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Abstract: With an increasing demand for adhesives, the durability of joints has become highly
important. The fatigue resistance of adhesives has been investigated mainly for epoxies, but in recent
years many other resins have been adopted for structural adhesives. Therefore, understanding the
fatigue characteristics of these resins is also important. In this study, the cyclic fatigue behavior of
a two-part acrylic-based adhesive used for structural bonding was investigated using a fracture-
mechanics approach. Fatigue tests for mode I loading were conducted under displacement control
using double cantilever beam specimens with varying bond-line thicknesses. When the fatigue crack
growth rate per cycle, da/dN, reached 10−5 mm/cycle, the fatigue toughness reduced to 1/10 of the
critical fracture energy. In addition, significant changes in the characteristics of fatigue crack growth
were observed varying the bond-line thickness and loading conditions. However, the predominance
of the adhesive thickness on the fatigue crack growth resistance was confirmed regardless of the
initial loading conditions. The thicker the adhesive bond line, the greater the fatigue toughness.

Keywords: DCB fatigue tests; adhesive thickness effect; Paris’ law; structural adhesives

1. Introduction

Nowadays, adhesives are widely used in many products and have become an in-
dispensable technology owing to several advantages such as design flexibility, bonding
dissimilar materials, and a smooth load transfer. As the number of products using adhe-
sive technology increases, improvements in reliability are becoming crucial. Over their
long service lives, adhesively bonded joints are exposed to harsh environmental condi-
tions, such as high humidity and temperature, impact loading, vibration, etc.; therefore,
durability against these conditions is essential, especially when used in structural parts.
For the fatigue testing of adhesive joints, two standards, ASTM D3166 and ISO 9664 [1,2],
are available, although these consider shear strength. In terms of fracturing in the joints,
crack resistance is also important, and the fracture toughness of the adhesive layer has been
investigated experimentally [3–8] and numerically [9–13] under static loading conditions.
In the case of fatigue crack resistance, there are no standards available. However, fatigue
crack growth (FCG) of composites and adhesives is one of the key issues in the aviation
industry; therefore, many studies on FCG have been conducted mainly based on empirical
correlations in experiments [14–22], and some used the Cohesive Zone Model (CZM) for
numerical analysis [23–26]. In the fatigue tests, FCG behavior is examined by relating
crack initiation per cycle with a fracture parameter. The relation between the FCG rate and
the fracture parameter was first developed for metals as a function of the stress intensity
factor K [27], the linear range of which is called the Paris’ law region. For composites
and adhesives, the strain energy release rate G is more commonly used than K, but much
discussion still remains in the expression for G [28,29].

In the study of fatigue behavior of adhesives, not only were the fatigue properties of the
adhesive itself investigated, but also the effects of layer thickness [30–35], load level [28,36]
and surface treatment [37–39] on FCG. However, it should be noted that most studies on
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adhesive fatigue deal with epoxies. Nowadays, many other polymers have also been used
as adhesives. In particular, structural acrylic adhesives are attracting much attention as
room-temperature curable adhesives with strength and toughness comparable to those
of epoxies. Because ambient-temperature curing adhesives do not require additional
equipment for curing and there are no restrictions on the size or location of the products
to be bonded, they have been used to bond large structures such as ships, turbine blades,
and door panels, or to assemble/repair on-site. However, there have been relatively few
papers dealing with FCG in structural acrylic adhesives [40–43].

To select an optimal bond-line thickness and indicate the sensitivity of fracture tough-
ness to thickness variation, it is important to understand the effect of bond-line thickness
on the fracture behavior under various loading conditions. In the case of epoxy adhesives,
many studies reported that the fracture toughness and the fatigue resistance are highly
dependent on thickness [30–35,44–47] but that the effect of the thickness on FCG is not
consistent [35]. In addition, the importance of a damage zone size in fatigue properties was
suggested [34]. Under the quasi-static loading, not only the adhesive thickness but also the
surface micro-patterns change the fracture process zone area that leads to an increase in the
fracture energy [48]. In the case of structural acrylic adhesives, it has been reported that
the fracture toughness becomes larger with larger bond-line thickness under a quasi-static
condition and it approached the intrinsic work of the fracture G0 with the decrease in the
plastic zone size under impact loading [49]. Further understanding of fracture behavior
through experiments under cyclic loading is crucial for increasing the reliability of the
joints bonded with structural acrylic adhesives.

In the present work, the effect of bond-line thickness of the structural acrylic adhesive
on fatigue resistance was discussed by conducting fatigue double cantilever beam (DCB)
tests for mode I fractures. Five different thickness samples (0.15 to 0.82 mm) were prepared
and FCG behavior was investigated under the same loading condition. In addition, the
effects of R-ratio and initial crack length on FCG were also investigated for two selected
bond-line thicknesses (0.15 and 0.60 mm). Crack propagation per cycle was calculated using
a compliance-based method and fatigue crack behavior was investigated. Then, differences
in FCG in accordance with bond-line thickness and fatigue test conditions were discussed.

2. Experimental
2.1. Materials

Carbon steel (S50C) was used as the substrate. A two-part acrylic-based adhesive
(Hardloc C355-20 A/B, Denka Co., Ltd., Tokyo, Japan), which is a second-generation acrylic
(SGA) adhesive, was used for bonding the substrates. Microscale sea-island structures
are formed in SGA due to phase separation at the initial stage of the curing process [50].
Owing to the difference in stiffness between the sea part and the island part, the SGA
adhesives can efficiently generate micro-cracks during plastic deformation and provide
excellent toughness, which leads to a large process zone around the crack [51].

2.2. Specimen Preparation

The specimen geometry is shown in Figure 1. The surfaces of the substrates were
sandblasted with Al2O3 grit as an abrasive medium and wiped with acetone prior to bond-
ing. The adhesive thickness was controlled by inserting a polytetrafluoroethylene (PTFE)
tape at the front and back of the adhesive layer. After the substrates were bonded together,
they were cured initially at approximately 24 ◦C for 24 h, and then post-cured at 60 ◦C
for 2 h. The substrate thickness was measured after sandblasting and specimen thickness
after bonding; then, the adhesive thickness was inferred using the substrate and specimen
thicknesses. For the reliability of the experiments, the number of trials is important. How-
ever, fatigue tests generally take much longer than quasi-static tests, and the number must
inevitably be limited. Therefore, in this study, instead of increasing the number of samples
in each condition, we gradually changed the conditions and prepared one sample for each
condition to evaluate overall trends.
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Figure 1. Schematic of DCB specimen geometry.

2.3. Fatigue Testing

A servo-hydraulic fatigue testing machine (8800 series with a load cell capacity of
100 kN, Instron Japan Co., Ltd., Kanagawa, Japan) was used. The specimen was attached
to a hydraulic chuck via a pin holder, as shown in Figure 2. The DCB fatigue tests were
performed at a cyclic frequency of 10 Hz under displacement control at room temperature
(approximately 24 ◦C). Maximum and minimum displacements are denoted as δmax and
δmin. After 106 cycles of the fatigue test, a quasi-static fracture test was conducted with
a displacement speed of 1 mm/min using the same machine. The adhesive bond-line
thickness, had, was varied holding other parameters in a fixed state, as shown in Table 1, and
the effect of thickness on fatigue characteristics was investigated. According to a previous
study [49], a linear increase in fracture toughness with respect to adhesive thickness was
predicted for the SGA adhesive used when had < 1 mm. Therefore, the adhesive thickness
was gradually changed within a range of 0.15 ≤ had < 1 mm. In addition, the effects of the
R-ratio, R, and initial crack length, a0, on the fatigue behavior were also investigated for
two specific bond-line thicknesses, as shown in Table 2.

Figure 2. Photograph of the fatigue test setup.

Table 1. The test conditions for varying adhesive bond-line thickness.

had (mm) δmin/δmax (mm) (=R) a0 (mm)

0.15 0.10/0.50 (=0.2) 40
0.20 0.10/0.50 (=0.2) 40
0.32 0.10/0.50 (=0.2) 40
0.61 0.10/0.50 (=0.2) 40
0.82 0.10/0.50 (=0.2) 40
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Table 2. The test conditions for varying R-ratio and initial crack length.

had (mm) δmin/δmax (mm) (=R) a0 (mm)

0.16 ± 0.01

0.10/1.00 (=0.1) 40
0.10/0.50 (=0.2) 1 40
0.25/0.50 (=0.5) 40
0.10/0.50 (=0.2) 60
0.10/0.50 (=0.2) 80

0.60 ± 0.05

0.10/1.00 (=0.1) 40
0.10/0.50 (=0.2) 1 40
0.25/0.50 (=0.5) 40
0.10/0.50 (=0.2) 50
0.10/0.50 (=0.2) 60

1 The same specimen as in Table 1.

2.4. Data Reduction Approach

Accurate measurement of the crack length is always difficult in the fatigue and quasi-
static fracture tests of adhesives. In particular, for highly ductile adhesives, a large fracture
process zone (FPZ) generated at the crack tip must be taken into account in fracture energy
calculation. A compliance-based crack estimation method has been established based on
linear elastic fracture mechanics (LEFM) for the adhesively bonded DCB specimens, there-
fore eliminating the need to measure the crack length and FPZ length [52–54]. Neglecting
the shear effect of the beam deflection, the equivalent crack length, a, which expresses the
crack length including the FPZ length, can be calculated as:

a =

(
3
2

EIC
)1/3

(1)

where E is the substrate modulus, I is the moment of inertia of the substrate cross-section,
and C is the compliance that was obtained from the gradient of the load-displacement (Pδ)
curve for each cycle. The fracture energy is then obtained as follows:

G =
P2a2

bEI
(2)

where P is the applied load and b is the width of the specimen, respectively. For the fatigue
tests, the fracture energy range, ∆G, was obtained from the maximum and minimum
values, Gmax and Gmin, for each cycle:

∆G = Gmax − Gmin (3)

To calculate the crack growth rate per cycle da/dN while avoiding data scattering,
a power-like law was adopted:

a = c1(N + c2)
c3 + c4 (4)

where c1, c2, c3 and c4 are constants obtained by the least-squares fit for each test and N is
the number of cycles [28]. Figure 3 shows an example of the fitted results. Then, da/dN
was calculated by differentiating Equation (4):

da
dN

= c1c3(N + c2)
c3−1 (5)
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Figure 3. Example of a power-like law fit to the relation between a and N.

3. Results and Discussion
3.1. Adhesive Bond-Line Thickness Effect

The results of the fatigue tests with varying bond-line thicknesses are shown in
Figure 4. A cohesive fracture was observed for all thickness configurations. As the initial
crack length and loading conditions were the same for all the tests, the initial reactions were
similar regardless of the bond-line thickness. However, as the number of cycles increased,
the advantage of a thicker bond line clearly revealed. The gradient changed around the
middle for had ≥ 0.32 mm, despite the linear increase in a and linear decrease in log ∆G
against log N for had = 0.15 and 0.20 mm (see Figure 4a,b).

In the low-cycle range (N < 104), the crack propagation speed was slower with a
thicker bond line, which suggested that the fatigue crack resistance was greater with a
thicker bond line under the same loading conditions. Conversely, in the high-cycle range
(N > 104), the gradients of a versus log N and that of log ∆G versus log N were similar
regardless of the bond-line thickness. Thus, the gradient of log da/dN versus log ∆G
became also similar for da/dN < 10−3 mm/cycle, as shown in Figure 4c. The linear range
of log da/dN versus log ∆G is named the Paris’ law region. Therefore, the full-cycle range
for had = 0.15 and 0.20 mm belonged to the Paris’ law region, but only the high-cycle range
for had ≥ 0.32 mm.

Owing to the different FCG behavior in the low-cycle range, ∆G was larger with
a thicker bond line even after the high-cycle fatigue; therefore, the superiority of the
thickness remained. Visual observation of the fracture surfaces revealed that the fatigue
crack growth became shorter as the adhesive layer became thicker, as shown in Figure 5.
Finally, the fracture energy was plotted against the bond-line thickness for the quasi-static
fracture test in Figure 6a and the fatigue test in Figure 6b. In all cases, the fracture energy
increased with an increase in thickness. In many cases of toughened epoxy adhesives, the
fracture energy stopped increasing at a certain thickness, generally less than 1 mm [44,55].
However, with some types of structural acrylic and structural polyurethane adhesives,
the fracture energy continued to increase even after the thickness exceeded 1 mm [49,56].
The experimental results revealed that this tendency was maintained even during the
fatigue tests.
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Figure 4. Fatigue test results for R = 0.2 and a0 = 40 mm and varying bond-line thickness:
(a) a versus log N, (b) log ∆G versus log N, and (c) log da/dN versus log ∆G.
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Figure 5. Fractured surfaces after the fatigue and quasi-static tests.

Figure 6. Effect of bond-line thickness on the fracture energy for (a) static fracture tests and (b) fatigue tests.
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3.2. R-Ratio and Initial Crack Length Effects

The fatigue characteristics changed with the bond-line thickness when the R-ratio and
initial crack length were held constant. However, it is also important to investigate the
fatigue characteristics under different test conditions. Thus, two bond-line thicknesses that
showed different fatigue characteristics under the same loading conditions were selected
and the effects of the test conditions on the fatigue behavior were investigated.

To vary the R-ratio, the maximum displacement δmax was increased from 0.5 to 1.0 mm
for R = 0.1 and the minimum displacement δmin from 0.10 to 0.25 mm for R = 0.5, as shown
in Figure 7. The results of the fatigue tests are presented in Figure 8. For the thin bond-
line specimen, R = 0.1 was too high to gradually propagate the crack and unstable crack
propagation was observed at the initial stage of the test. Consequently, the test was stopped.
For the remainder of the tests, the crack continuously propagated through the fatigue tests,
although the crack propagated faster with a smaller R (see Figure 8a,b). The fracture
energy range, ∆G, was smaller at the initial stage with a larger R because of larger Gmin
but decreased more slowly with a larger R (see Figure 8c,d). Therefore, the final ∆G was
the largest at R = 0.5. Conversely, a small difference in ∆G was observed in the high-cycle
region for R = 0.1 and R = 0.2, with the thick bond-line specimen. The relationship
between log da/dN and log ∆G was linear across the whole range, but the gradient differed
with the thin bond-line specimen (see Figure 8e). Conversely, with the thick bond-line
specimen, it was almost linear across the whole range for R = 0.1, but only in the high-cycle
range for R = 0.2 and 0.5 (see Figure 8f).

Figure 7. Schematic of the sinusoidal displacement input with the different R-ratios.

Figure 9 shows the fatigue test results for varying initial crack lengths. The crack
propagated slower and ∆G decreased less with a longer a0 at the initial stage. After a
sufficient number of cycles to reach the Paris’ law region, however, the crack propagation
accelerated, and the fatigue characteristics became similar regardless of the initial crack
length. In addition, when the initial crack was too long, a clear Paris’ law region did not
appear even after 106 cycles.
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Figure 8. Fatigue test results for a0 = 40 mm and varying R: (a,b) a versus log N; (c,d) log ∆G versus log N; and
(e,f) log da/dN versus log ∆G, for had = 0.16 ± 0.01 and 0.60 ± 0.05 mm, respectively.
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Figure 9. Fatigue test results for R = 0.2 and varying a0: (a,b) a versus log N; (c,d) log ∆G versus log N; and (e,f) log da/dN
versus log ∆G, for had = 0.16 ± 0.01 and 0.60 ± 0.05 mm, respectively.
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Comparing the ∆G of had = 0.16 and had = 0.60 after 106 cycles (Figure 8c,d and
Figure 9c,d), we found that the fatigue resistance was always higher when the bond
line was thicker, regardless of the R-ratio and initial crack length. In particular, it was
very interesting to be able to improve the joint that fractured with a few loading cycles
to withstand 106 vibrations under the same loading condition by simply changing the
bond-line thickness.

3.3. Effect of Initial Load Level on Fatigue Crack Growth Behavior

Tables 3 and 4 summarize the results. The fracture energy range ∆G was normalized
by the critical fracture energy Gc. The initial maximum load measured in the fatigue
tests was normalized by the initial maximum load in the quasi-static fracture tests that is
theoretically calculated using the measured initial compliance and Gc. The normalized
load was expressed as a maximum load level in percentage.

Table 3. Fatigue test results compared to a quasi-static test varying the bond-line thickness.

had R a0
(mm)

a (mm)
after 106 cycles

∆Ginitial
Gc

∆G/Gc at
da/dN=10−5

(mm/cycle)

Maximum
Load Level

(%)

0.15 0.2 40 99.7 0.66 0.12 83
0.20 0.2 40 100 0.61 0.11 80
0.32 0.2 40 97.7 0.49 0.10 72
0.61 0.2 40 84.6 0.27 0.08 52
0.82 0.2 40 81.0 0.21 0.08 46

Table 4. Fatigue test results compared to a quasi-static test varying the R-ratio and initial crack length.

had R a0
(mm)

a (mm)
after 106 cycles

∆Ginitial
Gc

∆G/Gc at
da/dN=10−5

(mm/cycle)

Maximum
Load Level

(%)

0.15 ± 0.02

0.1 40 N/A >1 N/A >100
0.2 40 99.7 0.67 0.12 83
0.5 40 82.7 0.50 0.16 79
0.2 60 101 0.35 0.11 59
0.2 80 102 0.15 0.13 40

0.60 ± 0.05

0.1 40 132 0.88 0.08 93
0.2 40 84.6 0.27 0.08 52
0.5 40 65.8 0.21 0.11 49
0.2 50 86.0 0.22 0.09 47
0.2 60 80.3 0.12 0.10 36

Owing to the high-cycle fatigue, ∆G was reduced to approximately 1/10 of Gc re-
gardless of the initial load level. Conversely, a difference was observed, especially in the
relations between log da/dN and log ∆G. Therefore, the characteristics of the FCG behavior
of the structural acrylic adhesive were categorized by the initial load level, as shown in
Figure 10. A high load level (∆Ginitial/Gc > 0.5 and/or maximum load level over 80%)
was required for the Paris’ law region to appear in the low-cycle fatigue. Thus, the initial
conditions at the high load level were considered to be on or near the FCG curve, as shown
in Figure 10b. At a moderate initial load level, the fracture energy seemed to achieve
the threshold value in the low-cycle region, but the fracture energy started decreasing
again in the high-cycle region. The temporary threshold-like value in the low-cycle region
was much smaller than Gc and changed depending on the loading conditions. Therefore,
we must be careful not to consider the temporarily stagnant value at low-cycle fatigue
as the threshold. At a low initial load level (∆Ginitial/Gc < 0.2 and/or maximum load
level under 40%), almost no fatigue crack propagation was observed because the ∆Ginitial
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was too small. Therefore, applying the appropriate initial load is important for the ap-
pearance of Paris’ law region. In addition, the initial load level decreased with increasing
the bond-line thickness when the loading condition was the same, but the initial position
of log da/dN versus log ∆G was kept close. Thus, the results from varying the bond-line
thickness indicate a downward shift on the FCG curve (see Figure 10c).

Figure 10. Schematics of fatigue fracture diagram as a relation between log da/dN and log ∆G with (a) overall trend,
(b) different initial load levels, and (c) different bond-line thicknesses.

4. Conclusions

The effect of adhesive bond-line thickness on fatigue toughness for mode I loading
was investigated by conducting fatigue double cantilever beam (DCB) tests for a structural
acrylic adhesive. The fatigue tests were conducted under displacement control with a
frequency of 10 Hz. Giving the same fatigue load and varying the bond-line thickness,
the initial ∆G was the same regardless of the thickness. However, in the low-cycle region
(cycle number less than 104), a difference in the fatigue crack growth (FCG) behavior was
observed depending on the bond-line thickness. With an increase in the cycle number,
a linear relationship between log da/dN and log ∆G—i.e., Paris’ law region—was observed,
regardless of the thickness and the gradient of the FCG curve became similar. As a result,
when comparing the results at the same log da/dN, the fracture toughness was higher with
thicker bond-line specimens, which was the same tendency as found in the quasi-static test
results. Although it was revealed that the condition for the Paris’ law region to appear was
highly dependent on the test conditions, especially the initial load level, the superiority
of the high-bond-thickness samples was maintained across different test conditions even
when changing the R-ratio and initial crack length. Therefore, when using the structural
acrylic adhesive in a vibrating or cyclic loading environment, a thicker adhesive layer is
preferred from the viewpoint of improving fatigue resistance. However, a clear threshold
was not observed at 106 cycles. Furthermore, in real usage, the joints are exposed to
different environments, such as high temperature, high humidity, and UV irradiation.
In recent years, life prediction by numerical analysis has been highly advanced, and shorter
and more sophisticated analyses will be able to be performed by combining these with
experiments. Therefore, it is expected that the actual durability will be confirmed in the
future, considering its further exposure to external influences and harsher environments.
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