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Abstract: Basalt continuous fibers (BFs) have been widely applied in the construction industry
including marine applications, however, the corrosion mechanism of BFs in a seawater environment
is still not well understood. In this work, we explored the effect of the seawater environment on the
weight loss, tensile strength, surface morphology, and microstructure structure of BFs via soaking
the BFs in seawater solutions at different temperatures and durations. Results show that the weight
loss ratio of BFs decreases at the first stage (around 18 h) of soaking at 80 ◦C, 85 ◦C, and 90 ◦C
and then increases for longer soaking durations, while the tensile strength has the opposite change.
This enhancement of tensile strength and chemical resistance (at the first stage of seawater soaking)
is dominated by the ion-exchange induced ‘blunting’ mechanism, even though the results from a
Fourier transform infrared (FT-IR) spectrometer and energy-dispersive spectroscopy (EDS) revealed
the damaging of the Si–O–Si tetrahedral structure during the corrosion process. This work revealed
the full corrosion process and corresponding mechanism of BFs in a seawater environment.

Keywords: basalt fiber; seawater environment; chemical durability; tensile strength; microcrack blunting

1. Introduction

Basalt fiber (BF) is made by continuously drawing from a platinum-rhodium alloy
bushing plate [1,2] where the pure basalt rocks are melting at around 1300–1500 ◦C. Com-
pared with other inorganic fiber materials such as ordinary glass fiber and mineral wool
fiber, basalt fiber has good high-temperature resistance and corrosion durability [3–6], and
a similar composition to natural soil, so it has been widely used in reinforced construction
materials to improve the mechanical properties and chemical stability of construction [7,8].

A large number of studies [9,10] show that basalt fiber-reinforced polymer reinforce-
ment (BFRP) has good resistance to seawater erosion, and is expected to become an ideal
alternative to traditional steel bars. The application of BFRP has the potential to solve the
problem of severe corrosion and short service life of marine constructions. Many factors
can affect the performance of BFRP in the marine environment, e.g., climate, exposure
time, reinforcement method [11], and temperature [12]. Compared with the dry and wet
cycle marine environment, the corrosion of BFRP in the immersion environment is much
more serious. The increase of ambient temperature will also enhance the degradation and
geometric deformation [13] of BFPR rods. Among these, the destruction of the interface
between basalt fiber and epoxy resin matrix is the main reason for the degradation of the
BFRP sheet [14]. The reaction of Fe2+ in basalt fiber with Cl- in seawater, after it is exposed
to seawater will accelerate the degradation of BFRP [15]. Moreover, the precipitation of salt
will also accelerate the debonding of the fiber–matrix interface, and the hydrolysis of the
epoxy resin matrix produces a large number of voids, which accelerates the degradation of
the BFRP sheet [16].
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Recently, many efforts have been made to improve the durability of BFRP in seawa-
ter. Among these, adding nanomaterials, e.g., silanized montmorillonite (Si–MMT) [17],
nanotubes (HNTs) [18], etc., to the polymer matrix is one option that can improve the inter-
face interaction between the BF and the polymer matrix, thereby increasing the bonding
strength between the enhanced interface [19]. These studies were mostly focused on BFRP
composite materials, however, and the performance of BF is also critical especially after the
destruction or degradation of BFRP. Few works have examined directly the mechanisms of
corrosion of BF in a seawater environment.

In this work, the effect of seawater environment on the surface morphology, structure,
and mechanical properties of BFs is explored via immersing basalt fibers in seawater
solutions. The mechanism of seawater corrosion on BFs was studied.

2. Experiment
2.1. Sample Preparation

The basalt fibers (BFs) were prepared by using basalt rocks from Shandong Province
(Jiangsu Tianlong Continuous Basalt Fiber Co. Ltd., Yizheng, Jiangsu, China). The basalt
rock was placed in a quartz crucible, heated to 1550 ◦C at a heating rate of ~600 ◦C/h in a
high-temperature furnace, with an isothermal hold for 2 h. Then, the molten basalt melt
was rapidly quenched in water to get the basalt glass. The chemical composition of basalt
glass (determined by X-ray fluorescence analysis) is shown in Table 1.

Table 1. Chemical composition of basalt glass.

Composition SiO2 Al2O3 Fe2O3 MgO CaO K2O Na2O Others

Content (wt%) 54.90 16.40 9.20 5.60 8.10 0.55 3.30 1.95

Lastly, the continuous BFs were prepared by using a laboratory monofilament fiber
drawing system [20] with a platinum crucible at temperatures of ~1350 ± 10 ◦C and a
take-up reel at a rotation speed of ~200 rpm.

2.2. Characterization

The seawater solution was prepared based on the ASTM D1141-98 (2013) [21] to
simulate the marine environment. The composition is shown in Table 2 to create a seawater
corrosion environment for aging experiments.

Table 2. Chemical composition of the seawater solution.

Composition NaCl MgCl2 Na2SO4 CaCl2 KCl

Content (g/L) 24.53 5.20 4.09 1.16 0.69

The accelerated aging method [22] was adopted in the whole process, where the
seawater solution was heated to 80–90 ◦C to accelerate the aging rate of basalt fiber. The
whole seawater aging process can be presented as follows: first, the BFs samples were dried
at 100 ◦C for 2 h (h) before weighed and put into three glass beakers (0.1 g each); Then, the
seawater solution was poured into the glass beakers to ensure that the BF samples were
completely immersed in the seawater solution; then, the glass beakers were sealed with
plastic wraps and fixed with rubber bands; finally, the glass beakers were placed into three
ovens at temperatures of 80 ◦C, 85 ◦C, and 90 ◦C to start the aging experiment.

The weight loss of the BFs sample was measured after the aging experiment was
processed for 6 h, 12 h, 18 h, 24 h, and 168 h (7 days). The BF samples were washed with
distilled water 5 times and dried at 100 ◦C for 2 h before weighing in an analytical balance
(Precisa, Zurich, Switzerland, ±0.0001 g). Meanwhile, a 1 mL seawater solution was also
tested by inductively coupled plasma spectroscopy (ICP, Prodigy, Hudson, NH, USA).
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The tensile strength of basalt fiber was tested by an electronic single fiber dynamometer
(YG005A, Wenzhou, China) and 20 samples with diameters of about 22 ± 2 µm were taken
from each group to test the tensile strength. A single filament BF sample with a length
of 20 ± 1 mm was fixed at the dynamometer and then stretching uniaxially at a speed of
5 mm/min until failure. The tensile strength (S, MPa) is calculated based on:

S = 10000F/
(π

4
d2
)

(1)

where F is the failure strength in cN and d is the diameter of BF in µm.
The morphology and surface composition of the BFs before and after the aging experi-

ment were measured by a field-emission scanning electron microscope (SEM, JSM-7500F,
Tokyo, Japan) assisted with energy-dispersive spectroscopy (EDS). The microstructure of
BFs after seawater aging was characterized by a Fourier transform infrared spectrometer
(FT-IR, Nicolet 8700, Madison, WI, USA).

3. Result and Analysis
3.1. Weight-Loss Ratio

The weight-loss ratio (mass loss divided by the initial mass) of BFs after soaking in
seawater solution for up to 168 h at 80 ◦C, 85 ◦C and 90 ◦C is shown in Figure 1. In general,
the overall weight-loss rate of BFs increases with the increasing temperature of seawater
solution from 80 ◦C to 90 ◦C and exhibits a similar trend as a function of soaking time.
In particular, the mass loss rate of BFs decreases gradually at the first 18 h and starts to
increase afterward. For example, the weight-loss rate of the BFs sample after soaking at
85 ◦C seawater solution for 18 h is only 0.42%, but that of the fiber at the same conditions
for 24 h increases to 0.87% and it further increases to 2.26% at 168 h.
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Figure 1. Weight-loss ratio of basalt fiber after soaking in seawater solution for 168 h at 80 ◦C, 85 ◦C,
and 90 ◦C. The error bars are within the size of symbols.

3.2. Tensile Strength

The tensile strength of BFs was measured and calculated according to the ISO 11566–
1996 standard [23], which is the maximum strength the fiber can withstand before breakage.
The tensile strength of basalt fiber after soaking at 80, 85, 90 ◦C for 0, 6, 12, 18, 24, and 168 h
is presented in Figure 2. Results from Figure 2a show that the tensile strength of BFs was
continuously increased from 736 MPa to 1219 MPa during the first 12 h after soaking in
the seawater solution, and it reduced gradually afterward. A similar phenomenon was
detected also in Figure 2b,c, although the maximum tensile strength was reached slightly
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earlier at 6 h. The tensile strength of BFs will eventually decline to a very low level around
400 MPa after 168 h of soaking at different temperatures.
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Figure 2. The tensile strength of basalt fiber immersed in seawater solution at different temperatures (a) 80 ◦C; (b) 85 ◦C;
(c) 90 ◦C.

3.3. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDS)

Figure 3 shows the SEM surface morphology of pristine BFs and basalt fibers after they
were immersed in seawater solution for different periods at 85 ◦C (biggest change in tensile
strength). From the visual observation, the surface of pristine BFs in Figure 3a is smooth
and with few defects. With the increase of seawater soaking time, the surface corrosion of
BFs becomes more serious. The outside surface of BFs starts with the ‘point-like’ corrosion
which is shown in Figure 3b, and gradually diffuses to the inside of the fiber and forms
a ‘petal-like’ corrosion morphology shown in Figure 3c. Moreover, some fiber materials
were peeled off from the BFs which is observed in Figure 2b. Lastly, the surface of BFs in
Figure 3f is becoming similar to that in Figure 3b after 168 h of soaking.
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Figure 3. Scanning electron microscopy (SEM) surface morphology of basalt fiber after immersing in seawater solution at
85 ◦C (a) pristine; (b) 6 h; (c) 12 h; (d) 18 h; (e) 24 h; (f) 168 h.

The EDS analysis of each BF was carried out by selecting a point on the surface
(inside the red box), and the results are listed in Figure 4. Results show that most of the
elements only have very minor change (<2 wt%) at the first 18 h, whereas MgO owns
the biggest change around 4 wt%. With the corrosion proceeding, SiO2 decreased around
3 wt% when the soaking time increased to 168 h, which indicates the damage of the former
glass network.
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Figure 4. Energy-dispersive X-ray spectroscopy (EDS) analysis of basalt fiber surface after soaking in
85 ◦C seawater solution for different times (wt%). Dash lines are the guide of eyes.

3.4. Microstructure (Fourier Transform Infrared (FT-IR) Spectroscopy)

To explore the glass microstructure, the FT-IR spectra of BFs after immersing them in
seawater solution at 85 ◦C for different periods are shown in Figure 5. It can be seen that
the peak wavenumber on the right side decreases from 1041 cm−1 to 1085 cm−1 which is
corresponding to pristine BFs and BFs after soaking for 168 h. It is widely accepted that
the FT-IR peak near 1050 cm−1 represents the antisymmetric stretching vibration of Si-O-
Si [24,25]. Thus, this corresponding peak shifts to higher wavenumbers with prolonging
of soaking time. On the other hand, the peak at around 3433 cm−1 does not change
significantly which is associated with the O–H stretching vibration peak in -OH [26].
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4. Discussion

What happened to the BFs during the first stage (around 18 h) of soaking? The weight-
loss ratio decreased and the tensile strength increased after the first stage of soaking. The
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surface morphology presents a severe surface corrosion structure including cavities and
peelings. Meanwhile, MgO has a significant increase after soaking in seawater for around
18 h. We believe all those phenomena are related to each other.

Micro-crack theory [27] suggests that many tiny cracks or defects are always presented
on glass surface. With the proceeding of corrosion (external stress), stress concentration will
occur near those cracks and defects, and those cracks will propagate until fracture. Figure 6
describes the mechanism of the micro-crack blunting process [28]. First, microcracks always
possess the weakest structure which provides ‘shortcuts’ and promotes the corrosion
process (Figure 6a). This will lead to an increase in the weight-loss ratio and the decrease
of the tensile strength of BFs. However, the corrosion process provides opportunities for
ion exchange between the glass matrix and the seawater solution. One promising piece of
evidence is the significant increase in MgO. The ion-exchange process will destroy the tip
of microcracks (Figure 6c), which will lead to the blunting of microcracks (Figure 6d). Thus,
the micro-crack blunting mechanism is the main reason for the decrease of weight-loss
ratio and the increase of tensile strength at the first stage of soaking.
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Moreover, the FT-IR results show that, the Si–O–Si antisymmetric stretching vibra-
tion peak shifted to the higher wavenumbers with the increase of corrosion time, which
represents the depolymerization [29,30] of the Si–O–Si tetrahedral structure. This is di-
rect evidence to support, even the rigid glass network, e.g., Si–O–Si tetrahedral, was also
slightly damaged during the corrosion process. The EDS analysis is also in agreement with
this conclusion. However, the micro-crack blunting effect is more pronounced than the
structure depolymerization at the first stage of soaking (around 18 h), which dominates the
tensile strength of BFs.

We note that all the experiments were performed in an accelerated aging method [31,32]
which was at a temperature higher than the true seawater environment. Nevertheless, the
whole corrosion process at true seawater environment will be the same trend but much
slower corrosion rate. Moreover, the mechanism of BFs destruction could be significantly
different in different concretes, thus, more chemical and mechanical tests are needed in the
future especially for BF composites in seawater environments.

5. Conclusions

The effect of seawater environment on chemical durability and tensile strength of
basalt continuous fibers was investigated in this work. The main conclusions can be
summarized as: (1) the weight-loss ratio of basalt fiber decreases at the first stage (around
18 h) of soaking at 80 ◦C, 85 ◦C, and 90 ◦C and then increases for longer soaking durations;
(2) the tensile strength of basalt fiber undergoes the opposite change, which is an increase at
the first stage and a decrease later at the same experimental conditions; (3) the enhancement
of tensile strength and chemical resistance at the first stage of seawater soaking is due to
the ion-exchange induced ‘blunting’ mechanism; (4) the FT-IR and EDS results revealed
damage to the Si–O–Si tetrahedral structure during the corrosion process; however, the
‘blunting’ effect dominates the first stage.
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