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Abstract: Additive manufacturing (AM), widely known as 3D-printing, builds parts by adding
material in a layer-by-layer process. This tool-less procedure enables the manufacturing of porous
sound absorbers with defined geometric features, however, the connection of the acoustic behavior
and the material’s micro-scale structure is only known for special cases. To bridge this gap, the work
presented here employs machine-learning techniques that compute acoustic material parameters
(Biot parameters) from the material’s micro-scale geometry. For this purpose, a set of test specimens
is used that have been developed in earlier studies. The test specimens resemble generic absorbers
by a regular lattice structure based on a bar design and allow a variety of parameter variations, such
as bar width, or bar height. A set of 50 test specimens is manufactured by material extrusion (MEX)
with a nozzle diameter of 0.20 mm and a targeted under extrusion to represent finer structures. For
the training of the machine learning models, the Biot parameters are inversely identified from the
manufactured specimen. Therefore, laboratory measurements of the flow resistivity and absorption
coefficient are used. The resulting data is used for training two different machine learning models, an
artificial neural network and a k-nearest neighbor approach. It can be shown that both models are able
to predict the Biot parameters from the specimen’s micro-scale with reasonable accuracy. Moreover,
the detour via the Biot parameters allows the application of the process for application cases that lie
beyond the scope of the initial database, for example, the material behavior for other sound fields or
frequency ranges can be predicted. This makes the process particularly useful for material design
and takes a step forward in the direction of tailoring materials specific to their application.

Keywords: acoustics; porous materials; material extrusion; design for additive manufacturing; sound
absorption; artificial neural network; machine learning

1. Introduction

Porous materials are widely used for sound absorption and noise mitigation and find
applications in various technical disciplines. Therein, three mechanisms can be distin-
guished: absorption of airborne sound, decoupling of vibrating systems and reduction
of flow-induced sound. First, the most common and well-known application for porous
materials is sound absorption, for example in room acoustics [1] or porous liners in aircraft
engine inlet and exhaust pipe [2,3]. The scope of this work as well lies within this field. For
this mechanism, the dominating effect is the dissipation of the acoustic energy when the
material is placed in front of an acoustically rigid boundary. A second important aspect is
the application of porous materials with the effect of decoupling vibrating structures. This
effect is commonly employed for improving sound insulation of double panel walls, for
example in aircraft fuselage sidewall panels [4,5] or in building acoustics [6,7]. Thereby,
the two wall panels are separated by the porous material. The damped propagation of the
acoustic wave inside the porous material results in a decrease of the mechanic coupling of
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the two panels. The effect of decoupling can be exploited as well with regard to aircraft
structures. Here, the application of porous materials on the outer aircraft skin can reduce
the excitation of structure-borne sound that results from an external pressure field [8]. The
third application of porous materials is the reduction of flow-induced sound emitted from
moving objects [9-12]. All mentioned applications make use of sheets of porous materi-
als, for example, fibrous mineral wool, synthetic foam, or porous metals. These porous
materials show favorable acoustic properties, specifically a high absorption coefficient,
especially in the higher frequency regime [13]. Nevertheless, these materials typically
consist of an irregular microstructure and a geometric description of the microstructure is
available as homogenized values only. This makes an investigation of the material structure
on the micro-scale (the micro-scale is hereafter understood as the size scale of the pores,
see [14], whereas the macro-scale are the overall specimens dimensions) and its relation to
the acoustic behavior rather difficult. Therefore, the basic idea of the presented paper is
to bridge the gap between the absorber’s micro-scale geometry and its acoustic behavior
by means of machine-learning techniques. The acoustic behavior thereby is described
material-specific parameters in combination with mechanical porous media models. This
“detour” allows the necessary input data set to be rather small and enables the prediction
of the acoustic behavior for arbitrary application cases of the material that go beyond the
specific test cases with which the data has been retrieved.

1.1. Description of Porous Media by Mechanical Models

A common engineering task in acoustics is the adjustment of the appropriate amount
of damping of a fluid cavity, for example to adjust reverberation time. Acoustic damping
can be effectively reached by means of porous materials that are mounted onto the surface of
a rigid wall and thus serve as acoustic absorbers. The general procedure for the application
of porous material commonly is a first laboratory-scale characterization of the material
followed by an analysis of the target system, resulting in information where and how the
material at hand can effectively be employed. The laboratory tests mostly incorporate
acoustic measurements of the absorption coefficient, flow resistivity and further parameters.
This straightforward procedure allows for a reasonable application of available materials.
Nevertheless, the possibility to directly design materials, in the sense of tailoring them
with special regard to the application often is of interest. An approach to determine the
necessary acoustic parameters that fulfill a given task is shown in [15] by tailoring porous
media to mitigate aeroacoustic trailing edge noise. Nevertheless, a core challenge during
the material design task of porous media is the difference between the geometric and
acoustics properties of the material. On one side, the geometric description is essential
for a subsequent manufacturing process. For porous media in acoustic applications, the
geometry on both the macro-scale and the micro-scale is important. Geometric properties
are, for example, the sample thickness on the macro-scale and the pore diameter (if the
pores are assumed to be rather cylindrical) or even more complex descriptions of the pore
geometry on the micro-scale. On the other side, the desired material properties are derived
using mechanical models that resemble the acoustic behavior of the material. Thereby,
the Biot model, [16,17], is the most complex one since it models the wave propagation of
elastic waves within the material of both, the pressure wave in the fluid phase and the
shear and pressure wave in the elastic (skeleton) phase of the material. Due to this full
description, the Biot model is accepted as a reference for modeling porous materials [18].
Other, more simple models neglect the elasticity of the skeleton phase and model only the
pressure wave within the fluid. They incorporate the influence of the skeleton by definition
of equivalent fluid properties. These models are referred to as the class of equivalent
fluid models. Prominent examples are the model introduced by Johnson et al. [19] and
the model by Champoux and Allard [20]. All aforementioned models employ material
parameters that represent the material in a homogenized way, the pore structure of the
material is not resolved. These acoustic material parameters are hereafter referred to as
Biot parameters. The Biot parameters can be classified into the parameters that can be
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attributed to the (equivalent) fluid phase and those attributed to the skeleton. The relevant
parameters of the fluid phase are the porosity ¢, the flow resistivity &, the tortuosity aeo
and the viscous and thermal characteristic lengths A, A'. For the special case of the Johnson—
Champoux—Allard-Lafarge (JCAL) model [19-21] that is used within this work, the static
thermal permeability ko is additionally introduced. For the full description of the material
using Biot’s theory, the mechanical parameters of the skeleton material are required as well.
From the set of Biot parameters the flow resistivity, porosity and tortuosity can be easily
explained: the porosity refers to the share of fluid volume on the overall sample volume, the
flow resistivity measures the possibility of a fluid flow to pass through the material and the
tortuosity indicates the degree of the geometric complexity of the pore structure. However,
one of the major drawbacks of the porous material models is that at least some of the
required parameters are hard to determine [18]. Indeed, some parameters can be measured,
such as flow resistivity, porosity and tortuosity. Moreover, for a given material it is possible
to inversely estimate these parameters, as shown for example in [22,23]. For the case of an
available geometric description of the material on the micro-scale, in [24] the computation
of the flow resistivity of a porous sample is computed using the Lattice-Boltzmann method.
Nevertheless, in general, no connection between the Biot parameters and the micro-scale
geometry is known. Therefore the application of porous material models is limited to
materials that already exist and for which the required parameters can be measured or
otherwise determined.

1.2. Additive Manufacturing of Porous Materials for Sound Absorption

One promising possibility to generate acoustically effective materials is the rapidly
growing field of additive manufacturing (AM), also known as 3D printing. The layer-by-
layer working principle of additive manufacturing processes provides new kinds of design
freedom during product development. In this way, for example, undercuts, mesoscopic
lattice structures, or free-form surfaces can be realized, making additive manufacturing
particularly suitable for the production of acoustically effective structures [25]. The speci-
mens investigated in this contribution consist of a micro-lattice of parallel bars as described
in [26]. Hence, AM is employed within this contribution for manufacturing the required
amount of specimens.

Due to the aforementioned reasons, AM provides the opportunity to significantly im-
prove both geometric and functional product properties [27,28]. Due to the aforementioned
potentials, AM processes can greatly improve the production of acoustically effective
structures. Especially the material extrusion (MEX) is predestined for this application due
to its process principles, for example, no need for support structures, no requirement for
removing powder or resin in undercuts and channels, or the use of fine nozzle diameters.
The high resolution of the microstructure in the x-y direction is only limited by the nozzle
diameter, which in MEX processes can be down to 0.10 mm on the lower end, and the
printer itself. Other processes such as the powder bed fusion of polymers (PBF-P) or
vat photopolymerization (VAT) theoretically also offer the possibility of producing even
finer microstructures. However, since the liquid material of the VAT process (capillary
effects, etc.) leads to unwanted hardening of the material and the powder bed in the PBF-P
process results in sintering as well as powder residues in the geometry, the MEX process is
particularly well suited for this use [27].

In the past, AM techniques have been used to produce a variety of sound-absorbing
materials, including Helmholtz resonators [29], straight [30], inclined [31], angled tubes [29],
sound crystals [32]. Moreover, microperforated plates [33] and sounds absorbers made of
micro-grids [34-36] have been manufactured (see also [26,34,37-40]). The additive manufac-
turing of porous absorbers has also been addressed in a rudimentary way in the literature.
Ring et al. have demonstrated the additive manufacturing of the porous and acoustically
effective absorber structures using MEX processes and were able to show the potential of
these structures. Additionally, the authors were able to investigate relationships between
the geometry and acoustic properties, the Biot parameters (tortuosity, porosity, etc.) [26,41].
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Zielinski et al. have performed a 3D printing process comparison with different materials
using porous absorbers, revealing that the process parameters have a crucial influence on
the reproducibility of acoustically effective structures [37]. Boulvert et al. have presented
studies on geometrical factors influencing the acoustic properties, in which mainly the
gradation of porosity is realized via the infill of the porous absorbers [38]. This approach is
similar to the one shown in [26], where grading the porosity via the infill alone does not
fully exploit the design potential of additive manufacturing.

A common feature of all previously presented research results is the focus on the
technical feasibility of additive manufacturing of acoustically effective porous structures
and research into factors influencing the acoustic properties. However, the focus so far
has been only on the manufacturing of porous geometry without defining the acoustic
properties in advance. Nevertheless, the use of AM technologies for the creation of porous
structures offers the possibility to efficiently introduce acoustic properties in a product-
specific way, taking into account the potentials and limitations of the manufacturing process.
A method for targeted adjustment of acoustic properties through defined geometries, taking
into account process-related influencing factors, thus is desirable.

1.3. Aims and Scope of the Presented Work

As mentioned above, several experimental capabilities exist to investigate the acoustic
behavior of porous materials. Moreover, the acoustic behavior of porous materials can be
described using various mechanical models of different complexity and accuracy. Recently,
AM capabilities have proven successful in manufacturing generic porous materials as well.
Nevertheless, for manufacturing a porous specimen, a suitable geometric description of the
specimen is required on both, the micro- and macro-scale. The acoustic description of the
specimen with both, experiments and/or mechanical models, involves the description with
the Biot parameters. These two “worlds” (macro-/micro-scale of the geometry and Biot
parameters) are rather detached, as no general connection of geometric dimensions and the
Biot parameters of porous materials is known. Indeed, for some special cases models exist
to estimate the Biot parameters from the specimen geometry, for example, the tortuosity
can be estimated from the porosity as shown in [14,42-44]. In order to bridge this gap, the
work presented here employs Machine-Learning (ML) techniques to build a model that
computes the Biot parameters for a given geometric description of a specimen.

A similar idea, the computation of the acoustic behavior of porous material using ML
techniques, is presented, for example, in [45-47]. In contrast to the approach proposed
within this contribution, the authors directly compute the absorption coefficient of the
porous material using a neural network model. This approach is reasonable as long
as the macroscopic sample dimensions are kept constant or if data from samples with
different dimensions are available for the training, whereas the latter is the case in the
mentioned publications. Another approach is presented in [48]. Here the authors use
more material-specific parameters for prediction of the absorption coefficient of a porous
absorber. However, the parameter set chosen is rather general and accounts for the type
of material only by referring to the porosity. For the work presented here, a “detour” via
the Biot parameters is used. It is a detour in the sense that the whole process becomes
more complex, as the Biot parameters have to be derived which is a challenging process
involving ill-posed mathematical problems. However, this detour has some favorable
implications: the Biot parameters are material-specific parameters. This way, no mixing of
the description of the material and its acoustic behavior (for example: absorption coefficient
in front of a rigid wall) occurs. Having the Biot parameters available, it becomes possible to
compute the acoustic behavior of the investigated material for conditions apparent in the
available data (sound field, macro-scale dimensions of the specimen), but other conditions
can be covered as well. For example, the behavior of the material for other frequency
ranges than the measured ones can be computed. Another application example for the Biot
parameters is the case of more complex simulations, such as finite element computations.
Using such wave-resolving methods, the behavior of the material can be evaluated in other
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Step 1

LHS sampling of
design variables

sound fields, such as diffuse fields. Moreover, the dimension of the necessary training
data is reduced as samples with a constant thickness can be used rather than a population
comprising different sample thicknesses. Due to these reasons, the “detour” via the Biot
parameters is assumed to justify the higher effort and adds value to this field of research.

The resulting ML models are then used for an inverse material design approach.
Therefore, materials are designed that are supposed to show a predefined acoustic behavior.
Thereby, the advantage of using the Biot parameters as a basis becomes clear, as this
procedure can be done by adjusting the specimen geometry on the micro-scale only but as
well on the macro-scale.

The procedure presented within this work allows to adjust the acoustic properties of
the absorbers before production and thus enables an efficient application of acoustically
effective materials that are best suited for the requirements of the application. In turn, this
procedure might even reduce secondary factors such as costs, weight, or carbon footprint.

1.4. Outline of the Paper

The paper is organized as follows: in Section 2 the methods applied within this work are
presented and a description of the developed specimen is given. A general overview of the
applied procedure is presented in Section 2.1, the design methodology and manufacturing
process for the generic specimens are shown in Sections 2.2 and 2.3, respectively. The methods
to acoustically investigate and derive Biot parameters are described in Sections 2.4 and 2.5,
the applied machine learning process including the applied models is described in Section 2.6.
In Section 3, the results of the acoustical inspection, parameter identification and machine
learning process are shown in Sections 2.4 and 3.2. The results of the application of the process
to generate new absorbers with a predefined behavior are shown in Sections 3.3 and 3.4. A
conclusion and an outlook is given in Section 4.

2. Materials and Methods

In this section, the study design and used methods are presented. The goal of the work
is to build a model using ML techniques that computes the Biot parameters for a given
specimen micro-scale geometry. In a subsequent step, the obtained ML models are used to
design new sound-absorbing structures that exhibit a predefined acoustic behavior. Within
this section, first, the overall concept of the process is described, followed by a description
of the generic specimen investigated here. Furthermore, the used experimental setups
for manufacturing and characterization of the specimens are described and the process to
identify the Biot parameters is shown. Finally, the used machine learning models and the
material design approach are described.

2.1. General Description of the Applied Process

The goal to build ML models that allow the computation of Biot parameters from a
geometric description of the specimens and to utilize these for material design employs a
6-step procedure. The process is sketched in Figure 1.

Step 2 Step 3

Measurement of
absorption coefficient and
flow resistivity

Additive Manufacturing
of 50 specimens

Y

Step 6 Step 5 Step 4 il
Absorber design Training of the Inverse identification of
using ML Methods Machine-Leaning |« Biot parameters using JCAL
J models model and data augmentation

Figure 1. General procedure of the work to obtain ML models that predict Biot parameters from specimen geometry and

their application to absorber design.
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The generic specimens investigated within this work are presented in Section 2.2 and
are parametrically defined by four so-called design variables. The values of the design
variables are referred to as the design parameters and form the geometric description of
the specimen on the micro-scale.

The procedure starts in Step 1 (see Section 2.2) with a Latin Hypercube Sampling (LHS)
of the design variables to generate a population of 50 specimens that explore the chosen
data range of the design variables. All 50 designs are shown as well in Table A1 in the
Appendix A. In Step 2, the 50 designed specimens are manufactured using AM technology,
this is described in detail in Section 2.3. With the design parameters, the required inputs
for the ML models are available. Hence, the Biot parameters that form the outputs of
the ML models have to be determined. It would be desirable to directly measure these
quantities. However, only a few of the Biot parameters can be measured directly without
tremendous effort. To the author’s knowledge, these are the flow resistivity, the porosity
and the tortuosity. Since the authors only have access to a measurement setup for the flow
resistivity, an inverse parameter identification procedure is employed for the remaining
Biot parameters. Therefore, in Step 3 the flow resistivity and the absorption coefficient are
measured, the measurement principles are described in Section 2.4. Using these quantities,
the remaining Biot parameters are inversely identified in Step 4. Therefore, the specimen
is modeled using the Johnson-Champoux—Allard-Lafarge (JCAL) model, this procedure
is described in detail in Section 2.5. Within this step, a data augmentation procedure is
employed as well in order to enrich the database. Now both, the micro-scale geometry
(the design parameters) and the Biot parameters are available. These data sets form the
training data for the ML models (inputs/features: design parameters, outputs/labels: Biot
parameters) that are set up and trained in Step 5. This is described in Section 2.6. Thereby,
two different models, a K-Nearest Neighbor model and an Artificial Neural network, are
employed. Having these models available, the design of porous materials (Step 6) becomes
possible. Therefore, an inverse procedure is employed that is described in Section 3.3.

2.2. Specimen Design (Step 1)

For the additive manufacturing of porous absorber structures, a test specimen was
developed within the scope of the research work, taking design for additive manufacturing
regarding design potentials and limitations into account. Detailed descriptions of the
specimens baseline design can be found in [26]. For the development of AM parts, a
systematic development with the aid of different design tools is important to encourage
the generation of ideas and to ensure a goal-oriented design [28,49,50]. However, the
application of AM potentials must be considered in the early stages of product development,
otherwise, the freedoms of AM cannot be fully utilized [51]. For this reason, the limitations
and potentials of additive manufacturing with a focus on the porosity of the test specimens
were considered during development to ensure additive manufacturability. In addition
to the manufacturability of the test specimens by material extrusion, the focus is also on
the possibility to vary the test specimens to be able to manufacture different variants that
show only a small variation of the absorption properties. For this reason, a regular lattice
structure based on a bar design was selected that functions as a porous structure.

This test specimen, as shown in Figure 2, is designed in layers and contains a de-
fined number of bars per layer. The specimen design can generally be adjusted on the
micro- and macro-scale. The micro-scale can be varied by different parameters, hereafter
referred to as design variables. These are the bar width (d), the bar spacing (s), the bar
height (k) and the plane angle (¢) and can be adjusted in a certain interval, see Table 1.
Therein, the values are already chosen accordingly to the chosen AM process, here MEX.
Table 1 shows that, for example, the bar spacing or the bar width can be varied in an
interval of 0.10-0.50 mm, resulting in an increase or decrease of the bar number in the test
specimen. All test specimens are printed with four outline shells resulting in a boundary
of 0.80 mm with an extrusion width of 0.20mm. The specimen diameter of 30 mm and
height [ = 15 mm describe the specimen on the macro-scale. These dimensions are kept
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constant throughout this work. The specimen height is chosen in order to balance out
the required production time (proportional to the height) and the ability to generate a
reasonable amount of absorption in the frequency range that is chosen for this work. The
frequency range and specimen diameter are prescribed by the available impedance tube
with 900-6600 Hz (see Section 2.4 for more details).

(a) Design variables of the investigated specimens (b) Image of the investigated specimen 2

Figure 2. Overview of investigated specimen. (a) shows the test specimen including the design variables (from [26]) which

are used to vary the test specimen. (b) shows the additive manufactured specimen 2.

Table 1. Overview of the design variables (see Figure 2a) and their variation ranges.

Bar Width (d) Bar Spacing (s) Bar Height (h) Plane Angle (¢)
0.10-0.50 mm 0.10-1.00 mm 0.05-0.20 mm 0°-90°,

In the scope of this contribution, a large number of different test specimens are
manufactured. They are expected to exhibit a broad range of varying acoustic properties to
link or identify the relationship of the geometry parameters with the acoustic parameters
using a machine learning approach. This way, acoustic parameters should be able to be
determined during the design phase.

The parameter selection of the design variables is carried out within the parameter
limits mentioned in Table 1 and employs a Design of Experiment (DOE) methodology to
ensure the meaningful selection of the design parameters. The DOE-process employs a
Latin Hypercube Sampling (LHS) [52-58] strategy for this purpose. Within the scope of the
contribution, the sample size amounts to 50 porous absorber structures, whose parameter
combinations can be found in Table A1 in the Appendix A. The data generation was done
by using the software OpenSCAD, see also [59].

2.3. Additive Manufacturing of the Specimens (Step 2)

The acoustically effective porous structures were manufactured through material
extrusion (MEX). Material extrusion processes offer good possibilities for the production
of porous absorber structures since extremely filigree structures can be produced through
changeable nozzle diameters. It is assumed that this procedure offers the highest potential
that the best possible acoustic properties can be realized. However, the production of
porous absorber structures also places special demands on the manufacturing process,
since the use of fine nozzle diameters (down to 0.10 mm) in combination with the realization
of thin walls, gaps and overhangs is at the limit of what is practically possible. For this
reason, the selection and controllability of the process parameters are essential for the
successful production of acoustically effective structures. If the ambient conditions (ambient
temperature, humidity) or the process parameters (flow, cooling, retraction distance) are
incorrect, manufacturing errors will occur, leading to dimensional deviation of the part or
termination of production due to clogging of the nozzle. The material used is polylactic
acid (PLA) from DasFilament (Emskirchen, Germany) to create porous absorbers [26,41].
PLA is particularly suitable for the production of microstructures by material extrusion
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because it has comparatively low shrinkage and thus low thermally induced stresses. In
addition, PLA’s lower printing temperature allows a fast cooling down of the extruded
strands and makes it more suitable for parts with fine details such as overhangs and gaps,
respectively, which is required for the bar design [60].

In addition, compared to other processes, such as PBF-P or VAT, there is the advantage
that there is no material buildup due to sintering or unwanted polymerization due to
capillary effects [27]. A total of 50 different test specimens were created as described in
Section 2.2 which is similar to the amount of specimen in [47]. The resulting building times
are approx. 120-240 min per specimen, depending on the number of bars and the layer
height. The specimens were sliced using Simplify3D® (4.1.2, Simplify3D, LLC, Cincinnati,
OH, USA, 2020) and manufactured on the X400, a pro-consumer additive manufacturing
machine from German RepRap GmbH (Feldkirchen, Germany), whose original extruders
were replaced by E3D Hemera (Direct Extruder, 24 V). A 0.20 mm Micro-Swiss nozzle
(Ramsey, MN, USA) was used as the extrusion nozzle. The process parameters were used
as listed in Table 2.

Table 2. Process parameters used in additive manufacturing.

Nozzle Diameter

0.20 mm
Nozzle temperature (°C) 210
Bed temperature e 60
Layer height ! (mm) 0.05-0.11
Flow (%) 85
Extrusion Speed (mm/s) 36
Cooling (%) 40
Outline direction Inside-Out
Extrusion width (mm) 0.15; 0.20; 0.25

! ncrement of 0.005 mm.

Figure 3 shows the printing process of three specimens. The first grid layer was
applied horizontally to the printer because this orientation showed less detachment from
the build platform. The smaller bar widths (<0.20 mm) were achieved by targeted under
extrusion because this ensured a more continuous printing process. With smaller nozzle
diameters, the nozzle got clogged or the flow was not constant. Since all samples were to
be produced with as far as possible the same process parameters, the 0.20 mm nozzle was
chosen. The environmental conditions (temperature and humidity) were constant during
the manufacturing of the test specimens and in addition, the material is dried at 45°C
for about 6 h before processing. To assess the manufacturing accuracy of the additively
manufactured test specimens, an actual-target comparison of the initial geometry and the
manufactured test specimen was carried out (see Section 3.1.1).

Figure 3. Additive manufacturing of three test specimens using material extrusion. Used 3D printer: X400, ppro-consumer

additive manufacturing machine from German RepRap GmbH.
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2.4. Acoustical Investigation of Specimen Population (Step 3)

The method presented within this work aims to train ML models to map between the
geometry and the Biot parameters of porous samples. The geometry of all manufactured
specimens is known from the manufacturing process. Indeed, this manufacturing process
is somewhat uncertain, hence the manufactured geometry probably differs from the design
parameters. Nevertheless, previous studies have shown that the manufacturing process
applied here at least allows a sufficient precision for the purpose of this work [26]. Apart
from the specimen geometry, the Biot parameters are of interest and have to be determined.
However, only few of the Biot parameters can be measured directly and only the measure-
ment of the flow resistivity is available to the authors, the remaining Biot parameters are
inversely identified, a procedure already successfully applied in the past. Therefore, the
absorption coefficient and the flow resistivity of all specimens are measured and serve
as inputs to the inverse procedure. In the following sections, the measurements of the
flow resistivity (Section 2.4.1) and absorption coefficient (Section 2.4.2) are described. The
inverse procedure to estimate the Biot parameters from the measurements in described in
Section 2.5.

2.4.1. Measurement of the Flow Resistivity

All 50 manufactured specimens, as described in Section 2.2, are measured in the labo-
ratory regarding their flow resistivity and their absorption coefficient. For the measurement
of the flow resistivity, the method with the alternating flow is employed according to ISO
9053-2:2020 [61]. The measurement setup Nor1517A of Norsonic (Oelde-Stromberg, Ger-
many) is used (see Figure Ala). It comprises a vessel that is equipped with a sinusoidally
moving piston for generating an alternating pressure in the vessel and a measurement
microphone to measure the pressure. The vessel is closed by the specimen, hence a pressure
drop over the specimen can be measured. As the movement of the piston generates a
known air flow g and the pressure drop over the specimen Ap is measured by the micro-

phone, the airflow resistance R can be directly evaluated by R = %. The flow resistivity &

is computed from the airflow resistance with the specimen’s cross-sectional area A and
the specimen thickness [ by & = ¥. It should be noted that the specimen diameter used
here is only 30 mm, whereas the measurement standard requires a diameter of 100 mm.
To circumvent this difference, an adapter is manufactured and the measured values are
corrected accordingly.

2.4.2. Measurement of the Absorption Coefficient

The absorption coefficient is measured in an impedance tube with a diameter of 30 mm
using the two-microphone method according to ISO 10534-2:1998 [62]. The measurement
device is an AED 1000 AcoustiTube (Dresden, Germany) (see Figure Alb). Thereby, the
acoustic transfer function between the two microphones is evaluated while the system
is excited by a broadband white noise signal. From the transfer function, the complex
reflection factor of the specimen surface can be evaluated and the absorption coefficient
can be computed from the reflection factor. Due to the measurement principle, below the
so-called cut-on frequency (here: 6600 Hz) that itself relates to the tube’s diameter, only
plane waves travel through the tube. Thus, the presented absorption coefficients within
this work are valid for normal incident plane waves only. As the cut-on frequency gives
the upper limit for the possible frequency range, the lower limit is determined by the
microphone distance (here: 20 mm) and results for the setting used here to 900-6600 Hz.
Measurements in the frequency range below 900 Hz are assumed here to be unnecessary,
as the absorption coefficient of a specimen with a height of | = 15mm is expected to be
negligibly low.

2.5. Inverse Parameter Identification Using the JCAL-Model (Step 4)

Based on the measured flow resistivity and absorption coefficient data described in
Section 2.4, the remaining Biot parameters of the porous specimens are inversely identified.
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This inverse procedure is common in the literature and has been applied often in the past,
for example [23,26]. Therefore, the absorbers are modeled using the JCAL model [19-21].
The mathematical form of the model is used as given in [63] and shown in the appendix,
see Appendix D. The JCAL model belongs to the class of equivalent fluid models, as the
skeleton phase of the two-phase (fluid-filled pores and solid skeleton) system is assumed
to be rigid. In former studies, the Biot model had been employed directly within this
parameter identification schema [26], using an in-house finite-element code capable of
using Biot’s model for numerical computations [64]. Nevertheless, numerical experiments
have shown that the skeleton’s elasticity of the specimens used here can be neglected and
the skeleton can be modeled as rigid. This allows the application of models belonging to
the class of equivalent fluids, here the JCAL model. The JCAL model is a six parameter
model, featuring the following parameters: the flow resistivity =, the porosity ¢, the high-
frequency limit of the tortuosity a,, the viscous and thermal characteristic lengths A, A’
and the static thermal permeability k.

The JCAL model allows the computation of the equivalent density g and the equiv-
alent bulk modulus K of the equivalent fluid that represents the porous material, see
Equations (A1) and (A2), respectively. Using these quantities, the characteristic impedance
Z. and the complex wavenumber k can be computed using the Equations (1) and (2)
from [23], respectively.

Zc=pK ¢y
/P
k=w 7 2)

With the quantities, Z and k, the surface impedance Z; of the porous material in front
of a rigid impervious wall can be computed for the case of normal incident plane waves
using Equation (3) from [65]. Thereby, the thickness of the specimen [ is used, j = v—1.

_'—ZC
]4) tan(k 1)

s = ®G)

Here, it becomes clear why the prediction of the Biot parameters is preferred over
the direct prediction of the absorption coefficient. The Biot parameters (or the subset used
here for the JCAL model) are material-specific parameters. The acoustic behavior of the
material for the case of a material mounted in front of a rigid wall is accounted for in
subsequent computation. Hence, the process proposed here finally allows the description
of the material at hand, independent of the mounting conditions or the sample thickness.
Using the surface impedance Z; and the characteristic impedance of the surrounding
fluid Z,, the absorption coefficient & of the porous material can be computed:

4Re(Zs) Zo
o=
(Re(Zs) + Zp)? + Im(Z)?

4)

Using the Equations (1)-(4), (A1) and (A2), the absorption coefficient of a material can be
computed for a given set of the six Biot parameters used for the JCAL model. Based on these
formulations, an inverse parameter identification procedure is set up using an evolutional
algorithm (settings: see Table A2). The updating process is sketched in Figure 4.
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Figure 4. Flowchart of the inverse parameter identification process. Starting with an initial guess for the Biot parameters,

the absorption coefficient is computed using the JCAL model and the results is compared to the measured data. Based on

the error measure, the Biot parameters are updated until convergence is reached.

As described before, the flow resistivity is determined experimentally, the remain-
ing five parameters (¢, Xco, A, A', k'O) are inversely identified. Therefore, the absorption
coefficient is computed (ajcar) for a first initial guess of the parameter set. The error of
the computed absorption coefficient ajc4; and measured absorption coefficient a,y is
determined using the sum of the squared differences for all frequencies i:

err = Z(aexp,z‘ - “]CAL,i)z : ©)

1

Based on the error measure given in Equation (5), the parameter set is updated using
an evolutional algorithm as described in [66]. The objective function to be minimized yields
the error measure given in Equation (5). The implementation of the evolutional algorithm
is taken from the python-library scipy [67], the specific configuration is shown in Table A2
in the Appendix C.

An evolutional algorithm is a stochastic approach, hence several runs of the algorithm
will yield somewhat different results, even though the initial parameter set remains un-
changed. This can be due to different minimal solutions that are found. However, even if
the same minimum is found in different runs, the stochastic nature will produce different
results within small limits. This behavior is used here to enlarge the database (data augmen-
tation) of the manufactured 50 specimens. The inverse parameter identification procedure
is run ten times for each specimen, hence the database that can be used for training the ML
models comprises 500 data sets with slightly different geometry-Biot parameter combina-
tions. This behavior is due to the fact that the inverse parameter identification problem is
ill-posed. Therefore, without additional information, it cannot be distinguished between
the different results and whether one or the other outcome is the physically correct result
and hence, all available results are used. In Figure A2, in the Appendix C, a correlation plot
can be found. It shows the inversely estimated porosity of the samples over an analytical

estimate that is computed with
s
=— . 6
(Panalyt s+d ( )
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It can be seen, that a general correlation (correlation coefficient p = 0.63) of the
inversely identified parameter and the analytical estimate can be found. The occurring
differences thereby could be attributed to several reasons, the rough analytical estimate,
manufacturing imperfections as well as the inverse parameter identification procedure.
Therefore, in general, the procedure is trusted. In order to further investigate the data
augmentation procedure, the standard deviation of the ten parameter identification runs
is computed for each specimen and Biot parameter. The results can be seen in Figure A3
in the appendix (Appendix C). The standard deviation is normalized with the mean of
the identified parameters. It can be seen that the variations of most parameters have a
magnitude of approx. 1Xx 107", Therefore, it is assumed that indeed some differences
occur for each run but since the deviations are rather small, the general behavior is kept.
Thus, it is assumed that the data augmentation yields meaningful results to enrich the
database and the choice of input parameters is reasonable.

2.6. Machine-Learning for the Geometry-Biot Parameter Relations (Step 5)

Since Machine-Learning is a vast and still rapidly growing field, hereafter only a very
short sketch of the idea and its application for engineering tasks is given. For further
information, it can be referred to various textbooks, such as [68,69]. To properly explain
the ML approach, it might be handy to first recall the classical model building process, as
sketched in Figure 5 and described in, for example [70]:

Phenomenon

Reality Mathematical Numerical Computer

Model Model " Model Code

Figure 5. Classical model building process (from [70]).

This classical approach starts with an event or phenomenon happening in reality that
is observed and, on a first level, is transformed into a so-called reality model. This reality-
model is then described using mathematical equations, yielding the mathematical model
which, in turn, is solved—often using numerical methods that lead to the numerical model—
by means of a computer. Within this classical approach, the basic relation, which is “what
the model should do” is coded within the mathematical equations of the mathematical
model. These mathematical equations are themselves based on the laws of physics (or
any other discipline). The basic idea of ML is, in contrast to this classical model building
approach, that the relations between the model parameters are not described based on
physical laws and mathematical equations, but that the relations are derived from existing
data. This process of deriving the relations from data often is referred to as learning or
training the ML model. Thereby, it is of tremendous importance that the desired relations
are already “coded” within the existing data. The field of ML models can generally be
divided into the sub-classes of supervised and unsupervised learning models. Thereby,
supervised learning employs both, the input data for the model and so-called labels, which
is the desired output of the model. On the other side, unsupervised learning models
require the input data only and attempt to find some sort of structure within this data, for
example, clustering.

Within the scope of this work, two different types of ML models are employed:
(a) a K-Nearest Neighbor (KNN) model, see Section 2.6.2, and (b) an Artificial Neural
Network (ANN) model, see Section 2.6.3. Both models belong to the class of supervised
learning models and are applied here as such, whereas both models can be used for
unsupervised learning as well. The reason for choosing these two different model types
here is to allow for a comparison of different approaches regarding the necessary effort
for the model training and the ability to predict a suitable set of geometry parameters for
the AM process. The models differ significantly regarding the required computational
effort for the training (few seconds for the KNN model, %25 min for the ANN model).
Moreover, it is assumed that the models show a different behavior regarding the ability to
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inter-/extrapolates from the learned data, which is assumed to be crucial for a reasonable
prediction of the Biot parameters for new specimen geometries. Such differences were
already observed in the past on other problem types, therefore these models were applied
here as well. Other ML model types have not been tested yet but are subject to future
studies. The models are implemented using the python-library scikit-learn [71].

2.6.1. Scaling of the Input and Output Data

The input data for the ML models are geometry parameters and, for the bar width,
the bar spacing and the bar height measured in mm. The plane angle in measured in °.

Except from the plane angle, the magnitude of the input data is approximately 1 x 107},

the magnitude of the plane angle is in the order of 1 x 10"

mean and standard deviation of the data with:

. The input data is scaled using

*_x_}
x = 7 . (7)

In Equation (7), the quantity x* represents the scaled input data, X is the mean and y
represents the standard deviation of the input data.

The Biot parameters, which is the output data of the ML models, have very different
dimensions and scales, for example, the viscous and thermal characteristic lengths are
geometric lengths, the static thermal permeability has the dimension of a surface, the poros-
ity and tortuosity are dimensionless and the flow resistivity has the dimension Pas/ m”,
Furthermore, the magnitude of these parameters is rather different and comprises a large
range of values; for example, the magnitude to the flow resistivity is 1 X 10° —1x10°, the
magnitude of the static thermal permeability is approx. 1 x 107%. It could be found that
the training process becomes rather unsuccessful when the input and output data is used
directly. This is expected to be a result of the large range of values within the data. There-
fore, variable scaling is introduced and applied to the Biot parameters in order to result in
training data comprising a smaller value range. The resulting scaled Biot parameters are
shown in Table 3:

Table 3. Scaling of the Biot parameters to balance out the different magnitudes.

Biot Parameter Scaling Biot Parameter Scaling
z! B =& ¢ ¢p*=1x10°¢
oo (s = 1% 10° o At A =1x10° A
AP A" =1x10° A Kb K =1x10"2 k)

! flow resistivity , 2 porosity, 3 tortuosity, * thermal characteristic length, > viscous characteristic length, ® static
thermal permeability

The flow resistivity remains unscaled. This scaling is assumed to only improved the
training performance of the ML models but does not affect the general procedure.

2.6.2. K-Nearest Neighbors

K-Nearest Neighbor (KNN) ML models are a very popular approach and have been
successfully applied to classification problems. For further information on the topic, the
reader is referred to the the vast amount of textbooks and papers on this topic, such
as [69,72-74]. For the classification, the labels of the existing data serve as the classes into
which new data instances shall be classified during the application of the model. As inputs,
KNN models use a feature vector for each data instance. Now a class is formed by all input
data instances, whose feature vectors are similar to each other. During the application
of the model, new data instances with their individual feature vectors are compared to
the feature vectors of the classes the model initially had learned and the new instance is
classified into that class to which its own feature vector is most similar. The similarity
thereby is measured using certain distance measures that are specified by the user. Another
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parameter that determines the behavior of the model is the number of neighbors (k) that
are accounted for during the classification process. Due to expected noise within the data,
it is common to compare new data instances to more than one instance. The parameter
k determines the number of data sets to which the new data instance is compared. The
distance measure and the number of neighbors are the so-called hyperparameters of the
ML model. The appropriate choice of these hyperparameters is crucial for a successful
application of ML models. KNN models can be applied to regression problems as well.
In such cases, the output quantity is not a single and discrete class but is computed as a
continuous quantity from the k neighbors [69].

The KNN model employed within this work uses a k-parameter of k = 5 and weights
the different neighbors of the new data instance based on the inverse of its distance to
the learned data instance. The choice of the k-parameter results from the hyperparameter
tuning that was done on the validation data set. In Figure A4, the results of the cross-
validation with different k-parameters are shown. It can be seen, that the cross-validation
score is improved from k = 2 to k = 5 but even higher values for k do not further improve
the score. Therefore, k = 5 is chosen. The validation and test scores for the KNN model can
be found in Table 4. The model is used as a multi-output regression model.

Table 4. Training and test scores of the KNN and ANN model; uncertainty measure is two times the
standard deviation of the cross-validation process (equiv. to approx. 95% confidence interval).

R2-Score KNN ! ANN 2
cross-validation 0.80 +0.10 0.73+0.13
test on unseen data 0.76 0.80

'K-Nearest Neighbor, 2 Artificial Neural Network

2.6.3. Artificial Neural Network

The approach of the Artificial Neural Networks is based on the idea of the so-called
perceptron [75,76]. A perceptron can be understood as a unit that has input channels
taking a data vector and yielding a certain scalar output based on the input data vector.
Therefore, a weighted sum of the input vector elements is computed and the result of this
sum serves as the argument to the so-called activation function. This activation function
then computes the perceptron’s output and can yield both, discrete or continuous values.
The most simple category of ANNSs are multi-layer perceptrons, for which a multitude
of single perceptrons (or neurons) are organized in several layers and interconnected to
each other, so the output of one neuron is the input to one or more subsequent neurons
in the following layer. This connection between the layers is further associated with a
certain weight, the weights of each connection within the ANN is adjusted during the
training process. Therefore, several optimization algorithms can be used. This is necessary
since the weight adjustment problem is ill-posed. The main hyperparameters of the ANN
thus are the topology (number of neurons/layer and number of layers), the activation
function(s) and the optimization algorithm. One of the main advantages of multi-layer
perceptron neural networks over single perceptrons is the ability to learn and reproduce
non-linear functional relations. Indeed, much more complex versions of this multi-layer
perceptron prototype exist today, for example, recurrent neural networks, convolutional
neural networks and many more [69,77].

The ANN employed within this work is set up as a four-layer feed-forward ANN
with two hidden layers. The input and output layers have 4 and 6 neurons, respectively,
according to four geometry parameters that serve as inputs and the six Biot parameters &, ¢,
oo, A, A" and kj as outputs. The hidden layers employ 4000 and 100 neurons, respectively.
The activation function used for all neurons is the so-called Rectified Linear Unit (ReLU),
the optimization algorithm for adjusting the weights is the Adam algorithm. The resulting
ANN model is sketched in Figure 6.
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Figure 6. Sketch of the ANN used within this work, drawn using [78]. The input layer has four neurons and takes the
geometry parameters w, s, 1, ¢ of the specimen. The output layer has six neurons for the Biot parameters Z, ¢, oo, A, A'
and k{). The two hidden layers have 4000 and 100 neurons (not to scale), respectively. The activation function for all neurons
is the ReLU function.

The hyperparameters (the number of layers, neurons, activation function and opti-
mization algorithm) are derived during a 3-fold cross-validation procedure. Thereby, the
topology mentioned above (4-4000-100-6) reached the best validation score, as shown in
Figure A4. The ReLU activation function and the Adam optimization algorithm were the
only choices with which a converging training process could be reached. The validation
and test scores for the ANN model can be found in Table 4.

3. Results and Discussion

Within this section, the obtained results of the work are presented. In the first part
(Section 3.1), the manufactured specimen are investigated regarding their actual geometry
and their acoustic parameters (Steps 1-3 of Figure 1). Therefore, in Section 3.1.1, an optical
inspection of two specimens is presented. These specimens are found to show the highest
and lowest mean absorption coefficient over the entire frequency range and thus represent
some kind of extreme values. The acoustic inspection is presented in Section 3.1.2. Here,
the measured flow resistivity and absorption coefficient are presented. The results of the
inverse parameter identification procedure are shown in Section 3.1.3 (Step 4). The second
part (Section 3.2) of this section is devoted to the results of building the ML models (Step 5).
Thereby, the results of the training processes are shown and the accuracy of the predicted
Biot parameters is assessed for two specific samples. The obtained ML models are applied
in Section 3.3 for the design of new absorber specimens that are intended to show a specific
prescribed absorption coefficient over frequency (Step 6).

The overall idea of the procedure within this work is to generate models that connect
the specimen geometry to the Biot parameters. The reason for choosing the Biot parameters
(which are material-specific parameters) rather than directly predicting the behavior of
the material, for example, the absorption coefficient, is that the Biot parameters can be
used for subsequent analyses and other contexts. This is addressed in Section 3.4 by
manufacturing a new specimen with a varied specimen height ! and prediction of the
absorption coefficient for a broader frequency range. Height and frequency range were
kept constant for the initial specimen population with which the Biot parameters are
identified. Now the Biot parameters that were obtained by the ML models are used to
predict the absorption coefficient of a specimen with a larger specimen height and for
a broader frequency range. This shows, that the obtained models are suitable as well to
design porous absorbers with a different geometry.

3.1. Inspection of the Specimen Population

Within this section, the results of the inspection of the initially manufactured specimen
population are shown. Thereby, in Section 3.1.1 the results of a first optical inspection are
presented and the generally correct AM process is verified. These results (the specimen
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micro-scale geometry) serve as inputs (features) to the ML models. In Section 3.1.2, the
results of the acoustic measurements are presented, which are the measurements of the
flow resistivity and the absorption coefficient. In Section 3.1.3, the results of the inverse
identification of the Biot parameters are shown. These Biot parameters serve as outputs
(labels) for the ML models, whose prediction performance is presented and assessed in
Section 3.2.

3.1.1. Results of the Optical Investigation of the Additively Manufactured Specimens

To assess the manufacturing accuracy of the additively manufactured test specimens,
an actual-target comparison of the initial geometry and the manufactured test specimen
was carried out. Specimens 2 and 39 are selected as examples since these specimens show
the highest and lowest mean absorption coefficient over the frequency range of interest
(see Figure 7b) and thus provide some kind of extreme values.

=
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(a) Overview of all flow resistivity measurements for the specimen (b) Overview of all conducted absorption coefficient measure-
population of 50 specimens. It can be seen that specimen 2 and 39,  ments for the specimen population of 50 specimens. The green

which represent the highest and lowest mean absorption coefficient and red areas indicate data ranges for which specimens are/are

do not as well represent extreme values for the flow resistivity. not already available.

Figure 7. Measured data (flow resistivity and absorption coefficient) of all 50 investigated specimens. The specimens 2 and
39 are marked in orange and blue, respectively, and represent those specimens with the highest and lowest mean absorption
coefficient in the frequency range.

Test specimens 2 and 39 are generated using the variation parameters given in Table 5
using OpenSCAD [59] and should have the specified values after additive manufacturing,.
Manufacturing accuracy is assessed through the use of optical metrology. Specifically, a
Keyence VR5200 (Neu-Isenburg, Germany) 3D surface profilometer with microlens was
used. Figure 8 shows the test specimens 2 (Figure 8a) and 39 (Figure 8b) at 80x magnification.

Table 5. Nominal geometry parameters of the specimens.

Bar Width (d) Bar Spacing (s) Bar Height (h) Angle (¢)

Specimen 2 0.40 mm 0.40 mm 0.08 mm 60.00°
Specimen 39 0.40 mm 0.80 mm 0.15mm 70.00°
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Figure 8. Actual-target comparison of specimens 2 and 39 using Keyence VR5200 3D surface profilometer. (a) shows

specimen 2 with only slight deviations in the actual-target comparison. However, some small tapers can be seen in the

filament strands. (b) shows specimen 39, which also shows only minimal deviations in the actual-target comparison.

Test specimen 2 shows a relatively uniform production pattern, with a partial tapering
of the filament strands in the spaces between the underlying bars. Two applied filament
strands each form the individual webs of the acoustically effective structures, the width of
which is 0.40 mm for test specimen 2. Evaluation through optical measurement technology
showed that the resulting width of the bars lies within a range of 0.402-0.415 mm, which
corresponds to a maximum deviation of roughly 4%. In addition to the bar width, the bar
spacing was also examined, which should also be 0.40 mm. In contrast to the bar width, a
small variation of the values can also be measured here. The resulting bar spacing have a
value between 0.38 and 0.401 mm, which corresponds to a maximum deviation of roughly
5%. The resulting plane angle between the individual bar structures should have a value of
60°, which was achieved with a value of 60.43° with very small deviations (<1%).

A similar manufacturing analysis was also carried out for test specimen 39, see
Figure 8b, by also determining the bar width, bar spacing and plane angle. In contrast,
to test specimen 2, the applied filament strands are much more homogeneous in their
width and only minor tapers in the bar width can be measured. At maximum, a bar width
of 0.403-0.435 mm could be determined, which corresponds to a maximum deviation of
roughly 9%. However, the vast majority of the bars show a much smaller deviation from
the required 0.40 mm. The bar spacing of the test specimen 39 has a value between 0.796
and 0.802 mm, which corresponds to a maximum deviation of <1% of the required 0.8 mm.
The defined plane angle of 70° was also satisfactorily achieved with a value of 69.895°.

All in all, the manufacturing accuracy can be classified as acceptable and only slightly
fails to meet the desired dimensions. The highest measured deviation is at a bar width of
0.435 mm and thus corresponds to a deviation of 0.035 mm. However, the vast majority
of the tested bars show significantly smaller deviations. Test specimen 2 also exhibits
only minor deviations from the desired geometry. Clarification is needed for the partial
tapering of the filament strands in Specimen 2, which may be due to insufficient thermal
energy or slow cooling of the strands, resulting in elongation of the filament strands and
partial tapering.

3.1.2. Results of Acoustic Measurements of the Specimen Population

The results of the measurement of the flow resistivity are shown for all 50 specimens in
Figure 7a. It can be seen, that flow resistivity values in the range of 1535.90-51,061.20 Pa s/ m’
are observed. Specimen 2 and specimen 39 are marked in orange and blue, respectively.

These specimen exhibits the largest (specimen 2) and lowest (specimen 39) mean
absorption coefficient over the frequency range, as shown in Figure 7b. Nevertheless, the
flow resistivity alone does not seem to explain the acoustic behavior since other specimen
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with even higher (for example specimen 5) and lower (specimen 41) flow resistivities exist
whose mean absorption coefficient lies between the ones of specimen 2 and specimen 39.

In Figure 7b, all absorption coefficient curves of all specimens are plotted over fre-
quency. In this figure, no distinction between the different specimens is made, only the
curves of specimen 2 and specimen 39 are highlighted. These curves are the curves with
the highest/lowest mean absorption over the entire frequency range. All other absorption
curves show a mean absorption coefficient between these two highlighted curves, however,
the spectral distribution might change. Furthermore, a red and a green area is marked.
These areas indicate where no data is obtained from the entire specimen population. They
become relevant for the discussion of the performance of the ML-models for the absorber
design in Section 3.3. For the majority of the specimens, an absorption coefficient curve
with a distinct maximum can be seen. This maximum can be found in a frequency range
between approx. 2800 and 4200 Hz. Classical porous materials like foams are expected to
show a rather broad and flat course of the absorption coefficient for high frequencies. Nev-
ertheless, the absorption maximum for the specimen used here could already be flattened
in comparison to former studies, in the sense that the frequency range with high absorption
characteristics gets broader. These measured absorption curves are used for the inverse
parameter identification procedure described in Section 2.5 for defining the target function.

The absorption coefficient curves shown in Figure 7b show some “spikes” or “kinks”
at specific frequency points. The reason for this behavior could not be revealed by now.
Since all “spikes” are located at the same frequencies and occur for all measured specimens,
it is assumed that the “spikes” result from a systematic error, probably in the transfer
function computation of the applied two microphone method. Within this procedure,
the measured transfer function is corrected for the microphone phase mismatch using a
transfer function measured prior to the measurement campaign. This correction procedure
might be ill-conditioned for the distinct frequency points. Therefore, the results away from
the spikes are supposed to be trustworthy.

3.1.3. Results of the Inverse Parameter Identification

Based on the measured flow resistivity and absorption coefficient, the Biot parameters
are inversely derived using the procedure described in Appendix C. In order to give a
first insight into these data, a correlation analysis between the flow resistivity & and the
design variables is conducted. The variation of the design parameters of the specimen
are expected to change the flow resistivity, therefore the plot in Figure 9 shows the flow
resistivity of all specimens over the geometry parameters, these are the bar width (top left),
the bar height (top right), the bar spacing (bottom left) and the plane angle (bottom right).
Moreover, the correlation coefficient p (throughtout the manuscript, Pearson’s correlation
coefficient p = % is used. Here, both the flow resistivity and the geometric quantities
are assumed to be the random variables X and Y, respectively) for the two quantities are
computed and given in the plots.

For the bar width, (see Figure 9, top left) the stages of the LHS sampling strategy can
be seen, values from 0.20 to 0.50 mm with a step width of 0.10 mm are used. Thereby, the
flow resistivity generally increases with the bar width, resulting in an intermediate positive
correlation of p; = 0.52. A correlation of similar magnitude, but in the opposite direction
can be detected for the bar spacing, see Figure 9, bottom left, with p; = —0.56. Here the flow
resistivity decreases with increasing bar spacing. Both correlations of the bar width and
the bar spacing to the flow resistivity seem reasonable—increasing the bar width decreases
the open channel area, increasing the bar spacing enlarges the open area. On the other
side, the bar height (see Figure 9, top right) and the plane angle (see Figure 9, bottom right)
show only a very weak correlation to the flow resistivity. In total, the plots show that no
trivial dependency can be found to adjust the specimen dimensions properly in order to
tailor their absorption characteristics. This finding further motivates the application of
ML-models to design absorbing structures.
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Figure 9. Correlation of the flow resistivity and the design variables of all manufactured specimens. It can be seen that only

the bar width and the bar spacing show a relevant correlation with the flow resistivity, whereas the flow resistivity does not

(linearly) depend on the bar height and plane angle.

3.2. Setup of Machine-Learning Models for Predicting Biot Parameters from the
Specimen Geometry

The training process for both ML models employed within this work is composed as
follows. The 500 available data sets generated from the genetic algorithm during the inverse
parameter identification are split into two sub-sets, a training and validation data set (A)
and a test data set (B). The test data set comprises 20% (100 data instances) of the available
data and is used for the performance test at the end of the training process, only. The test
data set is chosen randomly from the available 500 data instances. The hyperparameters,
namely the number of nearest neighbors and the distance measure of the KNN model and
the number of layers/neurons and activation function of the ANN model, were found
using a three-fold cross-validation schema [69]. Therefore, the remaining 80% (data set
A, comprising 400 data instances) of the available data is split into three parts of equal
size (133 data instances), from which two (266 data instances) are used for training the
model (training data set) and the third for evaluating its performance (validation data
set). This procedure is run three times, so all elements of the data set A have been used at
least once for training and testing, respectively. The performance is measured in terms of
the cross-validation score, this is the mean of all scores during the cross-validation. The
cross-validation score, as well as the test score, are measured with the so-called coefficient
of determination R [79]. This quantity measures the amount of variance explained by
the model and thus is often used for measuring the prediction accuracy of dependent
variables from independent variables [80]. The R? measure normally varies between 0 and
1, whereas R* = 1 refers to a perfect prediction by the model, R? = 0 refers to a model
always predicting the mean of the data. Under specific conditions, values of R* below 0 or
above 1 can be obtained as well.

The cross-validation procedure is run several times with varying hyperparameter
in order to find parameters that perform well (highest Rz-score) for the given problem.
Figure A4 shows the results of this hyperparameter tuning for both, the KNN and the ANN
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model, respectively. It can be seen, that for the KNN model a k-parameter of larger than
k = 5 does not lead to a further improvement of the results, therefore k = 5 is chosen. For
the ANN model, different topologies were investigated with at least two and a maximum
of four hidden layers. From Figure A4 it can be seen, that the model with the 4-4000-
100-6 topology performed best, therefore this model is used for all investigations. The
hyperparameters activation function (ReLU) and optimization algorithm (Adam) were the
only ones with which a converging solution could be obtained. Therefore, these are used
as well.

After fixing the ML model design using the chosen hyperparameters mentioned above,
the models are tested using the remaining share of the data for estimating their performance
with regard to yet unseen data. This performance is measured using the test score. The
resulting scores are summarized for both models in Table 4.

From Table 4 it can be seen, that both models reach training and test scores above 0.70
whereas the KNN model performs better during the cross-validation with a higher score
and lower uncertainty. Nevertheless, the ANN model performs better on the unseen test
data. This may be due to the fact that before the test procedure, both models have been
trained with all data sets from the cross-validation, thus more information was available
to train the model. Another effect might be that it is suspected that ANN models have a
better ability to extrapolate from know to unseen data than other models. Furthermore,
it should be noted that the KNN model requires only a few seconds of computing time
on an intermediate laptop for the training process, whereas the ANN model requires a
computation time of approx. 25 min. To summarizing, the models both show a reasonable
performance in terms of prediction accuracy whereas the required computational effort for
the training is very different. Nevertheless, since for the purpose of this work the focus
is on the prediction capability rather than computational effort, both models seem to be
reasonably applied to the absorber design procedure.

3.2.1. Performance of the KNN Model for Predicting Biot Parameters

In Figure 10, the performance of the KNN model is illustrated. Therefore, the blue line
shows the absorption coefficient that is computed using the Equations (1)—(4), (A1) and
(A2) with the inversely identified Biot parameters. The orange line indicates the computed
absorption coefficient using the mentioned set of equations if the Biot parameters computed
using the KNN model are used. For comparison, the green line shows the measured
absorption coefficient. The plot Figure 10a shows the results for specimen 39, the specimen
with the lowest mean absorption coefficient. It can be seen that the Biot parameters,
computed using the ML model (orange), practically perfectly approximate the inversely
identified parameters (solid line) with regard to the subsequently computed absorption
coefficient. Both approaches match the measured data to a reasonable extend, nevertheless
some deviations can be observed around the maximum of the absorption coefficient at
approx. 3600 Hz.

Similar findings can be observed for the specimen with the highest mean absorption
coefficient, specimen 2, see Figure 10b. For this specimen, all shown curves match nearly
perfectly. Hence, the inversely identified Biot parameters resemble a good approximation of
the measured absorber and the trained ML model is able to reproduce the Biot parameters
from the geometry pretty well.

An overview of the performance of the KNN model over the entire training data is
given in Figure 11. The six shown plots refer to the six parameters of the JCAL model,
for each plot the test data is plotted in the horizontal axis, the prediction of the model is
plotted in the vertical direction. A perfect training result would produce only datum points
on the solid black line, the prediction would fit the test data perfectly. For each quantity,
Pearson’s correlation coefficient p is given in the plot’s title. It can be seen that for the
flow resistivity, see Figure 11 top left, a practically perfect fit between the test data and
the ML model can be obtained. For the porosity (top middle), the tortuosity (top right)
and the viscous characteristic length (bottom left) correlation coefficients above 0.90 can be
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obtained. Nevertheless, some outliers can be observed as well, for example for the thermal
characteristic length (bottom middle), two data points show a value of approximately
0.00 m for the test data, but are predicted with values of 0.55 x 10 mand 0.70 x 10~° m,
respectively. It is expected, that such outliers occur when for these specific specimens the
combination of the different geometry parameters has a negligible influence on the acoustic
parameters. This rather low influence results in a low potential to extract information about
the relation between the parameters and thus results in wrong training results. In total,
the predictions of the KNN model are in good agreement with the input data, hence the
training process is assumed to be successful.
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Figure 10. Comparison of the measured absorption coefficient, the absorption coefficient computed from the inversely iden-
tified Biot parameters ('Fit’) and absorption coefficient computed using the Biot parameters outputted by the KNN model.
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Figure 11. Correlation graphs for inversely identified Biot parameters and their corresponding prediction by the KNN model.

It can be seen that all

quantities are predicted with reasonable accuracy, thus the model is qualified for further application.
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3.2.2. Performance of the ANN Model for Predicting Biot Parameters

Very similar observations can be made for the ANN model, as shown in Figure 12. For
specimen 39 with the lowest mean absorption coefficient (see Figure 12a), the computed
absorption coefficient with the Biot parameters of the ML model output fits nearly perfect
the absorption coefficient computed using the inversely identified Biot parameters. More-
over, both approaches match the measured data with reasonable agreement. Here as well,
the largest deviations can be found around the maximum of the absorption coefficient.
For the specimen no. 2 (see Figure 12b), the findings are pretty similar. Only in the very
high-frequency regime, above 6000 Hz very small deviations between the used models
can be observed, still, both models match the measured data very well. Summarizing,
the inverse parameter identification process as well as the subsequent training of the ML
models seems to result in data models that are capable of resembling the original data and
thus the printed porous absorbers reasonably well.
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(a) Comparison for specimen 39 with lowest mean absorption
coefficient. It can be seen that the ML model resembles the
inversely identified parameters nearly perfectly, and both fit the
measurement to a high extend.
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Figure 12. Comparison of the measured absorption coefficient, the absorption coefficient computed from the inversely iden-
tified Biot parameters ('Fit’) and absorption coefficient computed using the Biot parameters outputted by the ANN model.

For the ANN model as well the correlation of the input data and the predictions
are shown for all Biot parameters in Figure 13. The findings are similar to the KNN
model; the flow resistivity shows a practically perfect fit of the test data and the model’s
prediction, porosity, tortuosity and the thermal characteristic length show values of the
correlation above 0.90. As well, some outliers can be observed, for example for the static
thermal permeability (bottom right). Here, some test data points with rather large values of
0.80 x 107 = 1.00 x 10"® m? can be seen that are predicted by the ANN model with rather
low values of 0.01 x 107 — 0.45 x 10" m”. Here as well, it is assumed that the geometry
parameter combination has only a low effect on this acoustic parameter which leads to

rather inaccurate predictions. To summarizing, the training of the ANN model can be
assumed to be successful here as well.

3.3. Application of the Machine-Learning Models for Absorber Design (Step 6)

To now generate porous absorbers that show predefined absorption characteristics,
three target curves are defined. These three curves are referred to as low, medium and high
and are shown in Figure 14. The course of the different target curves is chosen arbitrarily,
nevertheless, they are intended to resemble common application cases. The idea is to
generate printable absorber designs using the ML models described in the previous section
and to evaluate to which extend the printed absorbers show the desired characteristics.
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Figure 13. Correlation graphs for inversely identified Biot parameters and their corresponding prediction by the ANN model.
It can be seen that all quantities are predicted with reasonable accuracy, thus the model is qualified for further application.
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Figure 14. Target curves for the porous absorber design. Red and green areas mark known/unknown
regions that are/are not covered by the existing specimen yet. The target curve “low” lies completely
within the known data range, it is assumed that here only interpolation within the available data is
required. The target curves “medium” and “high” leave the known range above approx. 5000 Hz,
here the ability to extrapolate from the known data is required.

In Figure 14, the target curves for the absorption coefficient are plotted over frequency,
thereby the frequency range is kept identical to the specimen already available. All target
curves start at rather low absorption coefficients at low frequencies and show an increase of
the absorption coefficient with frequency. The curves thus resemble a general characteristic
of porous absorbers. Nevertheless, when compared to the absorption characteristics shown
in Figure 7b, it should be noted that the frequency range with a high absorption coefficient
is generally broader than it is with the available specimen. Furthermore, the red and green
areas from Figure 7b are shown again here, indicating the areas for which suitable specimen
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designs are already available. It should be noted here that the curve low remains within the
green area for all frequencies, whereas the curves medium and high leave the green area for
frequencies above approx. 5200 Hz and 4300 Hz, respectively. This will be important for
the result discussion in Sections 3.3.1 and 3.3.2, respectively. Hence, to generate specimens
whose absorption coefficient follows these curves, an extrapolation capability of the ML
models is required.

The approach to design porous absorbers using the trained ML models is as follows.
As the target value of the absorption coefficient is given by the target curves and the
required Biot parameters are unknown, an inverse procedure is established. The procedure
is sketched in Figure 15. An optimization strategy similar to the inverse parameter identifi-
cation procedure described in Appendix C is set up. The used evolutional algorithm (for
parameters, see Table A5) is the same as in the parameter identification procedure, only a
slight difference is made for the error measure. Here, the mean of the squared difference of
the target curve ayqye+ and the absorption coefficient computed using the Biot parameters
from the ML model in combination with the JCAL model axjcay is used:

1 2
err = 7 Z(atarget,i - a]CAL,i) . (8)
i
Start design Absorption coefficient
initial guess for d, s, h, @) target curve Xtarget

Y Y

Compute
Compute ¢, xeo, A, A kg . | absorption coefficient - Compute the error 5
using ML model " |ajcar using equations g % Zi(txtarget,,- —-ajc AL,i)
(1)-(4), (A1) and (A2)

l

Update

d,s, h, o

Design
finished

Figure 15. Flow chart of the inverse absorber design process (Step 6 from the flowchart in Figure 1). Based on an initial
guess of the design parameters, the corresponding Biot parameters and the resulting absorption coefficient is computed.
Based on the given error measure with respect to the target, the design parameters are updated until convergence is reached.

Starting with an initial guess for the geometry parameters, the Biot parameters are
computed using the ML model and the resulting absorption coefficient is computed using
Equations (1)—(4), (A1) and (A2). The results are compared to the chosen absorption coeffi-
cient target curve and the error is computed. Based on this error measure, the optimization
algorithm updates the geometry parameter set. These new geometry parameters are again
fed into the ML model to compute the resulting Biot parameters with whom the loop
starts again until the requested error bound is reached. The optimization based on the
evolutional algorithm is set up as a bounded optimization. The bounds are chosen based
on the applied MEX process and given in Table 6.
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Table 6. Bounds for the evolutional optimization algorithm during absorber design.

Quantity Lower Bound Upper Bound
bar width (mm) 0.15 0.50
bar height (mm) 0.10 0.30
bar spacing (mm) 0.10 1.00
plane angle (°) 30 90

After completing the material design using the process described here, the resulting
designed absorbers are printed equivalently to the specimen used for the data generation.
The resulting specimens are measured in the impedance tube regarding their absorption
coefficient and using a 3D surface profilometer regarding their geometry. The results are
presented in the following sections.

3.3.1. Specimen Design with K-Nearest Neighbor Approach

The first attempt for generating printable porous absorbers that show a prescribed
absorption characteristic is done using the KNN model. The design parameters for all
three target curves and the corresponding measured values are shown in Table 7. In
Table 7, it can be seen that the actually manufactured geometry is rather close to the design
parameters. The maximum evaluated deviation is 0.04 mm.

Table 7. Design parameters and measured values of the specimens designs using the KNN model. The printed specimens
are measured using a 3D surface profilometer, quantities marked with a dash (’-’) could not be measured due to the

measurement principle.

Target “low” Target “medium” Target “high”
Quantity Design Measured Design Measured Design Measured
bar width (mm) 0.17 0.21 0.26 0.24 0.20 0.19
bar height 0.12 - 0.11 - 0.15 -

(mm)

bar spacing 0.93 0.89 0.44 0.41 0.33 0.325
(mm)

plane angle (°) 63.40 63.399 63.000 63.256 33.40 33.466

In Figure A5, in the Appendix G, the KNN designs are shown in orange together
with the geometry parameters of the initial 50 specimen population. It can be seen that all
designs found by the KNN model lie within the learned data range. Indeed, the designs
are new in the sense that most chosen values were not investigated and learned before.
However, the data range given from the initial specimen population is not left by the
KNN model.

The results of the predicted and measured absorption coefficient are shown in Figure 16,
whereas Figure 16a shows the results with the target curve “low”, Figure 16b,c show the
results for the target curves “medium” and “high”, respectively. For all plots, the blue
curves show the relevant target curve, the orange line shows the expected absorption
coefficient of the designed material that is based on the JCAL model and the green line
shows the measured data of the printed specimen. In the figure caption, the optimization
error after the material design is given, this is the resulting error between the target curve
and the expected absorption coefficient of the designed material as given by Equation (8).
It should be noted that for computing the orange design curves, the actual manufactured
parameter values from Table 7 are used.
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Figure 16. Design of porous media using an KNN machine-learning model for three different target curves. It can be seen
that, especially for the targets “low” and “high” the predictions are met with high accuracy. However, the KNN model is
not able to extrapolate from the know data range, as the prediction does not follow the target curves for “medium” and
“high” above approx. 5000 Hz.

For the target curve “low”, see Figure 16a, it can be seen that the material design
using the KNN model can produce reasonable results. The optimization error after the
material design is very low, the predicted absorption coefficient matches the target curve
fairly well. Furthermore, the measured data shows that the absorption coefficient of the
printed specimen follows the predicted absorption coefficient very well. For the case of a
low absorption coefficient, the proposed procedure seems to produce reasonable results.
The results for the target function “medium” as shown in Figure 16b, the results are rather
different. For instance, it can be stated that the predicted absorption coefficient is able
to follow the target curve only in the frequency regime below approx. 4000 Hz. Before
commenting on the course of the predicted absorption coefficient, it should be noted that
the measured data fit the designed material rather well. Indeed, the deviations between
the measured and the predicted data are higher than for the target curve “low” but the
general course is met rather well. Interesting here is the course of the predicted absorption
coefficient in the higher frequency regime above 4000 Hz. Here, the predicted absorption
coefficient is not able to follow the target curve anymore. This behavior is crucial and
special to the KNN model. It is assumed here that the reason for this behavior is the
inability of the KNN model to extrapolate from already learned information. Recalling
the introduction of the target curves in Figure 14, it can be seen that the target curves
“medium” and “high” leave the area of the learned data between 5200 Hz and 4300 Hz,
respectively. Hence, to generate designs that exhibit an absorption coefficient beyond the
learned data, the applied models must have the ability to extrapolate from the learned
data to some extend. The results of the design process for the target curve “high” are
shown in Figure 16c. Regarding the predicted absorption coefficient, a similar behavior
as for the target curve “medium” can be observed. The predicted absorption coefficient
follows the target rather well below 4000 Hz but is not able to follow for higher frequencies.
Accordingly, the optimization error with a value of 0.022 is rather high. Nevertheless, the
measured data show a very good agreement with the predicted absorption coefficient,
hence the computed geometry parameters prove to work for practical applications.

It should be noted here that all measured absorption coefficient curves show a rather
strange behavior above 6200 Hz, as the absorption coefficient curves show some sort of
“kink” and increases for larger frequencies, whereas it monotonically decreases for lower
frequencies. This behavior is not common for porous absorbers since such materials are
expected to show a rather smooth course of the absorption coefficient over frequency.
It is expected here that this “kink” is caused by an imperfect fit of the specimen within
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the impedance tube that leads to enclosed air-filled voids between the specimen and the
tube’s wall. Such voids might serve as a high-frequency resonator, resulting in a corrupted
absorption coefficient measurement. The imperfect fit of the specimen again might be due
to manufacturing inaccuracies.

To summarize, the KNN model can generate printable geometry descriptions for the
design of porous media. Nevertheless, it is required that the requested designs lie somehow
within the previously learned data range, the ability to extrapolate outside the learned data
range seems rather limited.

3.3.2. Specimen Design with Artificial Neural Network Approach

The material design task using the ANN model leads to rather different designs
compared to the KNN model. The predicted parameter values for all geometry parameters
and target curves are shown in Figure A5 in the Appendix G. It can be seen that the ANN
model generates both, geometry values inside and outside the data range provided by the
specimen population. Hence, some ability to extrapolate from the learned data range can
be confirmed. A comparison of the manufactured and designed geometry parameters is
shown in Table 8.

Table 8. Design parameters and measured values of the specimens designs using the ANN model. The printed specimens

are measured using 3D surface profilometer, quantities marked with a dash (-’) could not be measured due to the

measurement principle.

Target “low” Target “medium” Target “high”
Quantity Design Measured Design Measured Design Measured
bar width (mm) 0.15 0.16 0.17 0.162 0.15 0.16
bar height 0.12 - 0.20 - 030 -
(mm)
bar spacing 0.89 0.843 0.66 0.665 0.10 0.11
(mm)
plane angle (°) 78.00 78.107 30.00 30.296 62.40 61.927

It can be seen that generally similar parameter ranges as obtained with the KNN
model are reached. The manufacturing accuracy as well is similar to the KNN model,
the maximum deviation between the manufactured and predicted geometry parameters
is 0.05 mm for the bar spacing, target curve “low”. All other (measurable) parameters are
manufactured with a deviation of 0.01 mm.

In Figure 17, the predicted and measured absorption coefficient data is shown for all
three target curves. Similar to the corresponding plot for the KNN model, the blue curve
shows the target curve, the orange curve shows the predicted absorption coefficient and
the green curve shows the measured absorption coefficient of the manufactured material.
The optimization error is given in the plot’s captions. For the target curve “low”, see
Figure 17a, a good agreement of all shown curves can be seen. The optimization error
with a value of 0.001 is very low, this means that the ANN model can compute suitable
geometry parameters for this design. Furthermore, the measured data are in very good
agreement with the predicted absorption coefficient curve as well, thus the predicted
geometry parameters prove appropriate for the practical application. For this target curve
as well as for the others, the “kink” in the course of the absorption coefficient curve, already
seen for the KNN model, can be observed as well and is expected to be a result of resonator
effects caused by air-filled voids between the specimen and the impedance tube’s walls.
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Figure 17. Design of porous media using an ANN machine-learning model for three different target curves. It can be
seen that, especially for the targets “low” and “high” the predictions are met with reasonable accuracy. The ANN model
is able to extrapolate from the know data range, as the prediction follows the target curves for “medium” and “high”
above approx. 5000 Hz. The large deviations of the measurement for the target “medium” are expected to result from
manufacturing inaccuracies.

A rather undesirable result is shown in Figure 17b for the target curve “medium”.
For instance, the predicted absorption coefficient curve (orange) is in good agreement
with the target curve (blue), this is confirmed by the low optimization error of 0.002.
Nevertheless, the manufactured specimen does not follow the designed material, the
absorption coefficient is rather low with a maximum of approx. 0.66 at 5200 Hz, whereas
the predicted absorption coefficient should have been 0.89 at this frequency. A specific
reason for this deviation yet remains unknown. Compared to the KNN model design, it
can be stated that the value of the bar spacing predicted using the ANN model is rather
high (ANN model: 0.66 mm; KNN model 0.44 mm). Nevertheless, it is expected that
the relations between the geometry and the resulting Biot parameters/the absorption
coefficient are highly nonlinear, hence simple value comparisons for single values might
not be feasible here. This issue could be thought of as a negative drawback from using ML
models. Since ML models rely on learned relations only rather than implementing physical
models, the interpretability of the model outputs is rather limited.

For the target curve “high”, the results are shown in Figure 17c. Here again, a rather
good agreement of all three curves is observed. The optimization error between the target
curve and the predicted absorption coefficient with a value of 0.002 is equivalently low as
for the other target curves. Furthermore, the measurement data follow the predicted curve
rather well, nevertheless, some deviations can be observed. For example, the absorption
maximum is shifted approx. 200 Hz to lower frequencies and the declining of the absorption
coefficient for frequencies above the absorption maximum is more strongly present as it is
with the design data. It might be the case as well that here a physical limit is reached for
which the applied lattice-style absorber design is not able to generate such high absorption
coefficients for high frequencies. Nevertheless, the observed deviations are accepted to be
rather small and the procedure in total seems to prove successful.

Regardless of the deviations in the high-frequency range, Figure 17c shows a very
interesting behavior that should be hereafter discussed. Recalling the definition of the
target design curves in Figure 14, it can be observed that the target curves “medium” and
“high” leave the learned data range for high frequencies. Hence, to generate absorber
designs that show an absorption coefficient comparable to these target curves, the applied
ML models need some ability to extrapolate beyond the learned data range. For the KNN
model, it could be shown that this model type does not have this capability. The ANN
model, on the other side, shows this capability to a reasonable extent—the designs (orange
curves) for the target curve “medium” and “high” follow the target curves and thus leave
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the learned data range. Moreover, at least the design for the target curve “high” shows
that the design parameters are rather reasonable as the measured data as well leaves the
learned data range.

3.4. Design of a Material with Different Height and Prediction of Another Frequency Range

The ML models are built to predict the Biot parameters from the specimen’s micro-
scale geometry. Thus, material parameters of the porous material are obtained. The
“detour” via the Biot parameters opens the opportunity to design other specimens with
varying macro-scale geometries, such as the specimen height. Moreover, the possibility
to predict the acoustic behavior for other application cases, for example other frequency
ranges becomes possible. This is due to the fact that Biot parameters are material-specific
parameters and thus no mixing of the material description and the acoustic behavior of the
material in specific conditions (sound field, mounting of the specimen) occurs. Therefore is
assumed that, if the Biot parameters identified on specimens with a small height can be
used as well to predict the behavior of specimen with a larger height, the Biot parameters
can be trusted as they give a reasonable description of the material.

In order to verify this assumption, the design parameters of the specimen with target
curve “high”, computed with the KNN model are used, see Table 7. Again, the ML model is
used to compute the Biot parameters and the resulting absorption coefficient is computed
using the Equations (1)—(4), (A1) and (A2) for a new specimen height | = 30mm. The
specimen is manufactured using the design parameters and the resulting absorption
coefficient is measured. Unlike for the initial specimen geometry, here the tested frequency
range is enlarged to 150-6600 Hz. The results are shown in Figure 18.

1.0 - - o

0.5 /

Absorption Coefficient

\ \ \
0 2000 4000 6000
Frequency in Hz

measurement measurement

prediction KNN “high (900 - 6600 Hz) (150 — 1250 Hz)

Figure 18. Computed and measured absorption coefficient of a specimen with a height I = 30 mm
and enlarged frequency range 150-6600 Hz. The computation employs the Biot parameters obtained
from the KNN model for traget curve “high” and computes the absorption coefficient using the
Equations (1)—(4), (A1) and (A2) for the new specimen height.

In Figure 18 it can be seen that the computed and measured absorption coefficient
coincide very well. This holds for both, the now strongly changed course of the absorption
coefficient as well as the prediction in the low frequency regime. It is assumed that such a
result could not have been obtained by means of ML alone. Therefore, the specimen height
and the enlarged frequency range would have needed to be included in the input data,
which here is not the case. Accordingly, many more samples would have been necessary
to be produced in order to cover the larger dimension of the design space properly. This
has been circumvented by computing the Biot parameters, which are material-specific
parameters. Thus, the indeed larger effort using the Biot parameters on the other side can
be viewed as a means of dimensionality reduction for the input data as well. Moreover,
the obtained Biot parameters can be used in subsequent analyses: the Biot parameters are
invariant to the type of sound field and mounting conditions of the material. Thus, this
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material-based description can be used for computations in other field types (diffuse field,
varying angle of the incident waves, other frequency range as shown here, etc.) or even
more complex analyses such as wave-resolving finite element computations as well. This
could not be covered with the direct computation of the absorption coefficient from the
ML models since those data are limited to the conditions with which the training data are
obtained, here a planar normal incident sound field with a specific frequency range.

4. Conclusions and Outlook

The presented work aims to bridge the gap between the micro-scale geometry and
acoustic material parameters of porous absorbers to allow a reasonable absorber design.
The core challenge is that porous absorbers can be characterized from an acoustics point of
view utilizing the Biot parameters and by geometric dimensions on the micro-scale. These
two “worlds” are separated, the estimation of the Biot parameters from the geometry is
possible only for simple special cases. The work presented here shows a way of connect-
ing these two “worlds” through machine learning. In the following, the work is briefly
summarized and an outlook on future works is given.

4.1. Conclusions

The presented work investigates a generic test specimen constructed by a micro-lattice
of parallel bars. The specimens are manufactured using additive manufacturing, a specif-
ically appropriate production procedure for porous materials. In order to connect the
micro-scale geometry and the acoustic material parameters, namely the Biot parameters,
the range of reasonable and manufacturable geometry values is sampled using a Latin
Hypercube Strategy and an amount of 50 specimens is manufactured. The resulting speci-
mens are optically and acoustically investigated, the latter comprising measurements of the
absorption coefficient and flow resistivity. The Biot parameters of the specimens are derived
using an inverse parameter identification scheme. Using the geometry of the specimens
as inputs (features) and the Biot parameters as outputs (labels) two Machine-Learning
regression models (K-Nearest Neighbors (KNN) and Artificial Neural Network (ANN)) are
built and trained by means of supervised learning. The resulting models are then applied
to a material design procedure with the goal of generating printable absorber structures
that exhibit predefined absorption characteristics. This procedure finally is capable of
computing the micro-scale geometry of the specimens that is required to obtain a porous
absorber that shows the desired acoustic behavior, which is measured here in terms of the
absorption coefficient.

The approach of using the Biot parameters here to design porous absorbers is chosen,
as it exhibits some favorable implications. The Biot parameters can be viewed as material-
specific parameters of the porous material and thus are invariant to the macro-geometry
(for example the thickness) of the material, the mounting conditions or the sound field.
If a quantity describing the behavior of the material was considered, for example, the
absorption coefficient, a mixing of material description and material behavior would occur.
This mixing is circumvented by predicting the Biot parameters directly and thus, these
parameters can be used for other subsequent analyses as well without the limitation on
how the parameters were obtained before.

A first aspect of the work presented here is the additive manufacturing of the specimen
geometry, especially on the micro-scale. Here, a material extrusion process is employed,
thereby specific means as targeted under-extrusion and the use of a 0.20 mm nozzle prove
capable of reliably producing the required fine microstructures. This is verified using
optical inspection using a profilometer. It can be shown that only small deviations of the
desired and actually manufactured geometry exist. The acoustic inspection using the
flow resistivity and absorption coefficient deliver the inputs for the inverse parameter
identification procedure to obtain the Biot parameters. A first correlation analysis of the
flow resistivity and the micro-scale geometry parameters of the specimen reveals that no
trivial dependency between these parameters can be found. This finding motivates the use
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of machine-learning to exploit underlying dependencies that are coded in the data. Another
important ingredient for the work presented here is the inverse parameter identification
procedure that is used for obtaining the Biot parameters. Therefore, the specimens are
modeled using a mechanical model for porous media, here the Johnson—-Champoux—Allard-
Lafarge (JCAL) model. This model takes the Biot parameters of the specimen as inputs.
With this model, the absorption coefficient of the specimen can be computed for the case
of mounting the specimen in front of an impervious rigid wall, which is the case for the
measurements in the impedance tube that has been used here. Using the JCAL model,
the inverse parameter identification procedure is set up using an evolutional algorithm.
The results of the inverse identification of the Biot parameters are compared to analytical
estimates and found to be trustworthy.

The machine-learning models are set up using the micro-scale geometry of the speci-
mens as input and the Biot parameters as outputs. A correlation analysis shows that the
models investigated here, namely the K-Nearest Neighbor model and the Artificial Neural
Network are able to reasonably compute the Biot parameters from the specimen geometry.
The obtained models are then applied to design porous absorbers that show a predefined
acoustic behavior, here characterized by the absorption coefficient. Therefore, target curves
of the absorption coefficient are defined and the specimen’ micro-scale geometry is in-
versely computed. It can be shown, that both models are able to generate printable absorber
structures. However, some differences can be observed. A major difference between the
models is their ability to extrapolate from the trained data—the KNN model is not able
to produce specimens beyond the initial population, whereas the ANN model is able to
compute designs that lie outside the initially learned data range. However, the measured
absorption coefficient of the designed specimens matches the prediction in all three cases
for the KNN model, the ANN model is able to predict the absorption coefficient only for
two of three cases correctly. Finally, the procedure is applied to predict and generate an-
other specimen with a different macro-geometry (here, the specimen height) as well. It can
be shown that this application case can be handled by the proposed procedure fairly well.

Summarizing, the procedure to generate machine-learning based models that predict
Biot parameters from porous absorbers micro-scale geometry can be viewed as successful.
It was possible to generate models that are capable of the intended task and that these
models can be successfully applied to design new absorbing structures. The higher effort
for obtaining Biot parameters and thus focusing on the material description rather than on
the acoustic behavior allow the application of the procedure for a multitude of practical
applications, such as the generation of input parameters for finite element analyses or the
idea of tailoring materials specifically for their intended application case.

4.2. Outlook

Although the presented process already delivers good results, some open questions
remain. These will be hereafter discussed. For instance, the design of the presented work is
rather complex, which is mainly due to the necessary computation of the Biot parameters.
Therefore, it would be feasible to re-conduct the study and to measure more of the Biot
parameters directly. This would result in a lower dimension of the optimization problem
and probably more accurate results of the inverse parameter identification of the remaining
Biot parameters. Another aspect for future works is the fact that not all prediction results
of the machine-learning models could be verified by measurements. For example, it should
be clarified why the result obtained with the ANN for the target curve “medium” shows
high deviations compared to the other results. Moreover, it is assumed that the specimen
design induces some physical limit that prevents from obtaining an even better acoustic
behavior. The exploration of these limits is also subject to future work.

Another aspect regarding the application of the proposed method is the exploration of
the physical relation of the Biot parameters and the specimen’s geometry. As already stated,
for some special cases the Biot parameters can be estimated from the material micro-scale.
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This will be further investigated using the models obtained within this work and indeed is
planned as the next step.

There is also a need for further research in the field of additive manufacturing pro-
cesses, for example in the field of microstructures. An extended understanding of the
dependencies between process parameters and the resulting microstructure is important.
This knowledge would also establish the connection between deviations in the shape and
form of the microstructure and resulting acoustic properties. The derivation of design
rules for the manufacturing of microstructures utilizing material extrusion is necessary
to ensure the realization of structures that are as small as possible. The topic of robust
additive manufacturing of microstructures also has great research potential.

In addition, there is also a need for further research in the area of the resulting
dimensional accuracy and also the shape of the additively manufactured microstructures.
Figure 19 shows test specimens 26, whose bars have a bar width of 0.20 mm, which means
that only one strand is needed to realize the bar width. In contrast to Figure 8, the test
specimens 2 and 39 consists of bars with a bar width of 0.40 mm, which means that
two parallel strands are required to realize the bar width. Figure 19 shows that the
test specimens with only one strand for the realization of the bar width result in more
homogeneous results in the geometric expression of the strands. Specifically, the one-
strand design allows a much more constant application of the strands without fluctuating
cross-sections. Furthermore, the actual-target comparison of specimen 26 shows desired
dimensional results after the manufacturing process with only minor deviations. The reason
for the poorer geometric expressions in the two-strand design may lie in the individual
process parameters such as the cooling of the specimen during layer application or the
nozzle temperature, but this needs to be investigated in further studies.
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(a) Optical investigation of Specimen 26 (b) Specimen 26—measurement

Figure 19. Actual-target comparison of specimen 26 with the Keyence VR5200 3D surface profilometer. (a) shows specimen

26 without measurement lines at 80x magnification. (b) shows specimen 26 with measurement lines and only slight

deviations in the actual-target comparison
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Abbreviations

The following symbols and abbreviations are used in this manuscript:
specimen cross sectional area (flow resistivity measurement)
bar width

bar height

number of neighbors in KNN model

static thermal permeability

specimen height

volume flow through the specimen (flow resistivity measurement)
airflow resistance

coefficient of determination (performance measure of ML model training)
bar spacing

absorption coefficient

tortuosity (high frequency limit)

pressure drop over the specimen (flow resistivity measurement)
viscous characteristic length

thermal characteristic length

flow resistivity

Pearson’s Correlation Coefficient

plane angle

porosity

additive manufacturing

NN artificial neural network

OE  design of experiment

JCAL  Johnson—Champoux—Allard-Lafarge

KNN  k-nearest neighbor

LHS latin hypercube sampling

MEX  material extrusion

ML machine learning

PBF-P  powder bed fusion of polymers

PET-G glycol modified polyethylene terephthalate

PLA polylactide

VAT vat photopolymerization

N
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Appendix A. Overview of the Design Parameter Space LHS Sampling

Table A1l. Overview of the generated test Spec.s. The design parameters (d, s, I, ¢) were varied using a Latin hypercube
sampling. The process parameters (layer height, the extrusion width) are used during the manufacturing process and are
given here for information only.

Variation Parameters (Spec.) Process Parameters (AM)
Bar Width (d)  Bar Spacing (s)  Bar Height (h) Angle (p) Layer Height Extrusion Width
Spec. 0 0.20mm 0.70 mm 0.16 mm 40.00° 0.08 mm 0.20mm
Spec. 1 0.50 mm 0.40 mm 0.11mm 70.00° 0.11mm 0.25mm
Spec. 2 0.40mm 0.40 mm 0.08 mm 60.00° 0.08 mm 0.20mm
Spec. 3 0.40 mm 0.80 mm 0.06 mm 70.00° 0.06 mm 0.20mm
Spec. 4 0.50 mm 0.20mm 0.12mm 80.00° 0.06 mm 0.25mm
Spec. 5 0.30mm 0.90 mm 0.15mm 50.00° 0.075mm 0.15mm
Spec. 6 0.30 mm 0.70mm 0.13mm 50.00° 0.065 mm 0.15mm
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Table A1. Cont.
Variation Parameters (Spec.) Process Parameters (AM)
Bar Width (d)  Bar Spacing (s)  Bar Height (h) Angle () Layer Height Extrusion Width

Spec. 7 0.20mm 0.30mm 0.17mm 40.00° 0.085 mm 0.20mm

Spec. 8 0.40 mm 0.50mm 0.11mm 80.00° 0.11mm 0.20mm

Spec. 9 0.30mm 0.90 mm 0.10mm 40.00° 0.10mm 0.15mm
Spec. 10 0.20mm 0.90 mm 0.12mm 50.00° 0.06 mm 0.20mm
Spec. 11 0.30mm 0.80 mm 0.07mm 80.00° 0.07mm 0.15mm
Spec. 12 0.30mm 0.50mm 0.16 mm 80.00° 0.08 mm 0.15mm
Spec. 13 0.50 mm 0.30mm 0.14mm 40.00° 0.07mm 0.25mm
Spec. 14 0.20mm 0.90 mm 0.07mm 30.00° 0.07mm 0.20mm
Spec. 15 0.30mm 0.20mm 0.06 mm 70.00° 0.06 mm 0.15mm
Spec. 16 0.50 mm 0.80 mm 0.15mm 80.00° 0.075mm 0.25mm
Spec. 17 0.20mm 0.30mm 0.08 mm 80.00° 0.08 mm 0.20mm
Spec. 18 0.40mm 0.20mm 0.08 mm 60.00° 0.08 mm 0.20mm
Spec. 19 0.20mm 0.70mm 0.07 mm 50.00° 0.07 mm 0.20mm
Spec. 20 0.20mm 0.70mm 0.08 mm 70.00° 0.08 mm 0.20mm
Spec. 21 0.20mm 0.50 mm 0.11mm 50.00° 0.11mm 0.20mm
Spec. 22 0.40 mm 0.70mm 0.09 mm 50.00° 0.09 mm 0.20mm
Spec. 23 0.30mm 0.60 mm 0.18 mm 90.00° 0.09 mm 0.15mm
Spec. 24 0.50 mm 0.60 mm 0.17mm 70.00° 0.085 mm 0.25mm
Spec. 25 0.50 mm 0.60 mm 0.06 mm 40.00° 0.06 mm 0.25mm
Spec. 26 0.20mm 0.40 mm 0.20mm 80.00° 0.10mm 0.20mm
Spec. 27 0.20mm 0.50 mm 0.16 mm 90.00° 0.08 mm 0.20mm
Spec. 28 0.40 mm 0.50mm 0.17mm 40.00° 0.085 mm 0.20mm
Spec. 29 0.30mm 0.90 mm 0.13mm 60.00° 0.065 mm 0.15mm
Spec. 30 0.30 mm 0.30mm 0.10 mm 40.00° 0.10mm 0.15mm
Spec. 31 0.40mm 0.40 mm 0.09 mm 60.00° 0.09 mm 0.20mm
Spec. 32 0.50 mm 0.60 mm 0.14mm 60.00° 0.07 mm 0.25mm
Spec. 33 0.30 mm 0.60 mm 0.14mm 50.00° 0.07 mm 0.15mm
Spec. 34 0.20mm 1.00 mm 0.19mm 80.00° 0.095 mm 0.20mm
Spec. 35 0.40 mm 0.90 mm 0.10mm 30.00° 0.10 mm 0.20mm
Spec. 36 0.30 mm 0.70 mm 0.05mm 70.00° 0.05mm 0.15mm
Spec. 37 0.40mm 0.80 mm 0.13mm 60.00° 0.065 mm 0.20mm
Spec. 38 0.30mm 0.90 mm 0.19mm 90.00° 0.095 mm 0.15mm
Spec. 39 0.40 mm 0.80mm 0.15mm 70.00° 0.075mm 0.20mm
Spec. 40 0.20mm 1.00 mm 0.18 mm 90.00° 0.09 mm 0.20mm
Spec. 41 0.30 mm 0.50 mm 0.09 mm 30.00° 0.09 mm 0.15mm
Spec. 42 0.40 mm 0.40 mm 0.17mm 50.00° 0.085 mm 0.20mm
Spec. 43 0.40mm 0.30mm 0.20mm 30.00° 0.10mm 0.20mm
Spec. 44 0.30 mm 0.60 mm 0.19 mm 70.00° 0.095 mm 0.15mm
Spec. 45 0.20mm 0.80mm 0.18 mm 30.00° 0.09 mm 0.20mm
Spec. 46 0.40mm 0.40 mm 0.14mm 80.00° 0.07mm 0.20mm
Spec. 47 0.20mm 0.30mm 0.06 mm 60.00° 0.06 mm 0.20mm
Spec. 48 0.40 mm 0.40 mm 0.12mm 40.00° 0.06 mm 0.20mm
Spec. 49 0.30mm 1.00 mm 0.12mm 60.00° 0.06 mm 0.15mm
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Appendix B. Photographs of the Used Measurement Setups

z
(a) Flow resistivity test stand NOR 1517 with specimen and (b) Impedance tube AED 1000 with specimen and 1/4” micro-
adapter phones

Figure A1. Measurement test stands used within this work.
Appendix C. Inverse Parameter Identification for the Biot Parameters

Table A2. Settings of the evolutional algorithm used for the inverse parameter identification proce-
dure. The implementation of the algorithm is used from the python library scipy [67] an follows [66].

Property/Parameter Setting/Value

takes the Biot parameters, applies

Equations (1)—(A2) to compute the absorption
objective function coefficient, computes the error using

Equation (5) with regard to the measured

results and returns the error

¢ €[0.20,0.80] ae, € [0,10]
Aef1x 1077,1x 10‘3}

bound _ _

ounds A'e[1x107,1x107°]
kye[1x107%,1x107%]

convergence tolerance (rel.) 1x1072

mutation parameter 0.50

recombination parameter 0.70

max. iterations 1000

population size 75

Correlation Coefficient p = 0.63

¢ - inverse estimate

\ \
0.2 0.4 0.6 0.8

¢ - analytical estimate

Figure A2. A correlation plot for the inversely estimated porosity of the specimen (vertical axis)
and an analytical porosity estimate, computed using s/(s + d). A general correlation (correlation
coefficient p = 0.63) can be found. Therefore, it is assumed that the general procedure can be trusted.
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Figure A3. Relative standard deviation for the data augmentation procedure. The standard deviation
is computed for all ten runs of the inverse parameter estimates for each specimen and normalized
by the mean of the ten runs. It can be seen, that the data varies about approx. 10% for most
Biot parameters.

Appendix D. Mathematical Formulation o the JCAL Model Used Here

The mathematical formulation of the JCAL model used within this work is shown in
Equations (A1) and (A2), respectively. It is taken from [63]. Table A3 lists the used symbols
and the described physical quantity.

_ @oofo E¢ Aadonpow

="y |1 jwpoaooj - Tore (A1)
)

- g

R = (A2)

—(y— _ ¢ 2o “ppow
= 1)[1 Tiie om0 KA g2

Table A3. Symbols used in the JCAL model.

Symbol Quantity Symbol Quantity
5 flow resistivity 1 dynamic viscosity of the fluid
Koo tortuosity 00 ambient density of the fluid
¢ porosity w angular frequency
A viscous characteristic length Cy heat capacity at constant pressure
A thermal characteristic length 0% heat capacity ratio
ké) static thermal permeability K thermal conductivity
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Appendix E. Settings of the Machine Learning Models

Table A4. Settings of the KNN and ANN model (implementation see python-library scikit-learn [71]).

(a) Settings of the KNN model

parameter

setting

n neighbors

5

weights distance (weighting by inverse of the distance)
algorithm auto (default, chooses according input data)
leaf size 30 (default)
P 2 (default)
metric minkowski (default)
metric params None (default)
njobs Nonde (default)
parameter setting
hidden layers 4000-100
activation ReLU
solver Adam
alpha 1% 10™* (default)
batch size auto (default)

learning rate
learning rate init

constant (default)
1% 1072 (default)

power t 0.50 (default)
max iter 50.00
shuffle True (default)
random state None (default)
tol 1x107°
verbose False (default)
warm start False (default)
momentum 0.90 (default)
nesterovs momentum True (default)
early stopping False (default)
validation fraction 0.10 (default)
beta 1 0.90 (default)
beta 2 1.00 (default)
epsilon 1x107° (default)
n iter no change 100
max fun 15.00 (default)

Appendix F. Results of the Hyperparameter-Tuning of the ML Models

KNN k-parameter ANN topology
o 0.8 o 0.8 1
5 5
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Figure A4. Hyperparameter tuning of the KNN and ANN model. The tuning is done on the validation data during the 3-fold
cross-validation. The error bars indicate the 95% confidence interval of the variation during the cross-validation procedure.



Materials 2021, 14, 1747 38 of 41

Appendix G. Settings of the Evolutional Algorithm for the Inverse Absorber Design
and Results

Table A5. Settings of the evolutional algorithm used for the inverse specimen design procedure. The
implementation of the algorithm is used from the python library scipy [67] an follows [66].

Property/Parameter Setting/Value

takes the design variables, inputs into ML
model, computes Biot parameters, applies
objective function Equations (1)-(A2) to compute the absorption
coefficient, computes and returns the error
using Equation (8) with regard to target curve

bounds see Table 6
convergence tolerance (rel.) 1x1072
mutation parameter 0.50
recombination parameter 0.70
max. iterations 1000
population size 60
Bar Width Bar Height
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Figure A5. Overview over all designed Spec.s using the proposed ML approach. The colors refer to the ML model and
the Spec. start population: Blue: basic population, : KNN model, Green: ANN model. The symbols indicate the
absorption coefficient target curve: @: target curve “low”, m: target curve: “medium”, A: target curve: “high”.
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