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Abstract: The aim of the paper is the development of a third-order theory for laminated composite
plates that is able to accurately investigate their bending behavior in terms of displacements and
stresses. The starting point is given by the corresponding Reddy’s Third-order Shear Deformation
Theory (TSDT). This model is then generalized to consider simultaneously the Classical Laminated
Plate Theory (CLPT), as well as the First-order Shear Deformation Theory (FSDT). The constitutive
laws are modified according to the principles of the nonlocal strain gradient approach. The funda-
mental equations are solved analytically by means of the Navier methodology taking into account
cross-ply and angle-ply lamination schemes. The numerical applications are presented to highlight
the nonlocal effects on static behavior.

Keywords: laminated composite materials; nonlocal elasticity; strain gradient; thin and thick plates;
static analysis

1. Introduction

Higher-order plates theories for laminates have been introduced in the last decades
to avoid some issues related to the use of lower-order and simpler approaches, such as
the Classical Laminated Plate Theory (CLPT) and First-order Shear Deformation Theory
(FSDT) [1,2]. In particular, higher-order equivalent single-layer theories allow to obtain a
more accurate interlaminar stress analysis and do not need to introduce the shear correction
factor [3–6]. The displacement field that characterizes the Third-order Shear Deformation
Theory (TSDT), for instance, determines a quadratic profile of shear strains and stresses
along the thickness [7,8], due to its cubic expansion in the thickness coordinate. Conse-
quently, there is no need for the shear correction factor [9–12]. The importance of these
cubic terms in the analysis of laminates has been recently highlighted in the paper by
Petrolo and Carrera [13], in which the best theory diagrams for multilayered structures
have been widely discussed.

In general, higher-order approaches have been justified by the use of more and more
advanced materials [14–17] and the need of innovative configurations for the optimal
design of structures [18,19]. In particular, their introduction could be essential when
these innovative constituents are included in the stacking sequences of multilayered or
sandwich structures [20–25]. These aspects have been clearly emphasized in the works
by Carrera [26–28], Carrera and Giunta [29], and Carrera et al. [30]. In these works,
accurate and effective higher-order structural models based on a unified formulation have
been presented.

The increasing number of applications involving micro- and nanostructures [31–34]
has proven that the size-dependent features of the advanced constituents could have not

Materials 2021, 14, 1771. https://doi.org/10.3390/ma14071771 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-1152-2336
https://orcid.org/0000-0002-8365-2682
https://doi.org/10.3390/ma14071771
https://doi.org/10.3390/ma14071771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14071771
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/7/1771?type=check_update&version=2


Materials 2021, 14, 1771 2 of 24

negligible effects on their mechanical behavior [35–37]. These aspects have been high-
lighted by so-called multiscale analysis [38–41]. In these circumstances, structural theories
based on classical elasticity could turn out to be inadequate to model such innovative
mediums [42–47]. Nonlocal theories have been developed to overcome these issues, as
illustrated in the first papers by Eringen [48,49]. Some other subsequent contributions
could be mentioned to this aim. For instance, Luciano and Willis investigated the nonlocal
constitutive behavior of an infinite composite laminate [50]. Nanorods made of functionally
graded materials were studied by Barretta et al. [51], who included the gradient Eringen
model in their framework. The same approach was used for Timoshenko nanobeams in
bending [52]. Analogously, the effects of nonlocal elasticity were emphasized in the papers
by Apuzzo et al. [53,54] for the investigation of torsional behavior and dynamic response
of Bernoulli–Euler nanobeams. More recently, similar remarks and observations have been
drawn in [55–57]. In general, different nonlocal theoretical frameworks can be developed.
Examples of nonlocal approaches that should be mentioned for completeness purposes are
the strain and stress gradient theories [58–60], the modified couple stress theory [61–64],
and the ones based on micropolar formulations [65–67]. A comprehensive literature review
concerning nonlocal elasticity can be found in the paper by Zhao et al. [68] for completeness
purposes.

The current paper is developed within the strain gradient theoretical framework [69].
According to this approach, the size effects of the materials are modeled by means of a
length-scale parameter, which controls the second-order derivatives of the strain compo-
nents [70]. Consequently, the stresses are functions not only of the strains in an evaluation
point, but also depend on the divergence of the gradient of the strains. These aspects
have been emphasized in the papers by Aifantis [71] and by Askes and Aifantis [72],
where an overview of gradient elasticity formulations in statics and dynamics has been
presented. Therefore, higher-order derivatives of displacements are involved in the three-
dimensional constitutive laws [73–76]. These aspects have been also recently emphasized
in papers [77,78] where peculiar Finite Element (FE) formulations have been developed to
take into account the strain gradient effect. In particular, the use of higher-order Hermite
interpolating polynomials for the approximation of both membrane and bending degrees
of freedom have been disclosed.

The plate theory that this nonlocal effect is included in is based on the TSDT for
laminates [1], in which the various layers that define the stacking sequence have orthotropic
features [79,80]. The kinematic model is written to take into account simultaneously lower-
order approaches, such as the CLPT and FSDT, for comparison purposes. After the brief
introduction of the main topics of the paper (Section 1), the theory is presented by using
a matrix compact notation in Section 2. Here, the strong form of the governing equations
is obtained, once the definitions of both strains and stress resultants are carried out. The
fundamental system is solved analytically by means of the Navier approach as shown in [73].
The algebraic system of equations is written in Section 3, highlighting the contributions
related to the strain gradient effect for cross-ply and angle-ply simply supported laminated
composite plates. As remarked in [1], the Navier methodology can be efficiently applied
to deal with these configurations. Section 4 is focused on the numerical applications. The
proposed approach is validated for both classical and nonlocal elasticity through comparison
with the results available in the literature, taking into account the three different structural
models. Then, the results are extended to emphasize the influence of the nonlocal parameter
on the static behavior, which is expressed in terms of displacements and stress components.
The through-the-thickness stress profiles are also provided. Finally, the main achievements
are drawn in Section 5. Appendix A collects instead the analytical expressions of the terms
involved in the algebraic formulation for cross-ply and angle-ply laminates.

2. Nonlocal Structural Model

The theoretical framework is developed in this Section for a rectangular plate whose
planar size is a× b, considering a Cartesian reference system xyz. The plate is made of
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a sequence of NL orthotropic layers. The generic k-th ply has a thickness hk = zk+1 − zk,
with zk+1, zk being its upper and lower thickness coordinates. The overall plate thickness
is given by h = ∑NL

k=1 hk. These geometric features are all shown and specified in Figure 1.

Figure 1. Laminated composite plate: geometry and stacking sequence.

The three-dimensional displacements collected in U(x, y, z) =
{

U V W
}T can be

written in terms of the five degrees of freedom, which are three translations u, v, w and two
rotations φx, φy. The vector u(x, y) =

{
u v w φx φy

}T is conveniently introduced.
The displacement field assumes the following compact aspect:

U = I(0)u + zI(1)u− c1F
(

I(1)u +D(0)I(3)u
)

, (1)

where D(0) is a differential operator given by

D(0) =

0 0 ∂
∂x

0 0 ∂
∂y

0 0 0

, (2)

whereas the matrices I(0), I(1), I(3) are defined as

I(0) =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

, I(1) =

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

, I(3) =

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

. (3)

The choice of the structural theory defines the values of the constant c1 and the
thickness function F (z). In particular, the TSDT is obtained for c1 = 4

3h2 and F = z3. By
setting c1 = 0, the FSDT is achieved instead. On the other hand, the CLPT can be defined
by using c1 = 1 and F = z. The fundamental assumptions of each theory, therefore, are
different according to this choice [1]. It should be specified that only the FSDT requires the
shear correction factor in the definitions of the shear stresses. The value of 5/6 is considered
to this aim.

The membrane strain components ε =
{

εxx εxy γxy
}T and the transverse shear

strains γ =
{

γxz γyz
}T can be written as follows:

ε = ε(0) + zε(1) +Fε(3),

γ = γ(0) +F ′γ(2),
(4)

where F ′ = ∂F
∂z . The terms introduced in (4) are discussed below. According to the notation

employed by Reddy [1], the membrane strains ε(0) assume the following aspect:

ε(0) =
{

ε
(0)
xx ε

(0)
yy γ

(0)
xy

}T
= D(m)I(0)u. (5)
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On the other hand, the curvatures ε(1) are computed as follows:

ε(1) =
{

ε
(1)
xx ε

(1)
yy γ

(1)
xy

}T
= D(m)I(1)u, (6)

where the differential operator D(m) is given by

D(m) =


∂

∂x 0 0
0 ∂

∂y 0
∂

∂y
∂

∂x 0

. (7)

Higher-order membrane strains vector ε(3) is defined as

ε(3) =
{

ε
(3)
xx ε

(3)
yy γ

(3)
xy

}T
= −c1

(
D(m)I(1) +D(b)I(3)

)
u, (8)

in which the following definition is used for the differential operator D(b):

D(b) =


0 0 ∂2

∂x2

0 0 ∂2

∂y2

0 0 2 ∂2

∂x∂y

. (9)

The shear strains are now discussed. The components collected in γ(0) can be written
as

γ(0) =
{

γ
(0)
xz γ

(0)
yz

}T
= I(1)s u +D(0)

s I(3)s u, (10)

where

I(1)s =

[
0 0 0 1 0
0 0 0 0 1

]
, I(3)s =

[
0 0 1 0 0
0 0 1 0 0

]
, (11)

whereas the differential operator D(0)
s is given by

D(0)
s =

[
0 ∂

∂x
0 ∂

∂y

]
. (12)

Likewise, higher-order shear terms included in γ(2) are defined as

γ(2) =
{

γ
(2)
xz γ

(2)
yz

}T
= −c1

(
I(1)s u +D(0)

s I(3)s u
)

. (13)

The governing equations are derived by means of the principle of virtual displace-
ments [1]

δΦ + δL = 0, (14)

in which δΦ is the strain energy variation, whereas δL represents the work done by applied
external forces. If a laminated composite plate made of NL layers is considered, the
variation δΦ can be defined as

δΦ =
NL

∑
k=1

∫
A

∫ zk+1

zk

(
δεTσ(k) + δγTτ(k)

)
dzdA, (15)

in which A denotes the plate middle surface. The membrane stresses in the k-th layer are

specified by σ(k) =
{

σ
(k)
xx σ

(k)
yy σ

(k)
xy

}T
and assume the following aspect [77,78]:

σ(k) =
(

1− `2∇2
)

Q̄(k)ε, (16)
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where ` is the nonlocal parameter linked to the influence of the micro/macroscale inter-
actions, ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian, and Q̄(k) is the plane-stress-reduced stiffness
coefficients matrix given by

Q̄(k) =

Q̄11 Q̄12 Q̄16
Q̄12 Q̄22 Q̄26
Q̄16 Q̄26 Q̄66

(k). (17)

Its terms are computed as a function of the Young’s moduli E1, E2; Poisson’s ratio ν12;
and shear modulus G12 of the orthotropic medium [1]. The constitutive law (16) takes into
account the strain gradient effect. Analogously, a similar relation can be written for the

shear stresses τ(k) =
{

τ
(k)
xz τ

(k)
yz

}T

τ(k) =
(

1− `2∇2
)

Q̄(k)
s γ, (18)

in which Q̄(k)
s is the stiffness coefficients matrix related to the shear shown below

Q̄(k)
s =

[
Q̄44 Q̄45
Q̄45 Q̄55

](k)
, (19)

whose terms are computed as a function of the shear moduli G13, G23 [1]. It is important
to highlight that both membrane and shear stresses are characterized by a classical and a
nonlocal part, which is the one multiplied by `.

The external loads can be collected into the vector q =
{

qx qy qz Mx My
}T ,

which includes five load components. Consequently, the work done by external forces δL
can be written as

δL = −
∫
A

δuTq dA. (20)

The governing equations can be obtained by conveniently introducing the stress
resultants as the integrals of the stress components along the thickness of the layer. The
following quantities are defined:

N =
{

Nxx Nyy Nxy
}T

=
NL

∑
k=1

∫ zk+1

zk

σ(k)dz,

M =
{

Mxx Myy Mxy
}T

=
NL

∑
k=1

∫ zk+1

zk

σ(k)z dz,

P =
{

Pxx Pyy Pxy
}T

=
NL

∑
k=1

∫ zk+1

zk

σ(k)F dz,

Q =
{

Qx Qy
}T

=
NL

∑
k=1

∫ zk+1

zk

τ(k) dz,

R =
{

Rx Ry
}T

=
NL

∑
k=1

∫ zk+1

zk

τ(k)F ′ dz.

(21)

The system of five differential equations in terms of stress resultants that governs
the static behavior of the plates is carried out by performing the proper manipulations
starting from the principle of virtual displacements [77]. By using a compact matrix form,
it becomes

I(0)TD(m)TN + I(1)TD(m)TM∗ + c1I(3)TD(b)TP

− I(1)Ts Q∗ + I(3)Ts D(0)T
s Q∗ + q = 0,

(22)
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where
M∗ = M− c1P, Q∗ = Q− c1R. (23)

Boundary conditions in terms of primary and secondary variables are obtained as
shown in the book by Reddy [1], since they are not affected by the strain gradient effect.

It is convenient at this point to express the stress resultants in the fundamental
Equation (22) as a function of the displacement vector u, recalling the constitutive laws (16)
and (18), as well as the definitions of the strains shown in (4). The following relations are
carried out, as far as the membrane stress resultants are concerned:

N =

{
AD(m)I(0) + BD(m)I(1) − c1E

(
D(m)I(1) +D(b)I(3)

)
− `2

[
AD(m)

xx I(0) + AD(m)
yy I(0) + BD(m)

xx I(1) + BD(m)
yy I(1)

− c1E
(
D(m)

xx I(1) +D(m)
yy I(1) +D(b)

xx I(3) +D(b)
yy I(3)

)]}
u,

(24)

M =

{
BD(m)I(0) + DD(m)I(1) − c1F

(
D(m)I(1) +D(b)I(3)

)
− `2

[
BD(m)

xx I(0) + BD(m)
yy I(0) + DD(m)

xx I(1) + DD(m)
yy I(1)

− c1F
(
D(m)

xx I(1) +D(m)
yy I(1) +D(b)

xx I(3) +D(b)
yy I(3)

)]}
u,

(25)

P =

{
ED(m)I(0) + FD(m)I(1) − c1H

(
D(m)I(1) +D(b)I(3)

)
− `2

[
ED(m)

xx I(0) + ED(m)
yy I(0) + FD(m)

xx I(1) + FD(m)
yy I(1)

− c1H
(
D(m)

xx I(1) +D(m)
yy I(1) +D(b)

xx I(3) +D(b)
yy I(3)

)]}
u,

(26)

where the terms into the constitutive matrices A, B, D, E, F, H are given by

(A, B, D, E, F, H)ij =
NL

∑
k=1

∫ zk+1

zk

Q̄(k)
ij

(
1, z, z2,F , zF ,F 2

)
dz (27)

for i, j = 1, 2, 6. The following differential operators that appear due to the Laplacian
are also introduced: D(m)

xx = P(20)
xy D(m), D(m)

yy = P(02)
xy D(m) and D(b)

xx = P(20)
xy D(b), D(b)

yy =

P(02)
xy D(b), in which P(pq)

xy is given by

P(pq)
xy =

∂p+q

∂xp∂yq . (28)

On the other hand, the stress resultants related to shear forces are defined as follows:
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Q =

{
AsI(1)s + AsD(0)

s I(3)s − c1Ls

(
I(1)s +D(0)

s I(3)s

)
− `2

[
AsP(20)

xy I(1)s + AsP(02)
xy I(1)s + AsD(0)

sxxI(3)s + AsD(0)
syyI(3)s

− c1Ls

(
P(20)

xy I(1)s + P(02)
xy I(1)s +D(0)

sxxI(3)s +D(0)
syyI(3)s

)]}
u,

(29)

R =

{
LsI(1)s + LsD(0)

s I(3)s − c1Ns

(
I(1)s +D(0)

s I(3)s

)
− `2

[
LsP(20)

xy I(1)s + LsP(02)
xy I(1)s + LsD(0)

sxxI(3)s + LsD(0)
syyI(3)s

− c1Ns

(
P(20)

xy I(1)s + P(02)
xy I(1)s +D(0)

sxxI(3)s +D(0)
syyI(3)s

)]}
u,

(30)

in which the terms collected in the constitutive matrices As, Ls, Ns, for i, j = 4, 5, are given
by

(As, Ls, Ns)ij =
NL

∑
k=1

∫ zk+1

zk

κs(Qs)
(k)
ij

(
1,F ′,

(
F ′
)2
)

dz, (31)

where κs is the shear correction factor. Its value is different from the unity only for the FSDT,
in which it is assumed equal to 5/6. The differential operators D(0)

sxx,D(0)
syy are computed as

D(0)
sxx = P(20)

xy D(0)
s ,D(0)

syy = P(02)
xy D(0)

s .

3. Solution Procedure

Once the nonlocal governing equations are written in terms of the displacements
collected in u, they can be solved analytically by means of the Navier methodology. As
illustrated in [1], this approach can be applied only for some peculiar lamination schemes,
which are antisymmetric cross-ply and antisymmetric angle-ply, respectively. These two
cases are analyzed separately in the following, assuming simply supported boundary
conditions for both circumstances. The solution to the current static problem is provided
by the algebraic linear system shown below

K∆ = F, (32)

in which ∆ =
{

Umn Vmn Wmn Xmn Ymn
}T is the vector that collects the unknown

coefficients that determine the displacement amplitudes. On the other hand, K and F are
the stiffness matrix and the load vector, respectively. The terms included in the symmetric
matrix K will be specified for each lamination scheme. On the other hand, the load vector
has the following definition, assuming that only transverse surface forces are applied:
F =

{
0 0 Qmn 0 0

}T , where Qmn is equal to qz for a sinusoidally distributed load,
having introduced the same expansion also for the applied external forces [1].

3.1. Cross-Ply Laminates

In order to apply the Navier approach for the cross-ply sequence at issue, the stiffnesses
written below are all equal to zero:

A16 = A26 = As45 = B16 = B26 = D16 = D26 = 0,

E16 = E26 = F16 = F26 = H16 = H26 = Ls45 = Ns45 = 0.
(33)
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In this circumstance, the solution can be sought assuming the following expansion:

u =
∞

∑
n=1

∞

∑
m=1

∆ ◦


cos αx sin βy
sin αx cos βy
sin αx sin βy
cos αx sin βy
sin αx cos βy

, (34)

where ◦ stands for the elementwise product and α = mπ/a, β = nπ/b. The explicit
expressions of the coefficients Kij included in the stiffness matrix K, for i, j = 1, . . . , 5,
whose size is clearly 5× 5 are listed in Appendix A, recalling that Kij = Kji.

3.2. Angle-Ply Laminates

The Navier approach can be applied for angle-ply laminates if the following stiffnesses
are all equal to zero:

A16 = A26 = As45 = B11 = B12 = B22 = B66 = D16 = D26 = 0,

E11 = E12 = E22 = E66 = F16 = F26 = H16 = H26 = Ls45 = Ns45 = 0.
(35)

In this case, the solution is obtained assuming the following expansion:

u =
∞

∑
n=1

∞

∑
m=1

∆ ◦


sin αx cos βy
cos αx sin βy
sin αx sin βy
cos αx sin βy
sin αx cos βy

. (36)

The expressions of the coefficients Kij, for i, j = 1, . . . , 5, of the stiffness matrix K, are
listed in Appendix A, presenting only those terms that are different from the ones valid for
cross-ply sequences.

The solution in terms of ∆ can be easily obtained from Equation (32), for both laminates
under consideration. Once the amplitudes in ∆ are computed, definitions (34) and (36)
allow us to obtain the displacements within the reference domain. Consequently, the
strains can be also deduced. The membrane stress components σ(k) can be evaluated as
well, following the procedure illustrated in the book by Reddy [1] through the constitutive
relations previously presented. On the other hand, the shear stress components τ(k)

are determined from the three-dimensional equilibrium elasticity equations [1,73]. The
complete procedure is omitted for conciseness purposes.

4. Numerical Results

The current Section aims to present the results of the static analyses. Due to the general
features of the theoretical approach, the solutions are presented for different nonlocal
theories, which are CLPT, FSDT and TSDT, setting properly the values of c1 and F . As far
as the mechanical features are concerned, the ratio between the longitudinal and transverse
Young’s moduli E1/E2 is specified in each application, whereas the other quantities are
taken as G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25 for Material 1, or G12 = G13 = 0.6E2,
G23 = 0.5E2, ν12 = 0.25 for Material 2. The lamination schemes, instead, are denoted
by (θ(1)/ . . . /θ(k)/ . . . /θ(NL)), where θ(k) stands for the orientation of the k-th layer. The
results are presented in dimensionless form. In particular, the central deflection w̄ is given
by

w̄ = w
(

a
2

,
b
2

)
E2h3

a4qz
. (37)



Materials 2021, 14, 1771 9 of 24

On the other hand, the stress components are evaluated as follows, unless differently
specified:

σ̄xx = σxx

(
a
2

,
b
2

,
h
2

)
h2

b2qz
, σ̄yy = σyy

(
a
2

,
b
2

,
h
4

)
h2

b2qz
, σ̄xy = σxy

(
0, 0,

h
2

)
h2

b2qz
,

σ̄xz = σxz

(
0,

b
2

, 0
)

h
bqz

, σ̄yz = σyz

( a
2

, 0, 0
) h

bqz
.

(38)

It should be specified that the values of the stresses presented in this Section are all
related to the classical component, which can be deducted from definitions (16) and (18)
following the approach used in [73,77]. The analyses are carried out for increasing values
of the dimensionless nonlocal parameter (`/a)2, in order to show the effect of the strain
gradient on the static solutions.

The first application aims to investigate the central deflection w̄ as a function of
side-to-thickness ratio a/h of a square plate for different lamination schemes: cross-
ply (0/90/90/0) and angle-ply (45/−45). The results are shown in Figure 2, assuming
E1/E2 = 25 for the cross-ply (Material 1) and E1/E2 = 40 for the angle-ply (Material 2).
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(a)
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Figure 2. Dimensionless central deflection w̄ versus side-to-thickness ratio a/h of a square plate
subjected to a sinusoidally distributed load varying the nonlocal ratio (`/a)2, for different lamination
schemes: (a) cross-ply (0/90/90/0); (b) angle-ply (45/−45). TSDT—Third-order Shear Deformation
Theory; FSDT—First-order Shear Deformation Theory; CLPT—Classical Laminated Plate Theory.

The graphs include the structural response obtained by means of the three theories.
Each model is related to a different line style: solid line for TSDT, dotted for FSDT, and
dash-dotted for CLPT. The color, instead, is linked to the value of the nonlocal parameter.
The same choice is also kept in the following figures. It can be observed that the greater is
the nonlocal effect and the lower is the vertical deflection, independently from the theory.
In other words, the central deflection is reduced by increasing the value of the nonlocal
parameter (`/a)2. The FSDT and TSDT, moreover, are characterized by a comparable
behavior and are highly affected by plate thickness. By increasing the ratio a/h, their
displacements tend to the results of the CLPT, which do not depend on that geometric ratio.
The corresponding curves, in fact, are described by rectilinear functions. Similar behaviors
are obtained in both lamination schemes.

In the next test, a (0/90/0) cross-ply square plate is considered. Material 1 is taken into
account in this circumstance, assuming E1/E2 = 25. The results are presented in Table 1
for different values of a/h, varying the structural theory. Where available, the analytical
solutions by Reddy [1] are provided, in terms of both displacement and stress components.
The reference results are clearly presented only for classical elasticity, assuming (`/a)2 = 0.
The comparison proves a very good agreement between the current approach and the
reference one.
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Table 1. Dimensionless central displacement and stress components of a cross-ply square plate with
(0/90/0) as the lamination scheme, for (`/a)2 = 0.

a/h Theory 102w̄ σ̄xx σ̄yy σ̄yz σ̄xz σ̄xy

4

TSDT [1] 1.9218 0.7345 - 0.2086 - -
TSDT 1.9217 0.7344 0.0315 0.2086 0.2855 0.0497

FSDT [1] 1.7758 0.4370 - 0.1968 - -
FSDT 1.7757 0.4370 0.0307 0.1968 0.3368 0.0369

10

TSDT [1] 0.7125 0.5684 - 0.1167 - -
TSDT 0.7125 0.5684 0.0183 0.1167 0.3693 0.0277

FSDT [1] 0.6693 0.5134 - 0.1108 - -
FSDT 0.6693 0.5134 0.0176 0.1108 0.3806 0.0252

100

TSDT [1] 0.4342 0.5390 - 0.0827 - -
TSDT 0.4342 0.5390 0.0134 0.0827 0.3948 0.0214

FSDT [1] 0.4337 0.5384 - 0.0827 - -
FSDT 0.4337 0.5384 0.0134 0.0827 0.3950 0.0213

CLPT [1] 0.4313 0.5387 - 0.0823 - -
CLPT 0.4312 0.5387 0.0133 0.0823 0.3951 0.0213

Table 2, instead, aims to extend these results to the nonlocal elasticity framework, varying
the ratio (`/a)2. The same reduction of the displacement values observed in Figure 2 can also
be seen numerically in this circumstance. The three theories provide really close results for
thin plates even if the strain gradient effect is taken into account. It should be noted from
these tables that noticeable differences can be seen especially in terms of membrane stresses
in thick configurations (defined by a/h = 4), if the results related to the different theories
are compared. As it will be highlighted in the following paragraphs, this is due to the fact
that the TSDT is characterized by nonlinear stress profiles. This nonlinearity is particularly
emphasized for thicker plates, whereas it is reduced for lower values of a/h.

Table 2. Dimensionless central displacement and stress components of a cross-ply square plate with
(0/90/0) as the lamination scheme, varying the nonlocal ratio (`/a)2.

(`/a)2 a/h Theory 102w̄ σ̄xx σ̄yy σ̄yz σ̄xz σ̄xy

0.05

4 TSDT 0.9672 0.3696 0.0158 0.1050 0.1437 0.0250
FSDT 0.8937 0.2199 0.0154 0.0991 0.1695 0.0186

10 TSDT 0.3586 0.2860 0.0092 0.0587 0.1859 0.0139
FSDT 0.3368 0.2584 0.0089 0.0558 0.1916 0.0127

100
TSDT 0.2185 0.2713 0.0067 0.0416 0.1987 0.0107
FSDT 0.2183 0.2710 0.0067 0.0416 0.1988 0.0107
CLPT 0.2170 0.2711 0.0067 0.0414 0.1989 0.0107

0.1

4 TSDT 0.6462 0.2470 0.0106 0.0701 0.0960 0.0167
FSDT 0.5971 0.1469 0.0103 0.0662 0.1132 0.0124

10 TSDT 0.2396 0.1911 0.0062 0.0392 0.1242 0.0093
FSDT 0.2251 0.1726 0.0059 0.0373 0.1280 0.0085

100
TSDT 0.1460 0.1812 0.0045 0.0278 0.1328 0.0072
FSDT 0.1458 0.1810 0.0045 0.0278 0.1328 0.0072
CLPT 0.1450 0.1811 0.0045 0.0277 0.1329 0.0072

A (0/90/90/0) cross-ply lamination scheme is considered in the next application.
Even in this case, Material 1 is taken into account to describe the orthotropic features of the
layers, with E1/E2 = 25. The results are shown in Table 3 for the classical elasticity. In the
same Table, the solutions shown in [1] are presented for comparison purposes.
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Table 3. Dimensionless central displacement and stress components of a cross-ply square plate with
(0/90/90/0) as the lamination scheme, for (`/a)2 = 0.

a/h Theory 102w̄ σ̄xx σ̄yy σ̄yz σ̄xz σ̄xy

4

TSDT [1] 1.8940 0.6650 0.6320 0.2390 0.2060 0.0440
TSDT 1.8936 0.6651 0.6322 0.2985 0.2305 0.0440

FSDT [1] 1.7100 0.4060 0.5760 0.1960 0.1400 0.0308
FSDT 1.7095 0.4059 0.5764 0.2799 0.2686 0.0308

10

TSDT [1] 0.7150 0.5460 0.3890 0.1530 0.2640 0.0268
TSDT 0.7147 0.5456 0.3888 0.1924 0.3069 0.0268

FSDT [1] 0.6630 0.4989 0.3610 0.1300 0.1670 0.0241
FSDT 0.6627 0.4989 0.3614 0.1807 0.3181 0.0241

20

TSDT [1] 0.5060 0.5390 0.3040 0.1230 0.2820 0.0228
TSDT 0.5060 0.5393 0.3043 0.1541 0.3299 0.0228

FSDT [1] 0.4910 0.5270 0.2960 0.1090 0.1750 0.0221
FSDT 0.4912 0.5273 0.2956 0.1503 0.3332 0.0221

100

TSDT [1] 0.4340 0.5390 0.2710 0.1120 0.2900 0.0213
TSDT 0.4343 0.5387 0.2708 0.1389 0.3389 0.0213

FSDT [1] 0.4340 0.5380 0.2700 0.1010 0.1780 0.0213
FSDT 0.4337 0.5382 0.2704 0.1387 0.3390 0.0213

CLPT [1] 0.4310 0.5390 0.2690 0.1380 0.3390 0.0213
CLPT 0.4312 0.5387 0.2693 0.1382 0.3393 0.0213

As in the previous test, the present configuration is analyzed also in the nonlocal
framework. Results for increasing values of (`/a)2 are included in Table 4 for the sake of
completeness.

Table 4. Dimensionless central displacement and stress components of a cross-ply square plate with
(0/90/90/0) as the lamination scheme, varying the nonlocal ratio (`/a)2.

(`/a)2 a/h Theory 102w̄ σ̄xx σ̄yy σ̄yz σ̄xz σ̄xy

0.05

4 TSDT 0.9530 0.3347 0.3182 0.1502 0.1160 0.0222
FSDT 0.8604 0.2043 0.2901 0.1409 0.1352 0.0155

10 TSDT 0.3597 0.2746 0.1957 0.0968 0.1545 0.0135
FSDT 0.3335 0.2511 0.1819 0.0909 0.1601 0.0121

20 TSDT 0.2547 0.2714 0.1531 0.0776 0.1661 0.0115
FSDT 0.2472 0.2654 0.1488 0.0757 0.1677 0.0111

100
TSDT 0.2186 0.2711 0.1363 0.0699 0.1705 0.0107
FSDT 0.2183 0.2709 0.1361 0.0698 0.1706 0.0107
CLPT 0.2170 0.2711 0.1356 0.0696 0.1707 0.0107

0.1

4 TSDT 0.6367 0.2236 0.2126 0.1004 0.0775 0.0148
FSDT 0.5748 0.1365 0.1938 0.0941 0.0903 0.0104

10 TSDT 0.2403 0.1835 0.1307 0.0647 0.1032 0.0090
FSDT 0.2228 0.1678 0.1215 0.0608 0.1070 0.0081

20 TSDT 0.1702 0.1813 0.1023 0.0518 0.1109 0.0077
FSDT 0.1652 0.1773 0.0994 0.0506 0.1120 0.0074

100
TSDT 0.1460 0.1811 0.0911 0.0467 0.1139 0.0072
FSDT 0.1458 0.1810 0.0909 0.0466 0.1140 0.0072
CLPT 0.1450 0.1811 0.0906 0.0465 0.1141 0.0072
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The reference solutions are all related to classical elasticity. In the following appli-
cation, the current methodology is also verified with regard to nonlocal elasticity, taking
into account the solutions presented in [77]. To this aim, only CLPT is considered in accor-
dance with the reference paper, due to the availability of the literature. Several cross-ply
lamination schemes are considered, assuming E1/E2 = 25 and Material 1 as orthotropic
features. The results are presented in Table 5 for various stacking sequences, varying the
value of (`/a)2, in terms of central deflections and membrane stress components. In this
circumstance, the following dimensionless quantities are considered for the stresses:

σ̄yy = σyy

(
a
2

,
b
2

,
h
2

)
h2

b2qz
, σ̄xy = σxy

(
a, b,−h

2

)
h2

b2qz
, (39)

whereas the same expression introduced before is used for σ̄xx. The results shown in Table 5
prove that the present solutions are in very good agreement with the reference ones, also in
the framework of nonlocal elasticity.

Table 5. Dimensionless central displacement and membrane stress components of several cross-ply square plates, varying
the nonlocal ratio (`/a)2. The reference solutions (Ref.) are taken from [77].

102w̄ σ̄xx σ̄yy σ̄xy

(`/a)2 Scheme Ref. [77] Present Ref. [77] Present Ref. [77] Present Ref. [77] Present

0.05

(0) 0.2170 0.2170 0.2711 0.2711 0.0134 0.0134 0.0107 0.0107
(0/90) 0.5353 0.5352 0.0424 0.0424 0.3602 0.3602 0.0264 0.0264
(0/90)2 0.2549 0.2549 0.0180 0.0180 0.2450 0.2450 0.0126 0.0126
(0/90)4 0.2254 0.2254 0.0149 0.0149 0.2491 0.2491 0.0111 0.0111

0.1

(0) 0.1450 0.1450 0.1811 0.1811 0.0090 0.0090 0.0072 0.0072
(0/90) 0.3576 0.3576 0.0284 0.0284 0.2407 0.2406 0.0176 0.0176
(0/90)2 0.1703 0.1703 0.0120 0.0120 0.1637 0.1637 0.0084 0.0084
(0/90)4 0.1506 0.1506 0.0100 0.0100 0.1664 0.1664 0.0074 0.0074

The next application is focused on the bending analysis of antisymmetric angle ply
laminates, characterized by (θ/−θ/ . . . ) as the lamination scheme and θ being the arbitrary
orientation of each layer. Firstly, the analyses are presented in terms of dimensionless central
deflection w̄, considering square plates made of Material 2 and E1/E2 = 40 as orthotropic
ratio. The results are presented for several side-to-thickness values a/h, orthotropic angles θ,
and different structural theories in Table 6, as far as classical elasticity is concerned, which
means (`/a)2 = 0. The values are in good agreement with the ones taken as references [1].

As in the previous cases, the analyses are extended to nonlocal elasticity by increasing the
value of (`/a)2 but keeping the same geometric ratios and mechanical features. The results
are presented in Table 7. Even in these circumstances, the differences between TSDT and FSDT
decrease for lower values of thickness, and the displacements tend to the ones of the CLPT.

A (−45/45)4 laminated plate square plate is considered in the next application. Each
orthotropic layer is made of Material 1, with E1/E2 = 25. This test aims to evaluate the
stress components in angle-ply configurations. With respect to the dimensionless values
shown in (38), only the transverse shear stress σ̄xz is specified in a different thickness
coordinate as specified below

σ̄xz = σxz

(
0,

b
2

,
h
2

)
h

bqz
. (40)

It should be recalled that in the following application σ̄xx = σ̄yy and σ̄xz = σ̄yz,
therefore, their values are not repeated twice. The results related to the classical elasticity
are shown in Table 8, varying a/h and the structural theory. Even if the displacements
become closer independently from the considered approach, the stresses assume different
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values especially if the thickness is greater. In this circumstance, the reference solutions are
available only for the FSDT [1].

Table 6. Dimensionless central displacement 102w̄ of a angle-ply square plate with (θ/−θ/ . . . ) as
lamination scheme, for (`/a)2 = 0. The number of plies is denoted by NL.

θ = 5o θ = 30o θ = 45o

a/h Theory NL = 2 NL = 6 NL = 2 NL = 6 NL = 2 NL = 6

4

TSDT [1] 1.2625 1.2282 1.0838 0.8851 1.0203 0.8375
TSDT 1.2624 1.2282 1.0836 0.8851 1.0202 0.8375

FSDT [1] 1.3165 1.2647 1.2155 0.8994 1.1576 0.8531
FSDT 1.3165 1.2647 1.2154 0.8994 1.1575 0.8531

10

TSDT [1] 0.4848 0.4485 0.5916 0.3007 0.5581 0.2745
TSDT 0.4848 0.4485 0.5915 0.3006 0.5580 0.2745

FSDT [1] 0.4883 0.4491 0.6099 0.2989 0.5773 0.2728
FSDT 0.4882 0.4491 0.6098 0.2989 0.5772 0.2728

20

TSDT [1] 0.3579 0.3209 0.5180 0.2127 0.4897 0.1905
TSDT 0.3579 0.3209 0.5179 0.2127 0.4896 0.1905

FSDT [1] 0.3586 0.3208 0.5224 0.2121 0.4944 0.1899
FSDT 0.3585 0.3208 0.5224 0.2121 0.4943 0.1899

100

TSDT [1] 0.3162 0.2789 0.4942 0.1842 0.4676 0.1634
TSDT 0.3162 0.2789 0.4941 0.1842 0.4676 0.1634

FSDT [1] 0.3162 0.2789 0.4944 0.1842 0.4678 0.1633
FSDT 0.3162 0.2789 0.4943 0.1842 0.4678 0.1633

CLPT [1] 0.3145 0.2771 0.4932 0.1831 0.4667 0.1622
CLPT 0.3144 0.2771 0.4931 0.1831 0.4667 0.1622

Table 7. Dimensionless central displacement 102w̄ of a angle-ply square plate with (θ/−θ/ . . . ) as
lamination scheme, varying the nonlocal ratio (`/a)2. The number of plies is denoted by NL.

θ = 5o θ = 30o θ = 45o

(`/a)2 a/h Theory NL = 2 NL = 6 NL = 2 NL = 6 NL = 2 NL = 6

0.05

4 TSDT 0.6353 0.6181 0.5454 0.4455 0.5134 0.4215
FSDT 0.6625 0.6365 0.6117 0.4527 0.5825 0.4293

10 TSDT 0.2440 0.2257 0.2977 0.1513 0.2808 0.1382
FSDT 0.2457 0.2260 0.3069 0.1504 0.2905 0.1373

20 TSDT 0.1801 0.1615 0.2606 0.1070 0.2464 0.0959
FSDT 0.1804 0.1614 0.2629 0.1067 0.2488 0.0956

100
TSDT 0.1591 0.1404 0.2487 0.0927 0.2353 0.0822
FSDT 0.1591 0.1403 0.2488 0.0927 0.2354 0.0822
CLPT 0.1583 0.1395 0.2482 0.0921 0.2349 0.0816

0.1

4 TSDT 0.4245 0.4130 0.3644 0.2976 0.3431 0.2816
FSDT 0.4427 0.4253 0.4087 0.3024 0.3892 0.2868

10 TSDT 0.1630 0.1508 0.1989 0.1011 0.1876 0.0923
FSDT 0.1642 0.1510 0.2051 0.1005 0.1941 0.0917

20 TSDT 0.1203 0.1079 0.1741 0.0715 0.1646 0.0640
FSDT 0.1206 0.1079 0.1756 0.0713 0.1662 0.0638

100
TSDT 0.1063 0.0938 0.1662 0.0620 0.1572 0.0549
FSDT 0.1063 0.0938 0.1662 0.0619 0.1573 0.0549
CLPT 0.1057 0.0932 0.1658 0.0616 0.1569 0.0546
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Table 8. Dimensionless central displacement and stress components of a cross-ply square plate with
(−45/45)4 as lamination scheme, for (`/a)2 = 0.

a/h Theory 102w̄ σ̄xx σ̄xy σ̄xz

4 TSDT 1.2931 0.2511 0.2406 0.2116
FSDT 1.3317 0.1445 0.1384 0.2487

10
TSDT 0.4207 0.1623 0.1554 0.2425

FSDT [1] 0.4198 0.1445 0.1384 0.2487
FSDT 0.4198 0.1445 0.1384 0.2487

20
TSDT 0.2900 0.1490 0.1427 0.2471

FSDT [1] 0.2896 0.1445 0.1384 0.2487
FSDT 0.2896 0.1445 0.1384 0.2487

100

TSDT 0.2479 0.1447 0.1386 0.2486
FSDT [1] 0.2479 0.1445 0.1384 0.2487

FSDT 0.2479 0.1445 0.1384 0.2487
CLPT [1] 0.2462 0.1445 0.1384 0.2487

CLPT 0.2461 0.1445 0.1384 0.2487

On the other hand, the nonlocal counterpart of the current application is shown in
Table 9. The increasing values of (`/a)2 emphasize the differences in terms of stresses,
especially if the plates are thicker.

Table 9. Dimensionless central displacement and stress components of a cross-ply square plate with
(−45/45)4 as lamination scheme, varying the nonlocal ratio (`/a)2.

(`/a)2 a/h Theory 102w̄ σ̄xx σ̄xy σ̄xz

0.05

4 TSDT 0.6508 0.1264 0.1211 0.1065
FSDT 0.6702 0.0727 0.0697 0.1251

10 TSDT 0.2117 0.0817 0.0782 0.1220
FSDT 0.2113 0.0727 0.0697 0.1251

20 TSDT 0.1460 0.0750 0.0718 0.1244
FSDT 0.1457 0.0727 0.0697 0.1251

100
TSDT 0.1248 0.0728 0.0697 0.1251
FSDT 0.1248 0.0727 0.0697 0.1251
CLPT 0.1239 0.0727 0.0697 0.1251

0.1

4 TSDT 0.4348 0.0844 0.0809 0.0711
FSDT 0.4478 0.0486 0.0465 0.0836

10 TSDT 0.1415 0.0546 0.0523 0.0815
FSDT 0.1412 0.0486 0.0465 0.0836

20 TSDT 0.0975 0.0501 0.0480 0.0831
FSDT 0.0974 0.0486 0.0465 0.0836

100
TSDT 0.0834 0.0486 0.0466 0.0836
FSDT 0.0834 0.0486 0.0465 0.0836
CLPT 0.0828 0.0486 0.0465 0.0836

The last tests aim to present the stress analysis in terms of the through-the-thickness
distributions of the various components, highlighting the differences that could arise by
varying the structural approach (TSDT, FSDT, and CLPT) for different geometric ratios.
The effect of (`/a)2 is also investigated. Firstly, a (0/90/90/0) cross-ply square plate is
analyzed, for a/h equal to 4 and 10, respectively. The orthotropic features of the layers are
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obtained by setting E1/E2 = 25 and selecting Material 1 as constituent. The membrane
and shear dimensionless stresses are given by

σ̄xx = σxx

(
a
2

,
b
2

, z̄
)

h2

b2qz
, σ̄yy = σyy

(
a
2

,
b
2

, z̄
)

h2

b2qz
, σ̄xy = σxy(0, 0, z̄)

h2

b2qz
,

σ̄xz = σxz

(
0,

b
2

, z̄
)

h
bqz

, σ̄yz = σyz

( a
2

, 0, z̄
) h

bqz
,

(41)

where z̄ = 2z/h stands for the dimensionless thickness coordinate. The through-the-
thickness stress distributions in Figure 3 are related to the case a/h = 4, which is represen-
tative for thick plates. It can be observed that in both classical and nonlocal elasticity, the
TSDT is characterized by significantly different profiles due to the higher-order features of
the displacement field. This aspect is more evident in the membrane stress components,
which are obtained by means of the application of constitutive laws. In fact, it should
be recalled that the TSDT allows a cubic representation of the stress profiles, whereas a
linear variation is associated with the FSDT and CLPT. This feature gives rise to noticeable
differences if thick plates are investigated, as it can be seen from the plot of σ̄xx in Figure 3.
The variation of the transverse stresses, instead, is always characterized by curved and
continuous profiles since they are equilibrium-derived, according to the procedure shown
in [1]. A lower value of thickness is considered in the graphs shown in Figure 4, assuming
a/h = 10. Due to this choice, the stress distributions tend to the same value, for both
(`/a)2 = 0 and (`/a)2 = 0.10, independently from the theory. Therefore, the differences
among the theories is practically negligible starting from a/h = 10, which is typically the
geometric ratio that characterizes moderately thick plates.
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Figure 3. Cont.
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Figure 3. Through-the-thickness distributions of stresses of a (0/90/90/0) square plate character-
ized by a/h = 4 for different theories and values of (`/a)2. The following stress components are
considered: (a) σ̄xx; (b) σ̄yy; (c) σ̄xz; (d) σ̄yz; (e) σ̄xy.
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Figure 4. Through-the-thickness distributions of stresses of a (0/90/90/0) square plate characterized
by a/h = 10, for different theories and values of (`/a)2. The following stress components are
considered: (a) σ̄xx; (b) σ̄yy; (c) σ̄xz; (d) σ̄yz; (e) σ̄xy.
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A similar analysis is carried out for a (−45/45) angle-ply square plate, for a/h equal
to 4 and 10, respectively. In this case, the orthotropic features of the layers are given
by E1/E2 = 40. Material 2 is taken into account as constituent. With respect to the
dimensionless expressions introduced in (41), a different value of σ̄yz is considered, which
is defined below:

σ̄yz = σyz

(
0,

b
2

, z̄
)

h
bqz

. (42)

The graphical plots are shown in Figures 5 and 6 for a/h = 4 and a/h = 10, respec-
tively. It can be observed that in these circumstances, the FSDT and CLPT are overlapped.
The nonlinear behavior of TSDT is clearly more evident for thicker plates, for both classical
and nonlocal elasticity.
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Figure 5. Through-the-thickness distributions of stresses of a (−45/45) square plate characterized by
a/h = 4 for different theories and values of (`/a)2. The following stress components are considered:
(a) σ̄xx; (b) σ̄yy; (c) σ̄xz; (d) σ̄yz; (e) σ̄xy.
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Figure 6. Through-the-thickness distributions of stresses of a (−45/45) square plate characterized by
a/h = 10, for different theories and values of (`/a)2. The following stress components are considered:
(a) σ̄xx; (b) σ̄yy; (c) σ̄xz; (d) σ̄yz; (e) σ̄xy.

5. Conclusions

A theoretical framework able to simultaneously and accurately study thick and thin
laminated composite plates has been presented in the paper. In particular, the chosen
kinematic model is able to describe several theories if properly set, which are the CLPT,
FSDT, and TSDT. The theories have been modified to include the strain gradient effect,
in order to take into account nonlocal contributions in the evaluation of stresses. The
proposed approach is general, and the fundamental static equations have been written
for arbitrary configurations by using a compact matrix notation. In order to provide an
analytical solution, the Navier methodology has been applied to deal with cross-ply and
angle-ply lamination schemes. The explicit definitions needed in the solution procedure
have been presented, highlighting also the contributions linked to the strain gradient effect.
The approach has been validated numerically by means of comparison with the results
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accessible in the literature, if available, for both classical and nonlocal elasticity. The results
have been presented in terms of displacements and stresses, varying the geometric features,
mechanical properties, lamination schemes, as well as the influence of the nonlocal effect.
The differences that have been observed among the theories have been emphasized. In
particular, the results have proven that the stress components are noticeably different by
changing the plate theory, especially for higher values of thickness. Finally, it should be
specified that the proposed solutions could be used for further advancements of this topic
in nonlocal elasticity and could be taken as benchmarks for future comparisons, especially
if numerical methods are developed.
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Appendix A. Algebraic Form of the Stiffness Matrix

As specified in (32), the static problems at issue are governed by the algebraic linear
system K∆ = F. The terms included in the symmetric matrix K are presented in this
Appendix, for the two cases investigated in the paper.

Appendix A.1. Cross-Ply Laminates

As far as cross-ply lamination schemes are concerned, the terms of the first row of the
matrix K are given by

K11 = A11α2 + A66β2 + `2
[

A11

(
α4 + α2β2

)
+ A66

(
β4 + α2β2

)]
, (A1)

K12 = (A12 + A66)αβ + `2
[
(A12 + A66)

(
α3β + αβ3

)]
, (A2)

K13 = −c1

{
E11α3 + (E12 + 2E66)αβ2

+ `2
[

E11

(
α5 + α3β2

)
+ (E12 + 2E66)

(
α3β2 + αβ4

)]}
,

(A3)

K14 = (B11 − c1E11)α
2 + (B66 − c1E66)β2

+ `2
[
(B11 − c1E11)

(
α4 + α2β2

)
+ (B66 − c1E66)

(
β4 + α2β2

)]
,

(A4)
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K15 = (B12 − c1E12 + B66 − c1E66)αβ

+ `2
[
(B12 − c1E12 + B66 − c1E66)

(
α3β + αβ3

)]
.

(A5)

The terms of the second row are defined as

K22 = A66α2 + A22β2 + `2
[

A66

(
α4 + α2β2

)
+ A22

(
β4 + α2β2

)]
, (A6)

K23 = −c1

{
E22β3 + (E12 + 2E66)α

2β

+ `2
[

E22

(
αβ3 + β5

)
+ (E12 + 2E66)

(
α4β + α2β3

)]}
,

(A7)

K24 = (B12 − c1E12 + B66 − c1E66)αβ

+ `2
[
(B12 − c1E12 + B66 − c1E66)

(
α3β + αβ3

)]
,

(A8)

K25 = (B22 − c1E22)β2 + (B66 − c1E66)α
2

+ `2
[
(B22 − c1E22)

(
α2β2 + β4

)
+ (B66 − c1E66)

(
α4 + α2β2

)]
.

(A9)

As far as the terms of the third row are concerned, one gets

K33 =
(

As44 − 2c1Ls44 + c2
1Ns44

)
α2 +

(
As55 − 2c1Ls55 + c2

1Ns55

)
β2

+ `2
[(

As44 − 2c1Ls44 + c2
1Ns44

)(
α4 + α2β2

)
+
(

As55 − 2c1Ls55 + c2
1Ns55

)(
β4 + α2β2

)]
+ c2

1

{
H11α4 + 2(H12 + 2H66)α

2β2 + H22β4

+ `2
[

H11

(
α6 + α4β2

)
+ 2(H12 + 2H66)

(
α4β2 + α2β4

)
+ H22

(
β6 + α2β4

)]}
,

(A10)

K34 =
(

As44 − 2c1Ls44 + c2
1Ns44

)
α

+ `2
[(

As44 − 2c1Ls44 + c2
1Ns44

)(
α3 + αβ2

)]
− c1

{
(F11 − c1H11)α

3 + (F12 − c1H12 + 2F66 − 2c1H66)αβ2

+ `2
[
(F11 − c1H11)

(
α5 + α3β2

)
+ (F12 − c1H12 + 2F66 − 2c1H66)

(
α3β2 + αβ4

)]}
,

(A11)
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K35 =
(

As55 − 2c1Ls55 + c2
1Ns55

)
α

+ `2
[(

As55 − 2c1Ls55 + c2
1Ns55

)(
α3 + αβ2

)]
− c1

{
(F22 − c1H22)β3 + (F12 − c1H12 + 2F66 − 2c1H66)α

2β

+ `2
[
(F22 − c1H22)

(
β5 + α2β3

)
+ (F12 − c1H12 + 2F66 − 2c1H66)

(
α4β + α2β3

)]}
.

(A12)

Instead, the terms of the fourth row are given by

K44 = As44 − 2c1Ls44 + c2
1Ns44

+ `2
[(

As44 − 2c1Ls44 + c2
1Ns44

)(
α2 + β2

)]
+
(

D11 − 2c1F11 + c2
1H11

)
α2 +

(
D66 − 2c1F66 + c2

1H66

)
β2

+
(

D11 − 2c1F11 + c2
1H11

)(
α4 + α2β2

)
+
(

D66 − 2c1F66 + c2
1H66

)(
β4 + α2β2

)]}
,

(A13)

K45 =
(

D12 − 2c1F12 + c2
1H12

)
αβ +

(
D66 − 2c1F66 + c2

1H66

)
αβ

+ `2
[(

D12 − 2c1F12 + c2
1H12

)(
α3β + αβ3

)
+
(

D66 − 2c1F66 + c2
1H66

)(
α3β + αβ3

)]}
.

(A14)

Finally, the terms included in the last row assume the following aspect:

K55 = As55 − 2c1Ls55 + c2
1Ns55

+ `2
[(

As55 − 2c1Ls55 + c2
1Ns55

)(
α2 + β2

)]
+
(

D66 − 2c1F66 + c2
1H66

)
α2 +

(
D22 − 2c1F22 + c2

1H22

)
β2

+
(

D66 − 2c1F66 + c2
1H66

)(
α4 + α2β2

)
+
(

D22 − 2c1F22 + c2
1H22

)(
β4 + α2β2

)]}
.

(A15)

Appendix A.2. Angle-Ply Laminates

The coefficients included in the stiffness matrix are presented below for angle-ply
laminates. When omitted, their definitions are the same as those presented for the cross-ply
sequences. The terms of the first row are given by

K13 = −c1

{
3E16α2β + E26β3 + `2

[
3E16

(
α4β + α2β3

)
+ E26

(
α2β3 + β5

)]}
, (A16)

K14 = 2(B16 − c1E16)αβ + `2
[

2(B16 − c1E16)
(

α3β + αβ3
)]

, (A17)
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K15 = (B16 − c1E16)α
2 + (B26 − c1E26)β2

+ `2
[
(B16 − c1E16)

(
α4 + α2β2

)
+ (B26 − c1E26)

(
α2β2 + β4

)]
.

(A18)

The terms of the second row are defined as

K23 = −c1

{
E16α3 + 3E26αβ2 + `2

[
E16

(
α5 + α3β2

)
+ 3E26

(
α3β2 + αβ4

)]}
, (A19)

K24 = (B16 − c1E16)α
2 + (B26 − c1E26)β2

+ `2
[
(B16 − c1E16)

(
α4 + α2β2

)
+ (B26 − c1E26)

(
α2β2 + β4

)]
,

(A20)

K25 = 2(B26 − c1E26)αβ + `2
[

2(B26 − c1E26)
(

α3β + αβ3
)]

. (A21)
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