.
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3.5. Linear Optical Properties

The UV-Vis absorption spectrum of BTN as measured from its solution in methylene
chloride solution suggests a narrow absorption band at near 320 nm (Figure 5), which is
caused by the π-π* transition of benzothiadiazole units [29]. Meanwhile, there is a strong
ICT peak centered at 514 nm in the visible region. The absorption of this wide peak is
mainly due to the n→π* transition induced by the ICT process [30].
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It is widely accepted that nitro-compounds such as BTN hardly fluoresce in the so-
lution due to the strong electron absorption of nitro group and the effect of orbital spin
coupling [31,32]. Nevertheless, we studied the luminescence behavior of BTN in both
the solution and aggregation states. The results showed that the solution of BTN in pure
tetrahydrofuran did not emit light when excited at its maximum absorption wavelength
of 514 nm. However, at a certain concentration (total concentration 2.0 × 10−5 M), the
luminescence of tetrahydrofuran solution was significantly changed when a certain propor-
tion of n-hexane was introduced. As the proportion of n-hexane gradually increases, the
luminescence intensity of the solution gradually increases accordingly, and the maximum
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emission wavelength has a significant blue shift (Figure 6a). The maximum fluorescence
emission peaks range from 672 to 617 nm. However, the maximum absorption wavelength
of the solution was not as sensitive to the change of the fractions of mixture solution. When
the percentage of hexane was increased from 0% to 70%, 80% and 90%, the ICT band
red-shifted gradually from 514 to 496, 494 and 492 nm (Figure 6b, Table S1), showing the
AIE effect [7,33]. BTN in good solution is polarized and highly distorted, featuring the
nonradiative decay progress. However, if it is aggregated from the dilute solution, the
intramolecular charge transfer will be eliminated, and the emissions will be recovered.
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The luminescence of the aggregation state of BTN was also observed by fluorescence
confocal microscope (Figure S6). The compound was demonstrated to be a good lumines-
cent material showing yellowish green fluorescence in the aggregation state. This property
overcame the fluorescence quenching phenomenon caused by aggregation in the solid state
of traditional luminescent emission materials, which was a typical AIE phenomenon. There
are several widely accepted mechanisms, such as the RIM, JAF and excimer mechanisms.
However, the AIE properties of the ICT compounds with nitro groups are more related
to the change of molecular structure and state [11]. In nitro compounds with a certain
conjugated system, the fluorescence is quenched due to the strong charge transfer in the
excited state. When the molecules are in the aggregation state, due to the C-H···O hydro-
gen bonds between nitro groups, benzene rings and methyl groups, and the interaction
between heteroatoms, some electrons are provided to offset the electron absorption ability
of nitro groups, and the π-conjugated system is released and the fluorescence is displayed
and restored.

3.6. Nonlinear Optical Properties

The nonlinear optical properties of BTN were studied by a Z-scan technique in its
dichloromethane solution [34]. We first used CS2 as the standard sample to calibrate
the system. CS2 was placed in the quartz sample pool, and the closed-aperture curve
was obtained [32]. The nonlinear refractive index coefficient of CS2 was calculated to be
5.7 × 10−17 m2/W, which is very close to the reported value in the literature [35]. The
nonlinear response of the quartz substrate and the sample cell is very weak, and their
influence on the experimental results can be ignored.

We first measured the nonlinear absorption of the sample BTN under the condition
of open-aperture, and the obtained curve is shown in Figure 7. It can be seen that the
energy transmittance of the sample at the focus is only about 0.9 of the initial energy, which
indicates that BTN exhibits anti-saturation absorption behavior.
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The nonlinear absorption data of samples can be expressed by Equation (2):
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In the formula above, α0 and α2 are linear and nonlinear absorption coefficient, τ is
time, L is the thickness of the sample. Transmittance (T) is a function of sample position
Z (Z = 0 at the focus). By fitting the data with the five-level model [36], which takes into
account the dynamic thermal effect resulting from the transient excited-state absorption.
The effective nonlinear absorption coefficient α2 of BTN solution can be calculated to be
2.9 × 10−11 m/W.

The data points shown in black squares in Figure 7 are curves of nonlinear refraction
of BTN solution under closed-aperture condition. The nonlinear refraction effect of samples
is obtained by removing the normalized closed-aperture Z-scan data from the normalized
open-aperture Z-scan data. This is a curve pattern of a valley followed by a peak, which
indicates that the solution has a self-focusing characteristic. The third-order nonlinear
refractive index coefficient n2 can be given by the valley peak difference (∆Tv−p) in the
curve and combined with Formula (3) to give [37].

n2 =
λα0

0.812π I(1− e−α0L)
∆Tv−p (3)

In formula (3), the difference between the peak and valley values of ∆Tv−p normalized
transmittance, I is the focus intensity, and λ is the wavelength of the laser. Through
calculation, it can be estimated that the n2 value of the nonlinear refractive index coefficient
of BTN is 3.4 × 10−18 m2/W. These results show that BTN has high third-order nonlinear
absorption and nonlinear refraction coefficients, which promise great potential of these
material for applications in well-defined nonlinear optical materials.

4. Conclusions

In this article, starting from the principle that the photoelectric performance of ICT
molecules can be regulated by adjusting the efficiency of charge transfer, we have synthe-
sized an ICT compound BTN with rich self-assembly and optoelectronic properties. The
ICT compound has been constructed into well-defined supramolecular aggregates with
specific morphologies by using intermolecular non-covalent weak interactions such as hy-
drogen bonds, π-π, dipole-dipole and Van der Waals forces as the driving forces. The single
crystal analysis shows the strong ICT characteristic of this ICT compound. The aggregation
structures of micro-wire and micro-rod were obtained by solvent saturation precipitation.
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This compound has no fluorescence in the solution state, but show strong fluorescence
in aggregation state, which overcomes the fluorescence quenching phenomenon caused
by aggregation and has potential applications in organic light-emitting diode and other
related fields. The compound also exhibits strong third-order nonlinear absorption and
refraction coefficient, which promises potential applications in nonlinear photonic devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14081909/s1, Figure S1: 1H NMR spectrum of BTN, Figure S2: 13C NMR spectrum of
BTN, Figure S3: HRMS pattern of BTN, Figure S4: XRD patterns of BTN crystals with two structures
and simulated XRD patterns of single crystal XRD data from rod-like single crystals, Figure S5: The
AFM image of a typical single micronwire of BTN, Figure S6: The fluorescence confocal microscope
of BTN nanowires, Table S1: The maximum absorption and fluorescence emission peak of BTN in
different ratios of hexane and tetrahydrofuran.
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