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Abstract: Energy transfer is one of the essentials of mechanical wave propagation (along with
momentum transport). Here, it is studied in disordered one-dimensional model systems mimicking
force-chains in real systems. The pre-stressed random masses (other types of disorder lead to
qualitatively similar behavior) interact through (linearized) Hertzian repulsive forces, which allows
solving the deterministic problem analytically. The main goal, a simpler, faster stochastic model
for energy propagation, is presented in the second part, after the basic equations are re-visited
and the phenomenology of pulse propagation in disordered granular chains is reviewed. First, the
propagation of energy in space is studied. With increasing disorder (quantified by the standard
deviation of the random mass distribution), the attenuation of pulsed signals increases, transiting
from ballistic propagation (in ordered systems) towards diffusive-like characteristics, due to energy
localization at the source. Second, the evolution of energy in time by transfer across wavenumbers is
examined, using the standing wave initial conditions of all wavenumbers. Again, the decay of energy
(both the rate and amount) increases with disorder, as well as with the wavenumber. The dispersive
ballistic transport in ordered systems transits to low-pass filtering, due to disorder, where localization
of energy occurs at the lowest masses in the chain. Instead of dealing with the too many degrees of
freedom or only with the lowest of all the many eigenmodes of the system, we propose a stochastic
master equation approach with reduced complexity, where all frequencies/energies are grouped into
bands. The mean field stochastic model, the matrix of energy-transfer probabilities between bands, is
calibrated from the deterministic analytical solutions by ensemble averaging various band-to-band
transfer situations for short times, as well as considering the basis energy levels (decaying with
the wavenumber increasing) that are not transferred. Finally, the propagation of energy in the
wavenumber space at transient times validates the stochastic model, suggesting applications in wave
analysis for non-destructive testing, underground resource exploration, etc.

Keywords: wave propagation; 1D granular chain; stochastic model; master equation; disorder

1. Introduction

Disorder or heterogeneityexists at all spatial scales in nature, whether it is soil or
matter in space. Disorder in granular materials (like soil) can manifest in many ways
from the grain level to the system level (contact disorder, geometrical disorder, asphericity,
layering, etc.). All may have an effect on the mechanical wave transmission through
the granular material in its own unique way (for instance, contact disorder due to tiny
polydispersity can reduce the mechanical wave speed and the transport of high-frequency
waves [1–7]. Knowing these effects can aid us in numerous ways for subsurface exploration
or for non-destructive testing of materials [8–11].

The diffusive (scattering) characteristics of momentum and energy transport during
mechanical wave propagation are the focus of many ongoing investigations [12–16]. Pre-
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dicting the energy propagation characteristics in the real and wavenumber space through
disordered (simplified) model granular media, like chains, can assist in understanding
the overall properties of wave propagation through real inhomogeneous media like soil;
this eventually can assist in seismic prospecting, non-destructive testing, or designing
metamaterials [17].

Energy attenuation of mechanical wave packets occurs due to various mechanisms,
which can be broadly classified into two categories: scattering attenuation and intrinsic
attenuation [18–20]. Scattering attenuation is the decrease in energy due to the spreading
of energy across different frequencies, i.e., the decay of energy due to the re-direction of
vibration. Intrinsic attenuation is the loss of energy by dissipative mechanisms such as
mechanical heat generation. Isolating these mechanisms and understanding their effects
independently have been the goal of wave propagation models. One-dimensional modeling
assists in removing geometric/directional effects, while analyzing energy transfer across
frequencies [21]. Some of the models to estimate scattering attenuation were mentioned in
[22].

Including disorder, e.g., adding inclusions with different properties or size, will lead
to enhanced absorption in typical frequency ranges/bands, relative to the basis material.
Thus, there is a need to study the effects of disorder individually, and hence, the focus of
this article will only be on mass disorder, for which a 1D granular chain was chosen so that
the P-wave mode is isolated from the shear or rotational mode [23,24]. A mechanical wave
propagating through this simplified model 1D granular medium is bound to suffer from
multiple scattering [25–28]. However, regardless of scattering, linear waves preserve some
coherence that manifests as intensity correlations [29]. The results obtained from the chain
also represent attributes of both longitudinal P-waves (compressional) and S-waves (shear)
in a 3D system, as stated in [4,30]; the frequency filtering effects are very similar to those in
a 3D system, as observed in [1]. This is all the more reason to study the energy content and
spectral energy response of the propagating wave [17,31–34].

Classical continuum theories and effective medium theory experience difficulty in
modeling wave propagation in the intermediate- or high-frequency range because of
their inability to resolve the microstructure of the material [35,36]. Continuum numerical
techniques like the Finite Element Method (FEM), Finite Difference Method (FDM), etc.,
can be used to predict wave propagation characteristics only if the right parameters are
used, which are often difficult to find. However, the Discrete Element Method (DEM) [37] is
a numerical technique that takes into account the disordered microstructure of the material
and the nonlinear contact forces between the interacting constituent granules of the media.
This microscopic description is detailed, but also costly, so that only small volumes can
be modeled. Nevertheless, the DEM can be used to obtain the parameters of stochastic
mesoscale models [38]. These then eventually can be used for continuum, macroscopic
wave propagation analyses, hence paving the way towards a statistical micro-informed
macroscopic treatment of the problem [39–42].

The dynamic wave propagation in a granular chain can be argued to be a Markovian
process; the initial waveform (displacement/velocity of the particles) and the granular
chain properties (pre-compression, sizes/masses of the particles through which the me-
chanical wave propagates) are sufficient to construct/predict successively the waveform at
later time intervals [43–45]. The transition probability functions of the Markovian processes
can be written in the form of the Chapman–Kolmogorov equation, one of the versions of
this equation is the master Equation [46]. Hence, a master equation can be used to represent
the transfer of energy across wavenumbers during mechanical wave propagation.

Complementing earlier studies on the transfer of energy between frequency bands [4],
evolving in space [25,47–49], this research focuses also on the transfer of energy across
different wavenumbers, as the system evolves in time. A master equation is devised and uti-
lized for analyzing the transfer energy across different wavenumbers, studied with the aid
of a one-dimensional granular chain [4,42,50,51]. Using the ensembled spatio-spectral
energy response from the granular chain, the transfer coefficients of a reduced-complexity,
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disorder-specific master equation are evaluated. The proposed approach (master equation)
features groups of frequencies in bands, instead of dealing with too many eigenmodes. This
is different in spirit from reduced order modeling [52] since one accounts for all frequencies,
also the largest ones, but gives up the details by grouping all modes with a similar frequency,
gaining tremendous speedup without requiring running expensive numerical simulations,
which eventually can be used for mean-field macroscopic/continuum analyses.

This paper is organized in the following manner. Section 2 gives the micro-mechanical
model of the granular chain with the linearized Hertzian repulsive interaction force acting
between the granules; two types of initial conditions (impulse propagation condition and
standing wave condition; Sections 2.5 and 2.6) are used to analyze energy propagation with
distance and across wavenumbers. Section 2.7 gives a brief description about the mass
disorder used in the granular chain. Section 3 lists the equations used for computing
the total energy responses both in the real and wavenumber space. Section 3.4 formulates
the master equation and proposes the procedures to evaluate the transfer rates of energy
across the wavenumber space (components of the transfer matrix). Results are discussed in
Section 4, and final conclusions are presented in Section 5.

2. Granular Chain Model

In this section, the equations of motion are derived by employing a general nonlinear
force–displacement relation. A granular chain of mesoscopic granules/particles was
modeled using the Hertzian repulsive interaction potential (a good approximation for
spherical particles) [53,54]. The repulsive interaction force between adjacent particles i and
j (j can be i + 1 or i− 1), with mass m̃(i) and m̃(j), is:

F̃(i,j) = κ̃(i,j) δ̃
3/2
(i,j), δ̃(i,j) ≥ 0, (1)

where κ̃(i,j) is the dimensional inter-particle contact stiffness, δ̃(i,j) is the dimensional
dynamic inter-particle overlap, and the 3/2 exponent is due to the Hertzian potential.
The dimensional dynamic overlap is written as δ̃(i,j) = r̃(i) + r̃(j) − |x̃(i) − x̃(j)| such that it
is strictly non-negative for contacts, where r̃ and x̃ are the absolute dimensional radius and
position, respectively. Anticipating an appropriate scaling of the problem, the tilde symbol
is used for dimensional quantities. The granular chain has a pre-confining force P̃ such that
there is some initial strain associated with the equilibrium configuration, which prevents
opening and closing of contacts. This assists in modeling mechanical wave propagation
across well-established granular chains. Assuming an external pre-compressional force P̃
on the granular chain in mechanical equilibrium, the initial particle overlap is given by:

∆̃o =

(
P̃

κ̃(i,j)
˜̀3/2

)2/3

, (2)

where ˜̀ is a length scale, i.e., characteristic length. To obtain a non-dimensionalized
equation of motion for particles, the physical parameters have to be scaled. The minimum
number of scaling parameters required for arriving at a non-dimensionalized equation
of motion are the characteristic mass (m̃o), which we take as the mean particle mass of
the system, the characteristic stiffness (κ̃o), and a length scale (˜̀). Different choices can
be selected for the length scale ˜̀, e.g., the particle size or the driving amplitude. Here,
the length scale is related related to the overlap of a characteristic contact in a static
equilibrium configuration. For the characteristic stiffness, the contact of two identical
particles with the mean mass is chosen. The initial overlap between these particles under
the pre-compressive loading condition becomes ˜̀ = ∆̃o (with non-dimensional initial
overlap ∆o = ∆̃o/˜̀ = 1). Inserting the scaled particle overlap δ(i,j) = δ̃(i,j)/˜̀ in Eq. (1)
yields:

F̃(i,j) = κ̃(i,j)
˜̀3/2δ3/2

(i,j), (3)
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The non-dimensional mass b(i) = m̃(i)/m̃o; the non-dimensional stiffness is κ(i,j) = κ̃(i,j)/κ̃o;
and the non-dimensional displacement is u = ũ/˜̀. Without new scaling parameters, this also
defines the non-dimensional time t = t̃/t̃c where:

t̃c =

√
m̃o

κ̃o ˜̀1/2
; (4)

thus, the non-dimensional repulsive interaction force becomes:

F(i,j) =
t̃2
c

m̃o ˜̀ F̃(i,j). (5)

An equation of motion for the particle i (i = 1,..., N) is written as:

m̃(i) d2 x̃(i)

dt̃2 = κ̃(i−1,i)
˜̀3/2δ3/2

(i−1,i) − κ̃(i,i+1)
˜̀3/2δ3/2

(i,i+1). (6)

The displacement of particle i from its equilibrium configuration x̃(i)0 becomes ũ(i) = ˜̀u(i) =

x̃(i) − x̃(i)0 . Hence, the scaled overlap between i and j (with j > i) is δ(i,j) = ∆ + u(i) − u(j).
The non-dimensional equation of motion for particle i is now given by:

b(i)
d2u(i)

dt2 = F(i−1,i) − F(i,i+1)

= κ(i−1,i)[∆(i−1,i) − (u(i) − u(i−1))]3/2 − κ(i,i+1)[∆(i,i+1) − (u(i+1) − u(i))]3/2,
(7)

where the stiffness ratio κ(i,j) = ˜κ(i,j)/κ̃0 was defined implicitly. Equation (7) can be solved
numerically using the Verlet integration scheme, and it can be used for analyses related to
nonlinear dynamics of particles (Hertzian).

2.1. Linearized Equation of Motion

Here, we linearize the general force–displacement relation about the equilibrium
configuration. The nondimensional phrasing of Equation (1) is given by:

F(i,j) = κ(i,j)δ
3/2
(i,j), (8)

which can be expanded around the initial overlap ∆(i,j) as:

F(i,j) = κ(i,j)∆
3/2
(i,j) +

3
2

κ(i,j)∆
1/2
(i,j)(δ(i,j) − ∆(i,j)) +

3
8

κ(i,j)∆
−1/2
(i,j) (δ(i,j) − ∆(i,j))

2 + ... (9)

If the amplitudes of displacement u(i) are small during mechanical wave propagation,
so the relative displacements δ(i,j) − ∆(i,j) = u(i) − u(j), and the nonlinear terms can be
ignored so that:

F(i,j) ∼= κ(i,j)∆
3/2
(i,j) −

3
2

κ(i,j)∆
1/2
(i,j)(u

(j) − u(i)). (10)

Hence, the linearized equation of motion for particle i becomes:

b(i)
d2u(i)

dt2 = κ(i−1,i)∆
1/2
(i−1,i)[∆(i−1,i) −

3
2
(u(i) − u(i−1))]

− κ(i,i+1)∆
1/2
(i,i+1)[∆(i,i+1) −

3
2
(u(i+1) − u(i))],

(11)

which can eventually be written as:

b(i)
d2u(i)

dt2 =
3
2

κ2/3
(i,i+1)(u

(i+1) − u(i))− 3
2

κ2/3
(i−1,i)(u

(i) − u(i−1)). (12)
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There are i = 0, ..., N + 1 (in total N + 2) particles in the granular chain with 0th and
(N + 1)th particles as the boundaries of the chain such that u(0) = 0 and u(N+1) = 0.
Alternatively, periodic boundaries are realized by using N + 1 particles, equivalent to
setting u(0) = u(N+1) 6= 0, which is also allowed to move, so all vectors and matrices get
length N + 1 with 2i = N + 1, with the i integer. Equation (12) results in N equations,
which are assembled in a matrix form:

M
d2u
dt2 = Ku, (13)

where M is a diagonal matrix with b(1), b(2), b(3)....b(N) as diagonal elements, K is a symmet-
ric, tri-diagonal matrix with − 3

2 (κ
2/3
(i+1,i) + κ2/3

(i−1,i)) as diagonal, 3
2 κ2/3

(i+1,i) as superdiagonal,

and 3
2 κ2/3

(i−1,i) as subdiagonal elements, and other elements of K are zero. u is the dis-

placement vector containing displacements u(i) as elements. In this study, the focus is
on the effect of mass disorder only. Therefore, all coupling stiffnesses are independent
of the contact (κ(i,j) = 1). Thus, initial overlaps become the same ∆(i,j) = 1. Considering
this assumption, the stiffness matrix diagonal components become −2, and the sub- and
super-diagonal components are +1.

2.2. Neglect of Contact Damping

First, we consider the conservation of energy to facilitate new model development.
Intrinsic attenuation at a contact point is expressed by damping, which is proportional to
the relative velocities of the particles. Contact damping at the microscopic scale happens
due to the viscous dissipation of energy, which is velocity dependent when particles are
deformed. Furthermore, if liquid bridges are formed at the contact points, this happens.
Damping of grain motions is included as standard in the DEM calculations. Although damp-
ing is a physical reality and a physically meaningful mechanism, our concern here is not
to include a source of dissipation, i.e., conservation of energy for new model development.
This allows us to not only have a continuous oscillation, but also, it simplifies the solution
of the equations of motion.

Considering a damping force in contact would change the differential equation,
Equation (13), to:

M
d2u
dt2 + D

du
dt
−Ku = 0, (14)

leading to the difficulties of solving the second-order differential equation system where
D is the damping matrix. This problem is called the quadratic eigenvalue problem for
the (complex) eigenfrequencies. The complexity of solving the second-order differential
equation for granular packings was explained in [55,56].

Furthermore, it must be noted that since the applied displacement is much smaller
than the initial overlap, particles will not obtain large relative velocities, which reveals
that the damping force will be negligible for small amplitude waves in the elastic, jammed
regime. Hence, it makes sense to avoid the damping term completely and solve a differ-
ential equation, which gives non-complex answers. However, if an applied displacement
amplitude is greater than the initial overlap, u(i) − u(j) ≥ ∆ (δ(i,j) ≤ 0), then openings of
contacts will occur, which means contacts between particles can open or break. In all cases
presented, we applied small enough displacements to make sure that particles never break
the chain.

2.3. Implication of Mass-Disorder in a Monodisperse Chain

Earlier, the effect of contact stiffness disorder and nonlinearity on the transmission of
signals in one-dimensional pre-stressed systems subjected to a harmonic perturbation of
the boundary was studied [3].

By creating a monodisperse (size) chain of particles with mass disorder, the effects
of this contact disorder (as present in the Hertzian model) are removed. This way, only
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the effect of mass disorder is considered. We assigned κ(i,j) = 1 and ∆(i,j) = 1 for all contacts
(i, j) in the equations of motion given by Equation (7), which is a straightforward task in
numerical simulation. From the experimental perspective, such a monodisperse, mass-
disordered chain is created by removing material from the particles centers or the inclusion
of denser cores. This mass change should not raise a problem for the contact stiffness.
Eventually, there is no issue for the Hertz model, which is based on deformations at
the contacting surfaces.

2.4. Linear Model Solution

To solve the equation of motion under the imposed boundary conditions, Equation (13)
is stated in its eigenvector basis. This gives N independent relations. After the trans-
formation into the eigensystem, the eigenvectors and eigenfrequencies associated with
Equation (13) are determined. Assuming A = −M−1K (not symmetric, in general),
Equation (13), arrives at the known eigenvalue problem:

d2u
dt2 = −Au. (15)

Using an ansatz u = u′ expIωt, Equation (15) becomes an eigenvalue problem:

Au = ω2u. (16)

The eigenvalues ω2
j (ωj are the natural frequencies) and the eigenvectors s(j) of the ma-

trix A represent the eigendomain of the dynamic granular chain. The set of eigenvectors
(s(j)) can be orthonormalized by the condition:

sT
(i)Ms(j) = δij, (17)

where δij is the Kronecker delta symbol. A matrix S is constructed using s(j) as columns
and arranged in such a manner that their corresponding ωj are in increasing order. S is an
eigenbasis matrix and can be used for projecting u into the eigenspace by the relation:

z = S−1u, (18)

where z is the vector of amplitudes (per eigenmode) in the eigenspace. Using the trans-
formation S−1AS = G, where G is a diagonal matrix with ω2

j as the diagonal elements,
Equation (15) becomes:

d2z
dt2 = −Gz. (19)

The solution of this equation is given by (in the eigenspace and real space, respectively)

z(t) = C(1)a + C(2)b or u(t) = SC(1)a + SC(2)b, (20)

where C(1) is a diagonal matrix with sin(ωjt) as diagonal elements, C(2) is also a diagonal
matrix with cos(ωjt) as diagonal elements, a and b are vectors, which are determined from
initial conditions uo (initial displacement vector) and vo (initial velocity vector).

a = H−1S−1vo and b = S−1uo, (21)

where H is a diagonal matrix with ωj as the diagonal elements. Two different types of
initial conditions are used for different types of analyses in the upcoming sections, impulse
propagation and standing wave analysis, see Fig. 1.
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2.5. Impulse Propagation Condition

The initial condition for impulse propagation requires uo and vo to be:

u(i)(t = 0) = 0, v(i 6=n)(t = 0) = 0, v(n)(t = 0) = vo, (22)

where n is the particle number to which the impulse is imparted. The condition vo � 1,
initial particle overlap ∆o, avoids opening and closing of contacts to maintain the validity of
the linearized equations of motion (Section 2.1). The first or the center particles in a granular
chain were imparted with an impulse for further analyses in Section 4.1. Equation (22) is
used to get:

a = H−1S−1vo and b = 0. (23)

Hence, the displacement and velocity of particle i become:

u = SC(1)H−1S−1vo and v = SC(2)S−1vo; (24)

which is also written as:

u(i)(t) = vo

N

∑
j=1

SijSnj sin(ωjt)
ωj

and v(i)(t) = vo

N

∑
j=1

SijSnj cos(ωjt). (25)

2.6. Standing Wave Condition

For studying standing waves in the (periodic) chain, an initial sinusoidal waveform is

given to the chain in the form of uo = uo sin
(
N 2πp

N+1

)
and vo = 0 (where p = 1, ..., N + 1

or 0, ..., N, N=1, ..., (N + 1)/2 specifies the particular tone of the standing wave). sin can
be replaced easily by a cos, since N = (N + 1)/2 does not work with sin. The condition
uo � 1 (initial particle overlap ∆o) avoids opening and closing of contacts to maintain
the validity of the linearized equations of motion (Section 2.1). a and b are given as:

a = H−1S−1vo = 0 and b = S−1uo. (26)

Hence, the displacement and velocity of the particles become:

u = SC(2)S−1uo and v = −SHC(1)S−1uo; (27)

which is also written as:

u(i)(t) = u0

N

∑
j=1

Sij cos(ωjt)
N

∑
p=1

Spj sin
(
N 2πi

N + 1

)
,

v(i)(t) = −u0

N

∑
j=1

ωjSij sin(ωjt)
N

∑
p=1

Spj sin
(
N 2πi

N + 1

)
.

(28)

For completeness, we note that the solution for arbitrary initial conditions is the su-
perposition of Equations (24) and (27).
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Figure 1. Impulse and (sinusoidal) standing wave initial conditions for a fixed-end and periodic
granular chain, respectively.

2.7. Mass Disorder/Disorder Parameter (ξ) and Ensembles

The diagonal elements of the mass matrix M, b(1), b(2), b(3), ...b(N), were selected

from a normal distribution f (n)(b) = 1
ξ
√

2π
e
− (b−1)2

2ξ2 ; the standard deviation (ξ) quantifies
the disorder parameter of the granular chain; and the scaled average of the distribution is
normalized to unity [57]. A similar model was used previously in [4,50,57] for various wave
propagation analyses. It was observed in [50] that the shape of the disorder probability
(binary, normal, uniform, or any other distribution) produces quantitatively similar wave
propagation effects (frequency filtering, attenuation, or mechanical wave velocities), up
to a certain strength of disorder. Furthermore, disorder in mass or stiffness, or both, did
not change the observations, so that we only studied mass disorder here. The physical
quantities (e.g., displacement, velocity, total energy, etc.) of multiple realizations of granular
chains with a particular disorder parameter were averaged to obtain ensembled quantities,
depicted by angular brackets 〈...〉.

3. Energy Evolution and the Master Equation Model

For calculating the kinetic energy of individual elements/particles, we define the ma-
trix KEpq where:

KE =
1
2

M[v⊗ v] =
1
2

MvvT. (29)

The kinetic energy of individual elements/particles is the diagonal elements of the ma-
trix KE, i.e., KEPP (capital letters PP are used as indices to denote the diagonal elements
to avoid confusion with pp, which implies the summation of the diagonal elements, i.e.,
the trace of the matrix KE):

KE(p)(t) = KEPP = δpPδqPKEpq =
1
2

b(p)(v(p)(t))2. (30)

The total kinetic energy is the trace of the matrix KE, i.e., KEpp, (see Appendix 5)

KET(t) = KEpp = δpqKEpq =
1
2

N

∑
p=1

b(p)(v(p)(t))2. (31)
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The potential energy of individual elements is basically the energy stored in the form
of compression at the contacts of an element; it arises from the forces (F(p)) exerted by
other elements in contact with the element whose potential energy is being examined.
For the potential energy, as well, we define the matrix:

PE = −1
2

K[u⊗ u] = −1
2

KuuT = −1
2

FuT, with F = Ku, (32)

where K is the stiffness matrix (Equation (13)). The potential energy for individual elements
is the diagonal elements of the matrix PE,

PE(p)(t) = PEPP = δpPδqPPEpq = −1
2

F(p)(t)u(p)(t). (33)

The total potential energy is the trace of the matrix PE, i.e., PEpp, (see Appendix 5)

PET(t) = PEpp = δpqPEpq = −1
2

N

∑
p=1

F(p)(t)u(p)(t). (34)

The total energy of individual particles is the sum of its kinetic and potential energies.
Using Equations (29) and (32),

TE = KE + PE = KEpq + PEpq. (35)

Using Equations (30) and (33),

TE(p)(t) = TEPP = δpPδqPTEpq =
1
2
(b(p))(v(p)(t))2 − 1

2
F(p)(t)u(p)(t). (36)

We calculate the energies (potential energy, kinetic energy, and hence, total energy)
relative to the initial pre-compressed state so that only the energy associated with wave
propagation across the elements is taken into account.

The center of total energy is defined as [27]:

R(t) =
1

TEtot

N

∑
p=1

pTE(p)(t) with TEtot =
N

∑
p=1

TE(p)(t). (37)

The mean squared width of the propagating and trapped wave is [27]:

r2(t) =
1

TEtot

N

∑
p=1

(p− R(t))2TE(p)(t). (38)

3.1. Energy Conservation

The energy of the system (chain) can be calculated by vector multiplications at a
particular instance of time; the non-unitary dimension of the vector gives the respective
information of the individual particles. Starting from the impulse initial condition in
Section 2.5, using v = SC(2)Ha and the orthonormality condition STMS = I, where I is
the identity matrix, the kinetic energy of the chain at a particular instant of time becomes:

Ekin(t) =
1
2
(SC(2)Ha)TM(SC(2)Ha)

=
1
2

aTHT(C(2))TSTMSC(2)Ha =
1
2

aTH{C(2)}2Ha =
1
2 ∑

j
a2

j ω2
j sin2(ωjt).

(39)

Since C(1), C(2), and H are diagonal matrices, their transpositions are equal to the orig-
inal. Note that there is no summation convention applied here. On the other hand, using



Materials 2021, 14, 1815 10 of 29

u = SC(1)a, v = SC(2)Ga and the orthonormality condition, the potential energy of
the chain at a particular instant of time can be written as:

Epot(t) = −
1
2

uTKu

= −1
2

uTM
d2u
dt2

= −1
2
(SC(1)a)TM

dv
dt

= −1
2
(SC(1)a)TM

dSC(2)Ha
dt

=
1
2

aTC(1)STMSC(1){H}2a

=
1
2

aTH{C(1)}2Ha =
1
2 ∑

j
a2

j ω2
j cos2(ωjt).

(40)

Hence, the total energy becomes a sum over all eigenmode energies:

Etot(t) = Ekin(t) + Epot(t) =
1
2 ∑

j
a2

j ω2
j . (41)

We can see that Etot is independent of time, which means the energy of the chain
is conserved. If the summation term is dropped, Equation (41) gives the energy of the
eigenmodes of the chain; thus, Etot(ωj) =

1
2 a2

j ω2
j .

3.2. Total Energy in the Wavenumber Domain

TE or TEpq is in the real space; to transform it into the wavenumber space T̂E or T̂Ekm
(k and m being rows and columns in wavenumber space), there is a need to change the
basis as T̂E = DFT TE DFT−1, where DFT is the discrete Fourier transform matrix (DFT
can be computed numerically as the dftmt(x) matrix in MATLAB, where x is the size of
the square matrix DFT. Note that DFT is an orthogonal matrix; hence, DFT−1 = DFTH ,
where superscript H denotes the conjugate transpose of a matrix.), which can be used to
calculate the Fourier transform of vectors such that û = DFT u and v̂ = DFT v, where û
and v̂ are displacement and velocity vectors in the wavenumber space, respectively. Hence,

T̂E = DFT TE DFT−1, (42)

with the trace yielding the total energy in the wavenumber space per eigenmode wavenum-
ber k:

TE(k)(t) = T̂EKK = δkKδmK T̂Ekm. (43)

3.3. Binning Energy

Before establishing a numerical master equation, we first bin the total energy calculated
in the wavenumber space. In order to not deal with so many eigenmodes, instead, one
group is considered with an averaged energy for the group. The binning is done by:

e(r)(t) =
r+∆k/2

∑
r−∆k/2

TE(k)(t), (44)

where ∆k is the bandwidth of the bin and r is the central wavenumber.
The total energy is conserved; hence,

Etot(t) =
B

∑
r=1

e(r)(t) = ∑
k

TE(k)(t), (45)
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where B is the total number of bins assigned in the wavenumber space. The binned spectral
energy is normalized by the total energy as a probability density:

ê(r)(t) =
1

Etot(t)
e(r)(t), (46)

so that ∑r ê(r)(t) = 1.
A homogeneous distribution of energy thus corresponds to constant ê(r) = êB = 1/B,

i.e., the inverse number of bins.
The initial condition for inserting a single energy into a single wavenumber bin k is

ê(r)(0) = δrk. For such systems, without disorder, ξ = 0, the energy in the wavenumber
space is invariant in time.

However, for increasing disorder, ξ > 0, only a decreasing fraction of energy, ê(r)0 =

ê(r)(0)Ψ(ξ, r), remains in the original band r. Therefore, more and more “free” energy
becomes available for being transferred to other wavenumbers, ˆ̂e(r) = ê(r) − ê(r)0 . The func-
tion:

Ψ(ξ, r) = êB + (1− êB) exp(−[ξr/2]3/2), (47)

quantifies the fraction of energy in band r, which is not available for transfer, and is
postulated from the solutions to the analytical chain model as Ψ(ξ, k ∈ r) = e(r)(t →
∞)/e(r)(t = 0), for energy inserted only into lower bands (note that for large bands, r,
the long-time energy ê(r)(t→ ∞), cannot be directly used to estimate Ψ, since it contains
also a continuous input from other bands, as discussed in the next subsection), with
wavenumbers k � π. For larger k ≈ π, the limit value Ψ(ξ, k) = êB is postulated, based
on the assumption that for large k, all bands are fed approximately the same amount of
energy.

Finally, we note that the same Ψ also applies for energy inserted into multiple bands
(not shown in this study).

3.4. Stochastic Master Equation

The master equation is an efficient tool in analyzing the stochastic crisscross transfer
of energy between different wavenumber bands. In contrast to traditional, deterministic
methods of order reduction [52,58–62], we did not focus on a subset of (lower) eigenmodes
of the system, but grouped modes by wavenumbers (frequencies) to stochastically model
the evolution in time, using only the much reduced set of wavenumber bands. Note that
the master equation for frequency vs. space was already discussed in [4]. The transfer of
spatio-spectral energy at time t is formulated as the evolution increment per time interval:

dê(s)(t)
dt

= Qss ˆ̂e(s)(t) + ∑
r 6=s

Qrs ˆ̂e(r)(t) , (48)

with ˆ̂e(s)(t) = ê(s)(t)− ê(s)0 , where Qss = −∑r 6=s Qsr depicts the energy loss (rate) from a
particular wavenumber band s, which eventually gets transferred to all other wavenumber
bands r 6= s. The non-diagonal Qsr, or Qrs, quantifies the transfer rates of energy from s,
or r, to other wavenumber bands r, or s, respectively. The master equation in symbolic form
relates the evolution of the energy vector, ê, to the transfer matrix product with the free,
available energy ˆ̂e, such that:

dê
dt

=
dˆ̂e
dt

= Q ˆ̂e = Q(ê− ê0) . (49)

The short time evolution is linear in Q and ˆ̂e, whereas the long time evolution of
the master equation results in the steady-state solution Q ˆ̂e = 0.
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3.5. Computing the Elements of Matrix Q

The elements of matrix Q can be computed numerically using the boundary condition
in Section 2.6; a standing wave mode k ∈ s belonging to a particular wavenumber band s
can be agitated in the form of a sinus (or cosinus) initial condition; see Equation (28).

The energy decay from normalized ê(s)0 = 1, or ˆ̂e(s)0 = 1− Ψ(ξ, s), can be fitted by

〈 ˆ̂e(s)(t)〉/ ˆ̂e(s)0 = (1− y1)ex1(t−t0) + y1, where x1 < 0 is the typical decay rate, at t = t0,
and y1 represents the extrapolated saturation value (since y1 is extrapolated forward in
time, far beyond the narrow fit range, it is not the true terminal saturation). The brackets
〈...〉 indicate that ensembling in k-space is used to improve the quality of the fit. Similarly,
Qsr is determined by fitting 〈 ˆ̂e(r)(t)〉/ ˆ̂e(s)0 = y2(1 − e−x2(t−t0)), where x2y2 represents
the (positive) growth rate, at t = t0, and y2 represents the long-term saturation value.

Furthermore, one can apply Taylor expansion on the nonlinear fitting expressions to
obtain a linear procedure: Considering the first term, avoiding higher orders, we can rewrite
the expressions as: 〈 ˆ̂e(s)(t)〉 ≈ 1 + (1− y1)x1(t− t0), with Qss = (1− y1)x1 the (negative)
decay rate, at t = t0, and 〈ê(r)(t)〉 ≈ x2y2(t − t0), with Qsr = x2y2. Hence, the energy
decay of a particular wavenumber (band) as the energy spreads to other bands can be fit
by 〈ê(s)(t)〉 ≈ ˆ̂e(s)(t)〉/ ˆ̂e(s)0 ≈ 1− (−Qss)t for small time intervals (well before reaching

the saturation regime); similarly, Qsr is determined by fitting 〈ê(r)(t)〉 ≈ 〈 ˆ̂e(r)(t)〉/ ˆ̂e(s)0 ≈ Qsrt.
Later, the linear and nonlinear fit are called the Linear (L) and Nonlinear (NL) procedures,
respectively (Note that the origin of time is not exactly at zero, due to swing-in on the time
scale of tc. Fit quality is improved by allowing the additional parameter t → t− t0, with
t0 ≈ tc and typically evaluating the nonlinear slopes at time t ≈ 2t0 or 3t0, not at t = 0).

4. Results and Discussion

A N particle long granular chain has been used with impulse and standing wave
initial conditions for analyses. Section 4.1 deals with energy propagation in a granular
chain and the associated energy transfer in space. Section 4.2 deals with the analyses
associated with energy transfer between different wavenumbers in time.

4.1. Energy Propagation with Distance

Two types of impulse initial conditions are used. In one of the systems, the first particle
(N = 1) was imparted with initial velocity vo. In the other system, the center particle was
imparted with vo. Equations (37) and (38) were used for diffusion analyses associated with
the impulse propagating in the granular chain.

4.1.1. First Particle Excitation

Here, an N = 1024 particle long granular chain was used. Particle p = 1 was imparted
with vo = 0.01. The time step for the computation was ∆t = 0.1250, and the maximum
time evaluated was tmax = 1024, chosen in order to avoid reflection of the incident wave
from the boundary. Figures 2 and 3 display the ensembled total energy signal of four
different disordered chains ξ = 0 (Figure 2a), ξ = 0.05 (Figure 2b), ξ = 0.1 (Figure 3a), and
ξ = 0.3 (Figure 3b). Five-hundred different realizations of chains were used for ensembling.
It was observed that there were two peaks in the energy signal for all instances of time
shown, irrespective of disorder except for the ordered chain (Figure 2a). The first peak was
due to weak localization, a coherent backscattering effect during wave propagation near
the source, and the second peak was due to the propagating coherent wavefront (Figure
3a). The ordered chain did not exhibit the weak localization peak because of the absence of
disorder. Higher ξ showed a more rapid drop of the propagating coherent wavefront.
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Figure 2. Ensembled total energy signal at different instances of time for (a) ordered and
(b) disordered chains.

p
0 100 200 300 400

T
E

(p
) (t

)

× 10-6

0

0.5

1

1.5

2

(a)

ξ = 0 .1

t = 62 .3826
t = 124 .8902
t = 187 .3979
t = 249 .9055
t = 312 .4131
t = 374 .9208

p
0 10 20 30 40 50

T
E

(p
) (t

)

× 10-5

0

0.5

1

1.5

2

2.5
ξ = 0 .3

t = 6 .1257
t = 12 .765
t = 18 .6273
t = 24 .8780
t = 31 .1288
t = 37 .3796

Wavefront

Exponential-like decay

(b)(a) (b)(a) (b)

Figure 3. Ensembled total energy signal at different instances of time for moderate and strongly
disordered chains.

Moreover, the weak localization peak decayed with distance from the source; the total
energy signals at all time instances collapsed along this curve except the propagating
wavefront, which propagated along this long time limit decay curve.

Figure 4 is the log plot of the decay curve associated with weak localization for chains
(ensembled total energy signal at t = 875 per particle; measurements were taken by limiting
the space interval (p ≤ 800) to avoid propagating wavefront); a power law relationship
can be observed from the figure. It was observed that the rate of decay increased with the
increasing disorder parameter ξ of the chain, indicating a stronger weak localization decay
curve with an increase in disorder. Figure 5a shows the total energy signal of particle p = 1
(source) with time. The figure shows that after the initial impulse, the energy of the source
particle decayed and became constant with very little fluctuations. This residual energy of
the particle increased with increasing ξ. Figure 5b shows a power law relationship between
the disorder ξ and the TE of the first particle at long time t = 500.
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Figure 4. Power law relationship of the weak localization decay curve for different ξ, at later time
t ∼= 875.
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Figure 5. (a) Total energy (averaged over 500 ensembles) of the p = 1 particle with time for chains
with different ξ. (b) Residual energy localized in the first particle measured at t ∼= 500.

4.1.2. Diffusion

The system used in the previous section (N = 1024 particle long granular chain with
vo = 0.01 imparted to the 1st particle) is used in this sub-section as well. Equation (37) was
used to compute 〈R(t)〉 averaged over 500 ensembles. 〈R(t)〉 gave the averaged propaga-
tion of the center of energy, as plotted in Figure 6. It shows that initially, the center of energy
did not propagate (as shown in the inset), during which the initial high-frequency impulse
was self-demodulated [63] by the granular chain (in contrast to a Gaussian pulse [27]).
After this short time interval, the center of energy propagated with the same speed for
different disorder parameters. ξ = 0.0 had linear (ballistic) propagation of the center of
energy, whereas ξ > 0 led to nonlinear propagation of the center of energy with prop-
agation speed decreasing with increasing time [50]. Stronger disorder yielded a slower
propagation speed with the increase in time. Unlike ξ = 0.0, higher ξ resulted in the center
of energy becoming confined in a finite space, and this confinement space was smaller for
stronger disorder. This occurred because R(t) took into account both the weak localization
occurring close to the source and the propagating wavefront.
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Figure 6. Position of the center of energy (〈R(t)〉) during impulse propagation for granular chains
with different ξ.

The mean squared width of the energy during impulse propagation r2(t) was com-
puted using Equation (38), averaged over 500 realizations. Figure 7 displays 〈r2(t)〉 for
granular chains with different ξ. It is observed that for an impulse response, the energy
propagation was slightly superballistic for low disorder parameters (e.g., ξ = 0.05) and be-
came nonlinear towards superdiffusive, diffusive, and then, subdiffusive for high disorder
parameters.
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Figure 7. 〈r2(t)〉 for different ξ in the log-log scale. The line is a guide to the eye. Arrows indicate
the trend for ξ > 0.

4.1.3. Center Particle Excitation

In order to ensure that the localization of energy during wave propagation is occurring
near the source and is not a boundary effect, the effect of a different initial condition on
impulse propagation in a granular chain is examined, p = 1025th particle of N = 2049
particle long granular chain was imparted with vo = 0.01. The time step for the compu-
tation ∆t = 0.2501, and tmax = 1024. Figure 8 shows the total energy signal per particle
at a particular instance of time t ∼= 750 before the wave reached the end of the system for
ξ = 0.1 (Figure 8a) and ξ = 0.3 (Figure 8b). It can be observed that the energy was localized
around the source (the middle particle), and the two propagating wavefronts moved in
the opposite direction. The figure is symmetric around the center particle, which confirms
that we were in the linear regime, i.e., the tension and compression wave had the same
speed.
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Figure 8. (a) The center pulse (p = 1025) is imparted with vo = 0.01 initially towards the right. (b)
The total energy signal is averaged over 500 ensembles at t ∼= 750.

4.2. Energy Propagation in Space and Time

With the goal to understand the evolution of standing waves in time, an initial si-

nusoidal waveform (uo = uo sin
(
N 2πp

N+1

)
; Section 2.6) was imparted to an N + 1 = 256

particle long granular chain with uo = 0.01 and different ξ. The evolution of displacement
and energy responses of particles/elements were then analyzed. Figure 9 shows the evolv-
ing displacement of particles for the N = 1 standing wave in an ordered (ξ = 0.0) and a
disordered chain (ξ = 0.3). Figure 9a displays the particles (color signifies the displace-
ment amplitude) performing a standing wave motion (ξ = 0.0). However, in Figure 9b,
it is observed that particles exhibited a perturbed standing wave motion of fluctuating low
amplitude (color) in addition with traveling waves, clearly indicating that the disorder in
the chains was disrupting the standing wave motion. It can also be observed that there were
few localized high amplitude displacements shown by certain particles like p = 60 and
p = 145; these particles were the lowest and the third lowest mass particles in the granular
chain; in addition, p = 60 was close to a peak of the standing wave.

(a) (b)

ξ = 0 1 ξ = 0 3. .

Figure 9. Sinusoidal standing wave (a) u(p)(t) (p = 1 to 256) of an ordered granular chain (ξ = 0.0).
(b) u(p)(t) of a disordered granular chain (ξ = 0.3), while color indicates the largest displacements;
white patterns are amplitudes outside the color bar.

Figure 10a shows the total energy of the particles for the ordered (ξ = 0) and dis-
ordered (ξ = 0.3) granular chains of Figure 9 (color represents the amplitude TE(p)(t)).
Unlike Figure 10a, Figure 10b exhibits localized high energy particles p = 145 and p = 60
(low mass particles), indicating the localization of energy due to the presence of disorder.
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(a) (b)

ξ = 0 1 ξ = 0 3. .

Figure 10. Total energy per particle TE(p)(t) (p = 1 to 256) of (a) an ordered granular chain (ξ = 0.0)
and (b) a disordered granular chain (ξ = 0.3), from the same data as in Figure 9.

4.3. Energy Propagation Across Wave Numbers

Equation (43) was used to obtain total energy in the wavenumber space, then Equa-
tion (46) was used to bin the energy responses accordingly. The number of bins used for
the computation here onwards is B = 32 with a bandwidth ∆k = π/32 = 0.0982. Figure 11
shows the temporal evolution of total energy in the wavenumber space for ξ = 0.3 (the
color scale in the plot is TE(k)(t)),N = 90 (Figure 11a) and 38 (Figure 11b). A peak was ini-
tially observed at the agitated wavenumber (kins = N 2π

N+1 ); the peak decreased as the time
progressed; the decay rate was lower for lower wavenumbers, which can be observed
when Figure 11a and Figure 11b are compared. Figure 12 displays the binned total energy
in the binned wavenumber space for TE(k)(t), from the same data as in Figure 11a. Figure
12b represents the same total energy response averaged over 100 ensembles, improving
the quality of the signal (smoothness). Hence, in the following, ensemble averaged data
are used, with averaging performed in k-space and binning performed thereafter.
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Figure 11. Total energy response (TE(k)(t)) in wavenumber space plotted against time for a single
realization of disordered granular chain (ξ = 0.3) initially agitated with (a) kins = 2.159 (N = 90)
and (b) kins = 0.981 (N = 38).

In Figure 13a, the binned total energy response of the 23rd band is plotted for six
different disordered chains (ξ = 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5). The energy of the band
decayed faster for higher disorder, and it reached its saturation faster than the systems with
lower disorder. In fact, this observation was expected since higher disorder in the system
led to faster loss of energy (attenuation) from the higher bands. Note that an ordered
system ξ = 0 did not show any decay of energy, since there was no “free” energy available
for diffusion of energy across bands. Figure 13b shows the energy response of different
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agitated bands (s(N ) = 5 (18), 10 (38), 15 (58), 20 (78), 25 (98), and 30 (118)) for a chain
with disorder ξ = 0.3. Higher bands s (higher wavenumber k) lost more energy than lower
bands. That means that when a lower band was agitated, little energy was transferred to
other bands, whereas the agitation of a higher band led to a significant energy transmission
to other bands. The same behavior was seen for other disorders.
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Figure 12. Binned total energy response of Figure 11a for (a) a single realization (ê(23)(t)) and (b)
averaged over 100 ensembles (〈ê(23)(t)〉), with kins = 2.159 (N = 90), which gives bin number s = 23.

The number of particles of a simulation, i.e., the system size, can have a big influence
on the simulation results. For this reason, two system sizes were chosen (N = 128, 512) along
with the one used earlier (N = 256). Simulations with different sizes led to qualitatively
and quantitatively similar results (data not shown).
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Figure 13. Normalized energy response of (a) the 23rd band for chains with different disorder, ξ,
and (b) different input tones, N (= 18, 38, 58, 78, 98, 118), into bands, s, for the system with disorder
ξ = 0.3. The data shown here were averaged in k-space over 100 realizations.

4.4. Attenuation and Energy Transfer

Here, we first employ procedures explained earlier to obtain the components of
the transfer matrix, Qsr, before we interpret our observations. Finally, we validate the pro-
posed master equation using the measured Q to solve the stochastic model that involves
all bands, i.e., all wavenumbers (different from reduced order models that only consider
lower eigenmodes).

Figure 14a shows the ensembled decay rate of the bin, which contains the initially
agitated wavenumber (bin s = 23; kins = 2.159) for disorder ξ = 0.3; the decay was well
captured by the fit (Section 3.4) through procedure L (Q(L)

ss = −0.18) and procedure NL
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(Q(NL)
ss = −0.20). The attenuation/damping coefficients obtained by linear and nonlinear

fits were consistent.
In addition to the energy decay of bin s = 23, Figure 14b displays the rise of energy

in an adjacent bin (r = 20), which received energy from bin s = 23. The rise was well
captured by the fitting procedures explained earlier (Section 3.5), where Q(L)

sr = 0.0079 and
Q(NL)

sr = 0.0081.
The energy of the bin that was initially agitated decayed rather rapidly and achieved

a steady state at 〈ê(23)(t → ∞)〉 ≈ 0.10. On the contrary, the energy of the bin, which
received energy, started increasing much more slowly and achieved a different steady state
at 〈ê(20)(t→ ∞)〉 ≈ 0.055.
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Figure 14. (a) Decaying binned total energy response of the initially agitated Bin 23 for kins = 2.159
with the fits following the Linear (L) and Nonlinear (NL) procedures. (b) Increasing binned total
energy response of Bin 20 receiving energy with the fits following the L and NL procedures. Only
times from 2∆t to 8∆t were used for the linear fit and from 2∆t to 18∆t for the nonlinear fit, with
∆t = 1.

A similar analysis is shown for the reverse case, i.e., source bin s′ = 20, in Figure 15a,
for kins = 1.86, and the receiver bin r′ = 23 in Figure 15b. The corresponding transfer matrix
entries were: Q(L)

s′s′ = −0.161, Q(NL)
s′s′ = −0.165, Q(L)

s′r′ = 0.0071, and Q(NL)
s′r′ = 0.0070, with

significantly different steady states at 〈ê(20)(t → ∞)〉 ≈ 0.13 and 〈ê(23)(t → ∞)〉 ≈ 0.04.
This illustrates that the diagonal entries Qss increased with s, while the non-diagonal
entries, Qsr ≈ Qs′r′ , were approximately symmetric (within the error of the fits).
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Figure 15. (a) Decaying binned total energy response of the initially agitated Bin 20 for kins = 1.86
with the fits following the L and NL procedures. (b) Increasing binned total energy response of Bin
23 receiving energy with the fits following the L and NL procedures. Only times from 2∆t to 8∆t
were used for the linear fit and from 2∆t to 18∆t for the nonlinear fit, with ∆t = 1.

Note that in all cases, the fits were supposed to only catch the short time behavior,
incrementally, not the steady-state limit.

Running simulations much longer (tmax = 500 and 5000) confirmed that energy was
conserved also on the long term, and that the system remained in its steady state achieved
at the beginning of the simulation, t < 50, i.e., no further transfer of energy between bands
took place at very large times. However, note that systems with smaller disorder, as well as
the lower bands, can take much longer to reach their steady states (this means that the fit
ranges have to be adapted appropriately, decreasing with increasing disorder or band s,
but also increasing with difference |s− r| (no further details shown here)).

The full transfer matrix Q can now be deduced from the wave-propagation simu-
lations in disordered particle systems (in the ideal situation, without loss of generality,
elastic and 1D). Using the set of kins (where N = 2, 6, 10, ..., 126, one mode from every
bin, ∆N = 4, ∆k = π/32, hence encompassing all the 32 bins), using the fitting pro-
cedure explained in Section 3.4, the components of the transfer matrix were computed
for ensembles of 100 disordered granular chains with ξ = 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5.
In Figure 16a, symbols depict the diagonal elements of the Q matrix, directly computed
by the L procedure. The diagonal elements −Qss increased with increasing bin number
(i.e., increasing kins) for different disorders. This can be attributed to the fact that higher
bins/wavenumber energies decayed faster, as can be observed from Figure 13b. The loss of
energy was also related to disorder, i.e., attenuation increased with increasing the sample
disorder. In addition, we compare the−Qss elements of Q directly derived from the nonlin-
ear procedure (NL) in Figure 16b. Like for the linear function observations, Qss increased
with the increase of bin number and disorder.
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Figure 16. Diagonal components of Q obtained by the (a) L (Linear fit) procedure and (b) the NL
(Nonlinear fit) procedure, for different disorders, ξ, as given in the inset. The symbols denote
the direct fits, while the lines provide the normalization condition for −Qss.

Following the procedure explained in Section 3.4, also, the off-diagonal components
of Q were computed. Figure 17 illustrates the color plots of Q computed by the linear
procedure for six different disorder magnitudes. Based on previous observations [4,50],
it was expected that the intensity of diagonal terms would keep increasing while the bin
numbers increased, which means that higher bands would attenuate faster, i.e., transfer
more energy to their neighbors in comparison to lower bins. On the non-diagonal, for low
bands r and s, there were very small probabilities for transfer of energy to other bands,
while for increasing r and s, the probability for energy-transfer to other bands increased; in
particular, there was the most transfer of energy for the largest r and s. Note that the matrix
obtained by fitting was not exactly symmetric.

The non-diagonal transfer matrix elements are approximately given by:

Qsr = q0(ξ) sin2
( π

2B
min(s, r)

)
, (50)

which is perfectly symmetric, with maximal number of bins, B, and a prefactor q0 increasing
with disorder ξ, for example q0(ξ = 0.3) ≈ 0.013.

The lines in Figure 16 provide the normalization condition: −Qss = ∑s 6=r Qsr, in rea-
sonable agreement (±5− 10%) with the direct measurements. The agreement/disagreement
between different procedures, as well as the wiggles, showed the consistency, but also
the imperfection of the automated fit procedure.
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Figure 17. The transfer rate matrix Qsr computed through the linear procedure (Section 3.4) for dif-
ferent disorders: (a) ξ = 0.1, (b) ξ = 0.2, (c) ξ = 0.3, and (d) the analytical expression (Equation (50))
for ξ = 0.3, (e) ξ = 0.4, and (f) ξ = 0.5. The first index gave the source s (row) bin and the second
the receiver r (column) bin. The non-diagonal elements Qsr were the increase rates of energy in bin r
by receiving energy from bin s. The diagonal elements (−Qss) were the attenuation coefficients of
the energy in band/bin s (no Einstein summation implied in ss).
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4.5. Stochastic Modeling—Energy Propagation in the Wavenumber

In the earlier section (Section 3.4), we developed the (reduced order) stochastic model
based on the master equation (dropping the hat symbols for convenience):

de(s)(t)
dt

= Qsse(s)(t) + ∑
s 6=r

Qrse(r)(t)− d(s)e(s)(t) (51)

that describes the evolution at time t of the energy e(s)(t) in the wavenumber band s at
ks ± ∆k/2, by transfer to all other bands, with rate Qss, or from all other bands r into s
with rate Qsr. Note that the sequence of indices in the transfer rates is relevant if Qsr
is not perfectly symmetric. However, the non-symmetry observed was of the order of
the uncertainty of the fits. The normalization condition Qss = −∑r 6=s Qsr guaranteed
total energy conservation. The fitting procedures did not automatically achieve this,
causing a small leakage of energy, but also showing that the procedures almost achieved
the normalization. The last term in Equation (51) represents the frequency-dependent
damping (energy dissipation, not attenuation), characterized by the damping rate d(s),
which was zero in this research since the total energy in a chain was considered to be
conserved.

Given any matrix Q, the evolution of energy with time can be easily modeled/integrated
using the master equation in Equation (51). Thanks to the reduced order modeling in a
master equation approach that combines many eigenmodes in the frequency bands, this
solution is very efficient and much faster than any numerical solution of the full model.

After measuring the components of the transfer matrix in the previous subsection,
here, we tested the validity of the proposed master equation. Using Equation (51) and
the Q matrix computed in Figure 17c (for the disordered system ξ = 0.3), the frequency
propagation of specific bins can be computed (the final purpose of the master equation
formulation; here, this computation can serve as a cross-validation), which was done
for two different bins, the 10th and 23rd, in Figure 18. Comparing the results using
Equation (51) with earlier simulation results (Figures 11 and 12), one can see that the model
was in a perfect agreement with the simulations. As expected, the higher frequency bin
(23rd bin) lost energy faster than the lower frequency bin (10th bin) to other frequency
bins/bands; this indicates that the lower frequency passed and the higher frequency
attenuated, a fundamental frequency propagation characteristic in disordered granular
media, as observed earlier; see [4,50,64].
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Figure 18. Frequency propagation of the (a) 10th and (b) 23rd bins computed using the Q matrix
from Figure 17d, for ξ = 0.3, in Eq. (51) with tmax = 50.
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5. Conclusions

A mass-disordered granular chain with linearized Hertzian repulsive interaction
forces between the granules is a model for disordered granular force chains (Section 2).
Complementing our previous studies, here, we used for the first time the total energy
evolution, not only displacement, velocity, or strain. Its simplicity allowed for analytical
solutions and was used for studying the energy propagation characteristics using two
types of initial conditions:

• Impulse initial conditions for studying energy propagation with distance (Sections 2.5 and 4.1).
• Standing wave initial conditions for studying energy evolution in time by transfer

across wavenumbers (Section 2.6,4.2–4.4).

The latter case was used to calibrate the transfer matrix of a reduced stochastic model
using the short time evolution of ensemble averaged energy in the wavenumber space
with time. The master equation was then validated by the long time system evolution to its
steady state, and an empirical analytical transfer matrix was proposed.

During impulse propagation, disordered systems, in Section 4.1, featured twin peaks
in the total energy signal plotted against distance from the source; unlike ordered chains,
which had only one peak. The peak near the source was attributed to localization due to dis-
order, whereas the second peak was the propagating coherent wavefront. The localization
decay was observed to be invariant with time and exhibited a power law-like relationship
with distance from the source, where the rate of decay increased with increasing disorder
parameter (ξ). The wavefront decreased with distance from the source more strongly with
increasing ξ. The center of average energy’s propagation speed decreased with ξ. Disorder
led to a confinement of the fraction of the energy within a finite space. This resulted in
a diffusive-like propagation of average energy. The ballistic propagation of energy in
ordered chains appeared slightly superballistic for small disorder and became successively
superdiffusive, diffusive, and subdiffusive with increasing disorder ξ. The localization
effect and the diffusion model are interesting features of disordered media, which can be
modeled and parametrized to understand and predict some of the microstructural material
parameters from macroscopic wave propagation measurements.

Section 4.2 focused on the total energy evolution of standing waves with perfect
sinusoidal initial conditions. In the real space, the energy becomes localized, around lower
masses in the chain. In the wavenumber space, the energy in higher inserted wavenumbers
decays faster/further than the energy in lower wavenumbers. Both trends increase with
disorder. The master equation, introduced in Section 3.4, for the transfer of energies across
wavenumbers (bands) modeled a disordered granular chain, easing the computational
expense relative to the full model with all degrees of freedom, while maintaining the char-
acteristics of energy transfer across all the wavenumbers, across the bands. Two procedures
were compared, as a consistency check, to calibrate the components of the transfer matrix
Q in the master equation, which quantified all transfer rates for a short time step. Applying
Q again and again led to a long-time prediction of energy evolution in wavenumbers and
time, in good agreement with the analytical data, but only after considering the additional
mechanism of a basis energy per wavenumber band (which was not transferred).

The master equation acted as a stochastic model for modeling wave propagation in
disordered media. Its core ingredient, the transfer matrix Q, can be improved with better
statistics or better fitting curves. There are open issues in the fit procedure, like choosing
the variable time intervals to be used for fitting the decay of the agitated bins or the rise
in energy of the non-agitated bins. One option would be to estimate the appropriate
time interval through the dispersion relation, according to both the initially inserted and
the receiving wavenumber. Actually, an empirical analytical model as proposed based on
the (noisy) calibrated transfer matrix.

The master equation, in its present form, did not contain nonlinear interactions be-
tween different wavenumber bands [64], and the frequency-dependent dissipation terms
relevant for real materials were not studied (nor calibrated yet). As mentioned previously
in Section 1, the master equation can now be used for continuum analyses associated with
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larger systems. It contains information about the microstructure in the form of components
of the transfer matrix, but needs to be calibrated and validated experimentally.

Future work will focus on two- and three-dimensional packings of granular materials
by employing the discrete element method for particle level numerical simulations. Fur-
thermore, here, the investigation can be carried out not only on size/mass disorder, but also
stiffness disorder, like previously in 1D, resembling functionality (material characteristic)
where also different species, soft and stiff particles, can be mixed. To pursue the goal of
predicting realistic system mechanics, as a first step, damping has to be added to the (re-
duced complexity) master equation so that the equation can be tested for different real
materials; in experiments, we expect much stronger damping for softer (e.g., rubber) than
for stiff (e.g. sand) particles. The master equation can then be calibrated separately for pure
stiff (almost elastic) and pure soft (strong damping) samples. After defining the master
equation for two (or more) types of materials, the challenge is calibrating also the transfer
terms that quantify the transfer of energy between the species, where the characteristic
time scales (rates) of the species can be highly different (fast for stiff vs. very slow for soft).

Another challenge for future research is to understand also nonlinear terms in the mas-
ter equation, which can be added in the form of, e.g., mixed quadratic terms in energy,
which have been shown to produce higher harmonics [64] and which might be needed
in order to properly predict band-gaps, transmission bands, and possibly other nonlinear
features due to interactions between different bands—in the presence of both single or
multiple materials.
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Appendix A

Energy equations (kinetic, potential and total energy) are used for analyzing the prop-
erties of mechanical wave propagation across the granular chain. The matrix form of
the equations assists in computing the signals both in real and wavenumber space with
ease. Equations (30), (31), (33), and (34) are derived in this section using a three-particle
system (i− 1, i, and i + 1). For better visualization, the pre-compressed granular chain is
represented by a spring mass system, as shown in Figure A1. The springs are the interac-
tions between the elements, resembling particle contacts.
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Figure A1. Particle chain for a simple triplet case to show the energy equations.

Kinetic Energy

The kinetic energy is zero at the initial pre-compressed static, equilibrium state. The ki-
netic energy of particle p during wave propagation is:

KE(p)(t) =
1
2

b(p)(v(p))2, (A1)

where b(p) and v(p) are non-dimmass and velocity, respectively. The kinetic energy can also
be calculated by the use of matrices as in Equation (30),

KE =
1
2

M[v⊗ v] =
1
2

MvvT

=
1
2



. . .
...

...
...

...
. . . b(i−1) 0 0 . . .
. . . 0 b(i) 0 . . .
. . . 0 0 b(i+1) . . .
...

...
...

...
. . .





...
v(i−1)

v(i)

v(i+1)

...


(

. . . v(i−1) v(i) v(i+1) . . .
)

=
1
2



. . .
...

...
...

...
. . . b(i−1)(v(i−1))2 b(i−1)v(i−1)v(i) b(i−1)v(i−1)v(i+1) . . .
. . . b(i)v(i−1)v(i) b(i)(v(i))2 b(i)v(i)v(i+1) . . .
. . . b(i+1)v(i−1)v(i+1) b(i+1)v(i)v(i+1) b(i+1)(v(i+1))2 . . .
...

...
...

...
. . .



(A2)

The diagonal elements of this matrix give the kinetic energy of individual elements
(Equation (A1)), and the total kinetic energy of the system is the trace of this matrix.
The non-diagonal elements give the spatial velocity correlation of the elements with other
elements in the system. For instance, KE12 is the mass-weighed velocity correlation of
the first element with the second element, but note that KE12 6= KE21.

Potential Energy

During wave propagation, the relative potential energy is calculated as:
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PE(p)(t) = (PE(i−1,i) + PE(i,i+1))/2 (A3)

where PE(p)(t) is the potential energy of one individual particle, p, with PE(i−1,i) and
PE(i,i+1) the potential energies due to the adjacent springs (contacts). The kinetic energy
can also be calculated by the use of matrices as in Equation (30), The potential energy
in matrix form is computed using Equation (33) as:

PE = − 1
2

K[u⊗ u] = − 1
2

KuuT ,

= − 1
2



. . .
...

...
...

...
. . . − 3

2 (κ
2/3
(i−2,i−1) + κ2/3

(i−1,i))
3
2 κ2/3

(i−1,i) 0 . . .
. . . 3

2 κ2/3
(i−1,i) − 3

2 (κ
2/3
(i−1,i) + κ2/3

(i,i+1))
3
2 κ2/3

(i,i+1) . . .
. . . 0 3

2 κ2/3
(i,i+1) − 3

2 (κ
2/3
(i,i+1) + κ2/3

(i+1,i+2)) . . .

...
...

...
...

. . .




...
u(i−1)

u(i)

u(i+1)

...


(
. . . u(i−1) u(i) u(i+1) . . .

)

(A4)

The diagonal elements of the matrix are:

PEPP = −3
4

[
κ2/3
(i−1,1)u

(i−1)u(i) − (κ2/3
(i−1,i) + κ2/3

(i,i+1))u
(i)u(i) + κ2/3

(i,i+1)u
(i+1)u(i)

]
. (A5)

Similar to the KE matrix, the non-diagonal elements of PE are non-symmetric and
give the stiffness-weighted spatial displacement correlation of the elements with other
elements in the system. In this study, however, only diagonal entries are used.

References
1. Mouraille, O.; Luding, S. Sound wave propagation in weakly polydisperse granular materials. Ultrasonics 2008, 48, 498–505.
2. Coste, C.; Gilles, B. Sound propagation in a constrained lattice of beads: High-frequency behavior and dispersion relation.

Phys. Rev. E 2008, 77, 021302.
3. Lawney, B.P.; Luding, S. Mass–disorder effects on the frequency filtering in one–dimensional discrete particle systems. In AIP

Conference Proceedings; AIP: New York, NY, USA, 2013; Volume 1542, pp. 535–538.
4. Lawney, B.P.; Luding, S. Frequency filtering in disordered granular chains. Acta Mech. 2014, 225, 2385–2407.
5. Mouraille, O.; Luding, S. Mechanic waves in sand: Effect of polydispersity. In Partec; University of Erlangen-Nuremberg, Institute

of Particle Technology: Nuremberg, Germany, 2007; Volume 2007.
6. Scales, J.A.; Van Vleck, E.S. Lyapunov exponents and localization in randomly layered media. J. Comput. Phys. 1997, 133, 27–42.
7. Zhang, Q.; Li, W.; Lambros, J.; Bergman, L.A.; Vakakis, A.F. Pulse transmission and acoustic non-reciprocity in a granular channel

with symmetry-breaking clearances. Granul. Matter 2020, 22, 1–16.
8. Aki, K.; Richards, P.G. Quantitative Seismology; University Science Books: New York, United States, 2002.
9. Sato, H.; Fehler, M.C.; Maeda, T. Seismic Wave Propagation and Scattering in the Heterogeneous Earth; Springer: Berlin, Germany,

2012; Volume 496.
10. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena; Springer Science & Business Media:

Berlin, Germany, 2006; Volume 88.
11. Tournat, V.; Gusev, V. Acoustics of unconsolidated “model” granular media: An overview of recent results and several open

problems. Acta Acust. United Acust. 2010, 96, 208–224.
12. Aki, K.; Chouet, B. Origin of coda waves: Source, attenuation, and scattering effects. J. Geophys. Res. 1975, 80, 3322–3342.
13. Weaver, R.L.; Sachse, W. Diffusion of ultrasound in a glass bead slurry. J. Acoust. Soc. Am. 1995, 97, 2094–2102.
14. Güven, I.; Luding, S.; Steeb, H. Incoherent waves in fluid-saturated sintered granular systems: Scattering phenomena. J. Vib.

Acoust. 2018, 140, 011018.
15. Page, J. Ultrasonic wave transport in strongly scattering media. Nano Opt. At. 2011, 173, 75–93.
16. Trujillo, L.; Peniche, F.; Jia, X. Multiple Scattering of Elastic Waves in Granular Media: Theory and Experiments. In Waves in

Fluids and Solids; IntechOpen: Rijeka, Croatia, 2011; Chapter 5.



Materials 2021, 14, 1815 28 of 29

17. Daraio, C.; Nesterenko, V.; Herbold, E.; Jin, S. Energy trapping and shock disintegration in a composite granular medium.
Phys. Rev. Lett. 2006, 96, 058002.

18. Shearer, P.M. Introduction to Seismology; Cambridge University Press: Cambridge, UK, 2019.
19. Wu, R.S.; Aki, K. Scattering and Attenuation of Seismic Waves, Part II; Birkhäuser: Basel, Switzerland, 1989.
20. Bacigalupo, A.; Gambarotta, L. Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic

interfaces. J. Mech. Phys. Solids 2017, 102, 165–186.
21. Zhang, W.; Xu, J. Tunable traveling wave properties in one-dimensional chains composed from hollow cylinders: From

compression to rarefaction waves. Int. J. Mech. Sci. 2020, 191, 106073.
22. Kawahara, J. Scattering attenuation of elastic waves due to low-contrast inclusions. Wave Motion 2011, 48, 290–300.
23. Yang, J.; Gonzalez, M.; Kim, E.; Agbasi, C.; Sutton, M. Attenuation of solitary waves and localization of breathers in 1D granular

crystals visualized via high speed photography. Exp. Mech. 2014, 54, 1043–1057.
24. Misra, A.; Nejadsadeghi, N. Longitudinal and transverse elastic waves in 1D granular materials modeled as micromorphic

continua. Wave Motion 2019, 90, 175–195.
25. Achilleos, V.; Theocharis, G.; Skokos, C. Energy transport in one-dimensional disordered granular solids. Phys. Rev. E 2016,

93, 022903.
26. Van Der Baan, M. Acoustic wave propagation in one dimensional random media: The wave localization approach. Geophys. J.

Int. 2001, 145, 631–646.
27. Allen, P.B.; Kelner, J. Evolution of a vibrational wave packet on a disordered chain. Am. J. Phys. 1998, 66, 497–506.
28. Ostojic, S.; Somfai, E.; Nienhuis, B. Scale invariance and universality of force networks in static granular matter. Nature 2006,

439, 828.
29. Weaver, R.L. Information from Seismic Noise. Science 2005, 307, 1568–1569.
30. Merkel, A.; Tournat, V.; Gusev, V. Dispersion of elastic waves in three-dimensional noncohesive granular phononic crystals:

Properties of rotational modes. Phys. Rev. E 2010, 82, 031305.
31. Van den Wildenberg, S.; van Hecke, M.; Jia, X. Evolution of granular packings by nonlinear acoustic waves. EPL Europhys. Lett.

2013, 101, 14004.
32. Gilles, B.; Coste, C. Low-frequency behavior of beads constrained on a lattice. Phys. Rev. Lett. 2003, 90, 174302.
33. Brillouin, L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices; Dover: New York, NY, USA, 1953; Volume 2.
34. Kondic, L. Energy propagation through dense granular systems. Granul. Matter 2019, 21, 85.
35. Agnolin, I.; Roux, J.N. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact

networks. Phys. Rev. E 2007, 76, 61302.
36. Makse, H.; Gland, N.; Johnson, D.; Schwartz, L. Why effective medium theory fails in granular materials. Phys. Rev. Lett. 1999,

83, 5070.
37. Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65.
38. Luding, S. Introduction to discrete element methods: Basic of contact force models and how to perform the micro-macro transition

to continuum theory. Eur. J. Environ. Civ. Eng. 2008, 12, 785–826.
39. Marketos, G.; O’Sullivan, C. A micromechanics-based analytical method for wave propagation through a granular material.

Soil Dyn. Earthq. Eng. 2013, 45, 25–34.
40. Zhang, Y.; McFarland, D.M.; Vakakis, A.F. Propagating discrete breathers in forced one-dimensional granular networks: Theory

and experiment. Granul. Matter 2017, 19, 59.
41. Göncü, F.; Luding, S. Effect of particle friction and polydispersity on the macroscopic stress–strain relations of granular materials.

Acta Geotech. 2013, 8, 629–643.
42. Taghizadeh, K. Elasticity and Wave Propagation in Granular Materials. Ph.D. Thesis, University of Twente, Enschede,

Netherlands, 2019, doi:10.3990/1.9789036548601.
43. Hiraiwa, M.; Wallen, S.; Boechler, N. Acoustic wave propagation in disordered microscale granular media under compression.

Granul. Matter 2017, 19, 62.
44. Potekin, R.; McFarland, D.M.; Vakakis, A.F. Nonlinear wave scattering at the flexible interface of a granular dimer chain. Granul.

Matter 2016, 18, 68.
45. Sears, F.M.; Bonner, B.P. Ultrasonic attenuation measurement by spectral ratios utilizing signal processing techniques. IEEE Trans.

Geosci. Remote Sens. 1981, 19, 95–99.
46. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 1992; Volume 1.
47. Manjunath, M.; Awasthi, A.P.; Geubelle, P.H. Wave propagation in random granular chains. Phys. Rev. E 2012, 85, 031308.
48. Sen, S.; Manciu, M.; Sinkovits, R.S.; Hurd, A.J. Nonlinear acoustics in granular assemblies. Granul. Matter 2001, 3, 33–39.
49. Nesterenko, V. Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Techn. Phys. 1983, 24, 733–743.
50. Shrivastava, K.; Luding, S. Effect of disorder on bulk sound wave speed: A multiscale spectral analysis. Nonlinear Process.

Geophys. 2017, 24, 435.
51. Zhang, W.; Xu, J. Universal design law of equivalent systems for Nesterenko solitary waves transmission. Granul. Matter 2020,

22, 1–12.
52. Géradin, M.; Rixen, D.J. Mechanical Vibrations: Theory and Application to Structural Dynamics; John Wiley & Sons: Hoboken, NJ, USA,

2014.

https://doi.org/10.3990/1.9789036548601


Materials 2021, 14, 1815 29 of 29

53. Landau, L.D.; Lifshitz, E.M. Theory of Elasticity; Pergamon Press: Oxford, United Kingdom, 1970; Volume 7.
54. Schreck, C.F.; O’Hern, C.S.; Shattuck, M.D. Vibrations of jammed disk packings with Hertzian interactions. Granul. Matter 2014,

16, 209–216.
55. Zeravcic, Z.; Lohse, D.; Van Saarloos, W. Collective oscillations in bubble clouds. J. Fluid Mech. 2011, 680, 114.
56. Kruyt, N. Micromechanical study of dispersion and damping characteristics of granular materials. J. Mech. Mater. Struct. 2012,

7, 347–361.
57. Shrivastava, R.K.; Luding, S. Wave propagation of spectral energy content in a granular chain. In EPJ Web of Conferences; Powders

& Grains 2017: Montpellier, France, 2017; Volume 140, p. 02023.
58. Pillage, L.T.; Rohrer, R.A. Asymptotic waveform evaluation for timing analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits

Syst. 1990, 9, 352–366.
59. Liang, Y.; Lee, H.; Lim, S.; Lin, W.; Lee, K.; Wu, C. Proper orthogonal decomposition and its applications—Part I: Theory. J. Sound

Vib. 2002, 252, 527–544.
60. Liang, Y.; Lin, W.; Lee, H.; Lim, S.; Lee, K.; Sun, H. Proper orthogonal decomposition and its applications—Part II: Model

reduction for MEMS dynamical analysis. J. Sound Vib. 2002, 256, 515–532.
61. Rayleigh, J.W.S.B. The Theory of Sound; Macmillan: New York, NY, USA, 1896; Volume 2.
62. Kerschen, G.; Golinval, J.C.; Vakakis, A.F.; Bergman, L.A. The method of proper orthogonal decomposition for dynamical

characterization and order reduction of mechanical systems: An overview. Nonlinear Dyn. 2005, 41, 147–169.
63. Tournat, V.; Gusev, V.E.; Castagnède, B. Self-demodulation of elastic waves in a one-dimensional granular chain. Phys. Rev. E

2004, 70, 056603.
64. Mouraille, O. Sound Propagation in Dry Granular Materials: Discrete Element Simulations, Theory, and Experiments. Ph.D.

Thesis, University of Twente, Enschede, The Netherlands, 2009, doi:10.3990/1.9789036527897.

https://doi.org/10.3990/1.9789036527897

	Introduction
	Granular Chain Model
	Linearized Equation of Motion
	Neglect of Contact Damping
	Implication of Mass-Disorder in a Monodisperse Chain
	Linear Model Solution
	Impulse Propagation Condition
	Standing Wave Condition
	Mass Disorder/Disorder Parameter () and Ensembles

	Energy Evolution and the Master Equation Model
	Energy Conservation
	Total Energy in the Wavenumber Domain
	Binning Energy
	Stochastic Master Equation
	Computing the Elements of Matrix Q

	Results and Discussion
	Energy Propagation with Distance
	First Particle Excitation
	Diffusion
	Center Particle Excitation

	Energy Propagation in Space and Time
	Energy Propagation Across Wave Numbers
	Attenuation and Energy Transfer
	 Stochastic Modeling—Energy Propagation in the Wavenumber

	Conclusions
	References

