

SUPPLEMENTARY

The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications

Luu Huu Nguyen ^{1,2,*}, Pham Thanh Phong ^{1,2}, Pham Hong Nam ^{3,4}, Do Hung Manh ^{3,4}, Nguyen Thi Kim Thanh ^{5,6,*}, Le Duc Tung ^{5,6,*} and Nguyen Xuan Phuc ⁷

- ¹ Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University, 700000 Ho Chi Minh City, Vietnam; phamthanhphong@tdtu.edu.vn
- ² Faculty of Applied Sciences, Ton Duc Thang University, 700000 Ho Chi Minh City, Vietnam
 - ³ Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, 100000 Ha Noi, Vietnam; namph.ims@gmail.com (P.H.N.); manhdh.ims@gmail.com (D.H.M.)
 - ⁴ Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, 100000 Ha Noi, Vietnam
 - ⁵ Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
 - ⁶ Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
- ⁷ Duy Tan University, K7/25 Quang Trung Street, 550000 Da Nang City, Vietnam; phucnx1949@gmail.com
- * Correspondence: luuhuunguyen@tdtu.edu.vn (L.H.N.); ntk.thanh@ucl.ac.uk (N.T.K.T.); t.le@ucl.ac.uk (L.D.T.)

Supplementary Section 1: Dc and ΔD_c versus K and Their Region Characteristics

Figure S1. (a) D_c versus K for various AMF frequencies. (b) The width ΔD_c , and D_c versus K at f = 500 kHz showing 3 characteristic N, NB and B regions.

Supplementary Section 2: Polydispersity-Caused SLP Reduction Calculated for MNPs of the Same Parameter σ but Various Anisotropy K

Figure S2. Polydispersity-caused SLP reduction calculated at f = 100 kHz for iso-dispersity $\sigma = 0.2$ FO MNPs as a function of anisotropy K.

Supplementary Section 3: Magnetization Curves of MnFe₂O₄ (MFO) and CoFe₂O₄ (CFO) MNPs

The saturation magnetization of the samples at room temperature was measured under the highest magnetic field of 876 kA/m (~11 kOe) using a home-made vibrating sample magnetometer (VSM).

Figure S3. Magnetization curves measured for as-synthesized and chitosan coated (a) MFO, and (b) CFO MNPs.

In order to calculate the Keff values for MFO and CFO nanoparticles, we adopted the method described in ref. [42]. Briefly, the experimental data of initial magnetization curves were fitted under "the law of approach to saturation" (Figure S4):

$$M(H) = M_s \left(1 - \frac{a}{H} - \frac{b}{H^2} - \dots \right) + \chi_p H \quad , \tag{S1}$$

where χ_P is the high field differential susceptibility and a, b free parameters. The effective magnetic anisotropy can be calculated by Equation:

$$b = \frac{4K_{eff}^2}{15M_S^2'}$$
(S2)

Figure S4. The initial magnetization curves of MFO and CFO MNPs. The solid lines represent the fitting curve assuming "the law of approach to saturation".

Supplementary Section 4: Detailed Calculation of SAR^{hys}_{exp}

The hysteresis loss power of MNPs can be written as ref. [23]:

$$P^{hys} = (4\mu_0 M_S H_a)f,\tag{S3}$$

For the case of randomly oriented MNPs, it was indicated that the value of H_a is given as ref. [23]:

$$\mu_0 H_a = 0.48 \mu_0 H_K (b - \kappa^n), \tag{S4}$$

If $Ha \ge H_0$, the hysteresis loss power of MNPs was calculated with the value of H₀ [23].

Therefore, the SAR^{hys}_{exp} of the MNPs can be calculated as follows:

$$SAR_{exp}^{hys} = \frac{P^{hys}}{\phi\rho},$$
(S5)

Supplementary Section 5: Results of SAR MFO and CFO Nanoparticles

Table S1. Values of SAR_{exp}, SAR^{hys}_{exp}, SAR^{LRT}_{exp}, and $\frac{SAR^{LRT}_{exp}}{SAR^{LRT}_{exp}(\eta = 1 \text{ mPa·s})}$ at 5.18 kA/m, 178 kHz.

Sample	Viscosity (mPa∙s)	SAR _{exp} (W/g)	SAR ^{hys} (W/g)	SAR ^{LRT} (W/g)	$\frac{SAR_{exp}^{LRT}}{SAR_{exp}^{LRT} (\eta = 1mPa \cdot s)}$
					(%)
MFO	1	77.7	1.5	76.2	100
	2.3	74.4	1.5	72.9	96
	4.1	72.1	1.5	70.6	93
	6.3	71.5	1.5	70	92
	8.2	69.4	1.5	67.9	89
CFO	1	20.9	1.6	19.3	100
	2.1	18.8	1.6	17.2	89
	4.4	14.6	1.6	13	67
	6.1	13.8	1.6	12.2	63
	8.3	9.2	1.6	7.6	39

Figure S5. Hyperthermia curves measured at fields of frequency f = 340 kHz, H = 15.9 kA/m (200 Oe) for (a) MFO and (b) CFO ferrofluids of various viscosities.

					SAR
Sample	Viscosity (mPa·s)	SAR _{exp} (W/g)	SAR ^{hys} _{exp} (W/g)	SAR ^{LRT} _{exp} (W/g)	$\overline{SAR_{exp}^{LRT} (\eta = 1 \text{ mPa} \cdot s)}$
	(111 a 3)				(%)
MFO	1	123.3	2.8	121.5	100
	2.3	112.9	2.8	111.1	91
	4.1	108.7	2.8	106.9	88
	6.3	110.8	2.8	108	89
	8.2	106.6	2.8	103.6	85
CFO	1	35.5	3.1	32.4	100
	2.1	27.2	3.1	24.1	74
	4.4	23	3.1	19.9	61
	6.1	20.3	3.1	17.2	53
	8.3	19.2	3.1	16.1	50

Table S2. Values of SAR $_{\rm exp}$, SAR $_{\rm exp}^{\rm hys}$, SAR $_{\rm exp}^{\rm LRT}$, and SLP $^{\rm LRT}$ at 15.9 kA/m, 340 kHz

Figure S6. Hyperthermia curves measured at fields of frequency f = 450 kHz, H = 15.9 kA/m for (a) MFO and (b) CFO ferrofluids of various viscosities.

Sample	Viscosity (mPa·s)	SAR _{exp} (W/g)	SAR ^{hys} (W/g)	SAR ^{LRT} (W/g)	$\frac{SAR_{exp}^{LRT}}{SAR_{exp}^{LRT} (\eta = 1mPa \cdot s)}$ (%)
MFO	1	284.2	3.7	280.5	100
	2.3	278	3.7	274.3	98
	4.1	273.8	3.7	270.1	96
	6.3	267.5	3.7	264.8	94
	8.2	246.6	3.7	242.9	87
CFO	1	52.3	4.2	48.1	100
	2.1	50.2	4.2	46	96
	4.4	48.1	4.2	44.1	92
	6.1	48.1	4.2	43.9	91
	8.3	46	4.2	41.8	87

Table S3. Values of SAR_{exp}, SAR_{exp}^{hys} , SAR_{exp}^{LRT} , and SLP^{LRT} at 15.9 kA/m, 450 kHz

Supplementary Section 6: Kc versus f at $\eta = 1$ mPa·s

Figure S7. Illustration scheme for the MIH experiments for CFO and MFO MNPs.