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Abstract: This paper presents the results of a numerical FEM (Finite Element Method) simulation
of the formation of a rock failure zone in its initial stage of development. The influence of rock
parameters, such as the Young’s modulus, Poisson’s ratio and friction factor of the rock in the contact
zone with the working surface of the undercut anchor head, were taken into account. The obtained
results of FEM simulations were compared with the results of field tests conducted in Polish mining
plants extracting rock raw materials.
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1. Introduction

Numerical modelling [1–3], together with experiments [4–7], enables a detailed un-
derstanding of the actual behavior of structures and their optimization. Typically, this
type of anchor is used mainly in the fastening of steel structural elements in concrete engi-
neering structures (e.g., [8–10]). There are many varieties of anchoring elements, among
them the undercut anchor, which is characterized by relatively simple installation and
high anchor pull-out force. Among the important issues that are addressed in the topic
of anchoring, one can distinguish the problem of estimating the load capacity of anchors
(working alone as well as in groups) depending on the effective anchorage depth (hef), the
strength of concrete, the distance from the edge of the object, the ratio of the anchorage
depth to the thickness of the concrete element in which the anchor is embedded [1] or the
interaction of the so-called concrete failure cones in multi-anchor systems [4,11,12]. In the
characterization of the extent of the damage zone, according to the concrete capacity design
method) [13,14], the damage zone is usually approximated by a cone defined by the value
of the so-called damage cone angle alfa (Figure 1).
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According to several studies [12,15], the value of the failure cone angle depends
mainly on the effective anchorage depth hef, the anchor head diameter and the angle of the
undercutting head.

Numerical analyses of the process of material structure failure under the action
of anchors of various designs show a significant influence of physical and mechanical
parameters of the medium (mainly concrete). Among the parameters considered, the
influence of Young’s modulus, Poisson’s ratio or coefficient of friction in the contact
between the head and the medium are mainly emphasized (in addition to compressive or
tensile strength) [11,16].

Due to the limited knowledge in the field of pull-out of anchors installed in rock media,
research has been undertaken (e.g., [17–19]) to find out whether previous findings on the
propagation of concrete failure under the action of undercut anchors can be transposed to
processes occurring in natural rock media. In comparison to concrete, such media have a
complex internal structure (e.g., layering), as well as more varied physical and mechanical
parameters, related, among other things, to the history of their formation or location in
the rock mass. In view of the above, an attempt to develop an atypical method of rock
dislodgement by pulling out undercut anchors [17–19] requires research and analysis,
broadening the state of knowledge, in the field of mechanics of rock failure under the action
of undercut anchors.

The motivation to take up the subject were the results of field tests (e.g., [18]), where
during pulling out of undercutting anchors installed in rock masses, the values of pull-
out forces (load capacity of anchors) and the range of failure zone were found to be
significantly different from those resulting from the current state of knowledge (until now,
the subject of load capacity of anchors concerned concrete structures). Numerical FEM
(Finite Element Method) studies performed so far by the authors of this paper have shown
significant differences in the progress and extent of failure zone in concrete and rock [6,17].
The limitations of the ABAQUS algorithms used to determine the trajectory of fractures
in the covered state were subject to high error rates [19–21]. This was especially true
for the determination of the instantaneous direction of crack propagation at this stage
of development. The course and extent of the failure zone of the rock medium under
the action of undercutting anchors is of particular interest to the authors because of the
need to develop an effective method for tracking the potential interaction of the failure
zones of the rock medium in systems of multiple anchors, as well as sequential pulling of
anchors. This is a very important issue in the installation of infrastructure elements under
mining conditions.

2. Materials and Methods

The main focus of the present study was to find out the influence of parameters of the
rock medium such as the value of Young’s modulus and Poisson’s ratio, on the formation
of the extent of the failure zone in the initial phase of failure. This is due to the fact that
in industrial conditions, there is often a difficulty in determining the material data used
in the non-linear models available in FEM numerical analysis programs (Finite Element
Method). The use of non-linear models is planned in subsequent analyses and the results
will be presented in subsequent papers.

The analysis was conducted using the FEM program–ABAQUS [22] (Abaqus 2019,
Dassault Systemes Simulia Corporation, Velizy Villacoublay, France), the XFEM algorithm
was applied. The initial angle of penetration of the fracture surface was analyzed, as
it determines the size (volume) of the rock mass peeled off in the process of controlled
experimental pull-out of undercut anchors. For the purposes of the analysis, an axially
symmetric model of the influence of the undercut anchor on the rock was adopted, as
shown in Figure 2. The model was assumed to have a radius of R = 500 mm and a depth
of H = 170 mm. The anchoring depth is assumed to be hef = 100 mm. As can be seen
from the model dimensions, the ratio of the radius of the boundary conditions (three
supports evenly distributed over the assumed diameter) of the anchor pull-out device
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R to the effective anchorage depth hef, i.e., R/hef was 5. Such a ratio value, in the light
of CCD—cone capacity design method) [13] is sufficient to prevent the potential effect
of the boundary restraints on the distribution of stresses in the zone of formation of the
“cone of failure”. According to the CCD method, the diameter of the base of the failure
cone measured at the concrete surface is approximately 3hef (Figure 1). The dimensions
of the rock undercut, representing the outline of the anchor after installation (after rock
undercut), are shown in Figure 2. The height of the conical part of the head was assumed
to be 20.4 mm, the diameter of the simulated hole was Φ = 2 × 17.5 mm = 35 mm (which
corresponds to the recommended hole diameter for a Hilti anchor of M20 mm diameter).
Head angle β was assumed to be 20◦.
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Figure 2. Axisymmetric model of anchor interaction with rock: β—anchor head angle, α—angle of
the potential failure cone.

The interaction of the conical head surface with the rock was treated as a contact
issue. Surface-to-surface contact between the rock and the anchor on the conical and upper
cylindrical surfaces was assumed. The “Penalty” friction option was used in ABAQUS
program. With the automatic finite element mesh generator mode of the program, the
mesh shown in Figure 3 was obtained. CAX4R planar elements were used: axisymmetric
and linear (two-parameter linear function) (four nodes) with hourglass. In the region of
the predicted crack surface propagation (based on existing fracture penetration models
existing in the subject literature) (Figure 2), mesh refining was introduced, as can be seen in
Figure 3. The authors decided to examine the dependence of the results on the mesh size.
For this purpose, five variants were modeled (for other fixed parameters) but with different
densities of the mesh along the expected crack line: 1 mm, 2 mm, 3 mm, 4 mm and 5 mm.

The restraints to the nodes of the finite element mesh of the model (Figure 4) were
made in the axis of the model (under the anchor) and along the bottom (horizontal) and
outermost sides of the model. For the most part, the restraints were stripped of all degrees
of freedom (U1 = U2 = U3 = 0).
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tion of the “cone” of destruction. The different densities of the mesh along the expected crack line:
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The anchor was given a controlled displacement, vertically upwards, along the anchor
axis (the Y axis of the model).

Simulation Assumptions

Rock Material
Sandstone: elastic, isotropic, with the following parameters:

• Young’s modulus EI = 14276 MPa and Poisson’s Ratio ν1 = 0.15 and ν2 = 0.20
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• Young’s modulus EII = 9287MPa and Poisson’s Ratio ν3 = 0.25 and ν4 = 0.30
• Tensile strength (two options) f tI = 7.74 MPa, f tII =15MPa
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Selection of the physical and mechanical parameters of the rock medium was based
on our own research [20,21], as well as information contained, for example, in [23,24].
The coefficient of friction in the contact between the steel anchor and the rock medium,
according to various literature data, is assumed to be 0.35–0.65 and most commonly 0.4–0.5
on average (e.g., [25]). In addition, for comparison purposes, a simulation was performed
for Coulomb friction coefficients in the anchor–rock contact zone, equal to µ1 = 0.2 and
µ2 = 0.4. The friction coefficient values of metal anchors in contact with sandstone are
difficult to estimate under field test conditions. The values adopted for the simulation
were based on a number of literature sources on aspects of fixing anchors, as well as
mining tools. The authors’ experience shows that for very resistant sandstones with large
grain diameters the coefficient of friction between the rock and the mining tool material,
including steel, may oscillate in the range of 0.1–0.2. Therefore, the simulation assumed a
coefficient of friction equal to 0.2, which will characterize compact rocks of high strength
(e.g., red sandstones) and equal to 0.4, adequate for a group of rocks of low strength and
fine grain size (e.g., grey sandstones).

Undercut anchors—steel: elastic, isotropic, elastic modulus—E = 210,000 MPa,
Poisson’s Ratio—ν 0.3.
Conditions for the initiation and development of failure:
Damage initiation in rock material: maximal principal stress (two options): f tI = 7.74 MPa,

f tII = 15 MPa
Damage evolution: type: energy, softening: linear. Damage for traction separation

laws: maximal principal stress damage, fracture energy = 0.335 N/mm.
It can be verified that the dimensions of the sides of the element with a 2-mm or 3-mm

have a disturbance in the stress distribution around the crack tip (Figure 5). On the other
hand, the tests for a 1-mm mesh were discontinued because the simulation progress was
stalled for a long time. The tests for 4- and 5-mm meshes show a large fluctuation in slit
propagation. The conclusion is that the choice of rafting is construction, but the difference
between the final and the smallest construction is small. Moreover, the fracture lines in the
initial propagation are complementary parts, which can be seen in Figure 5. The fact that
the size of the FEM mesh is of negligible importance in the X-FEM method is consistent
with the literature [26].

As a result, a model with an element side dimension of 2 mm was selected for
further analysis.
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In the initial stage of the analysis, a constant value of the Coulomb friction coefficient
was assumed to be equal to µ2 = 0.4. The value of the head cone angle was constant and
equaled β = 20◦. The results of the simulations carried out are illustrated in Figures 6–8.
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It can be seen from Figure 6 that an increase in Poisson’s ratio from ν = 0.25 to
0.30 results in a decrease in the initial angle of propagation of the failure of the medium
(α, Figures 1 and 2). The amount of deformation of the material perpendicular to the axis
of the anchor head increases (towards the OX axis, Figure 7); the crack penetrates more
intensively into the material (Figure 7b).

Trajectories No. 3 and No. 4, as well as No. 1 and No. 2, show a clear effect of
Young’s modulus on the propagation of the failure zone. In general, the higher the value
of the modulus, the lower the penetration of the trajectory into the material. The change
of Poisson’s ratio additionally differentiates the obtained results. It can be seen from the
comparison that an increase in Poisson’s ratio generally favors an increase in the extent of
the damage zone and an increase in penetration of the damage zone (initial value of the
angle α).

Comparison of curves 2 and 3 clearly highlights the influence of the value of Young’s
modulus. A higher value of Young’s modulus (run 3) results in a significantly lower
penetration depth than in the case of lower values (run 2).

To extend the scope of the simulations, in order to investigate the influence of the
friction coefficient on the propagation of the rock failure zone, the next stage of the analysis
assumed elastic modulus—EI = 14,276 MPa and Poisson s ratio ν3 = 0.25. Simulations were
performed assuming the friction coefficients µ1 = 0.2 and µ2 = 0.4. The simulation results
are illustrated in Figures 9 and 10.
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ν3 = 0.2. Trajectory No. 5—coefficient of friction µ1 = 0.2, No. 6—coefficient of friction µ2 = 0.4.

It is clear from Figure 9b that an increase in the friction coefficient limits the deep
penetration of the failure zone. The initial value of the angle of the failure “cone” clearly
increases. This relationship is illustrated more clearly in Figure 10, where both trajectories
are superimposed on a single graph.

Run 5 (Figure 10), for material data—EI = 14,276 MPa, Poisson’s ratio ν 3 = 0.2 and
friction factor µ = 0.2, penetrates much deeper into the material in the initial stage and has
a much greater range along the OX axis of the coordinate system. Run 6 (Figure 10), for
material data—EI = 14,276 MPa, Poisson’s ratio ν3 = 0.2 and for friction factor µ = 0.4 has a
smaller range and penetrates less deeply into the material than run 5.

The analysis showed that in the considered range of parameters, the influence of the
compressive strength f t on the course of the damage trajectory in the initial propagation
phase is clear, as shown in Figure 11. The fracture trajectories are clearly different. For
weaker sandstones, the propagation of destruction in the initial stage is clearly negative
with the propagation angle (α). At a later stage of destruction development, there is
a noticeable deflection of the trajectory, which will lead to an increase in the extent of
disengagement. For stronger sandstones, the destruction is initiated at a positive angle and
progresses towards the free surface. This limits the extent of dislocation.
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3. Discussion

The results obtained from the numerical tests are consistent in terms of trends with
those observed during load capacity tests of anchors installed in concrete, e.g., [16]. Physical
parameters of the medium, such as Young’s modulus (E), Poisson’s ratio (ν) and Coulomb’s
contact friction coefficient (µ), have a significant impact on the mode of failure of the rock
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medium. However, the influence varies. The most pronounced influence is observed for
the Young’s modulus and the coefficient of friction (µ). A less pronounced influence is
observed for the Poisson’s ratio (ν). For weaker sandstones, the propagation of destruction
in the initial stage is clearly negative with the propagation angle (α). At a later stage of the
destruction development, there is a noticeable deflection of the trajectory, which will lead
to an increase in the extent of disengagement. For stronger sandstones, the destruction is
initiated at a positive angle and progresses towards the free surface.

4. Validation of Numerical Results

Extensive field studies carried out within the framework of the RODEST project [17,27]
and ongoing analyses on the possibility of using the process of pulling out undercut anchors
installed in the rock medium, [17,18] as an alternative stripping technology, have revealed
the influence of a much larger number of factors (related to the current state of the rock
in the rock mass) than is the case with concrete. An anchor pull-out device with three
adjustable supports spaced at a radius of R = 500 mm was used (Figure 12).
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Figure 12. Device for pulling anchors.

The maximum anchorage depth resulted from the strength of the anchor material
(steel) and was hef max = 140 mm. For the purposes of this analysis, results were selected
from hef = 100 mm. The research was conducted, among others, at the “Brenna” and
“Braciszów” mining sites [17,19,27]. The anchors were located in homogeneous rock media,
without clear cracks and structure disturbances.

Physical and mechanical parameters of the studied rocks (sandstones) are summarized
in Table 1. The friction coefficient µ was not determined. However, practice shows that
due to varied moisture content of rocks and varied petrographic structure of sandstones,
friction coefficients may significantly vary, e.g., [23,24]. For mining tools, these values
are also adopted at varying levels (e.g., [8,28]), as in some issues of fixing designs using
anchors [4].

It was observed that in the case of “stronger” sandstones (e.g., from the Braciszów
mine) the failure trajectory has a different character than in the case of “weak” sandstones,
e.g., from the Brenna mine (Figure 13).

The trajectory of failure of the “stronger” sandstones (Braciszów) is clearly close to
a parabola (Figure 13a). The initial angle of the failure trajectory α generally takes the
values >0◦. In weak sandstones (Brenna type), on the other hand, the initial trajectory is
also close to a parabola, but the initial trajectory angle α often takes values smaller than 0◦.
In addition, as failure develops (point A, Figure 13b), there is a clear change in the failure
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trajectory. From this point on, there is a pronounced flattening of the trajectory, favoring
large ranges of detachments on the free rock surface.

Table 1. Physical and mechanical parameters of the studied rocks.

Rock f c (MPa) f t (MPa) E (MPa) ν (–) KIC
(N/mm3/2) GIC (N/m) c (MPa) Description

“Braciszów”
sandstone 187.232 7.614 15.745 0.203 69.184 303.995 14.5 Sandstone strong,

compact
“Brenna”

sandstone 95.562 3.209 13.727 0.148 25.655 47.946 6.0 Sandstone layered,
weak

f c—compressive strength, f t—tensile strength, c—cohesion, E—Young’s modulus, ν—Poisson’s ratio, KIC—critical stress intensity factor,
GIC—critical strain energy.
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The trends in sandstone failure trajectories observed during the field investigations
generally confirm the results of the numerical analyses. The authors are aware that in
real rock media, simultaneous coincidence of the influence of all considered factors may
occur and the interpretation of the results may be considerably difficult. Further in-depth
research on the subject is needed in order to improve knowledge and provide more precise
conclusions.

Experimental tests have positively verified the results of numerical tests, especially in
the context of the influence of compressive strength on the course and extent of the rock
destruction zone under the action of the undercutting anchor.
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5. Conclusions

Numerical analyses and field investigations have shown that in the process of rock
structure failure by undercut anchors, the initial angle of failure propagation and the extent
of failure (detachment) depends significantly on the examined physical and mechanical
parameters of the medium, such as the Young’s modulus (E), the Poisson’s ratio (ν) or
the friction coefficient in the contact between the tool and rock (µ) and the compressive
strength f t. The most pronounced effects were observed for the friction coefficient and
Young’s modulus. The influence of other factors influencing the course and extent of failure
of the rock medium (e.g., depth of anchorage, angle of the conical undercutting head,
breaking strength or angle of internal friction of the rock) has been successively studied
(e.g., [19–21]) and will be the subject of further analyses.

The obtained results extend the knowledge gained during the analysis of the impact
of undercutting anchors on the rock medium conducted earlier by the team of authors of
this study, using the “cohesive zone” [6] and 3D models and ABAQUS program [19–21].
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