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Abstract: Studies on allogeneic demineralized dentin matrix (Allo-DDM) implantation in the 1960s
and 1970s provided the most reliable preclinical evidence of bone formation and antigenicity in
an extraosseous site. Recently, applications of Allo-DDM at skeletal sites were studied, and have
provided reliable evidence of bone-forming capacity and negligible antigenicity. However, the
osteoinductivity and antigenicity properties of Allo-DDM in extraskeletal sites have not yet been
investigated due to the lack of follow-up studies after the initial research. The clinical applications
of autogenous DDM (Auto-DDM) have been standardized in some countries. Long-term clinical
studies have reported the development of several shapes of Auto-DDM, such as powders, blocks,
moldable forms, and composites, with recombinant human bone morphogenetic protein-2. For
the development of Allo-DDM as a reliable bone graft substitute next to Auto-DDM, we reviewed
preclinical studies on the bone induction capacity of allogeneic dentin at extraskeletal as well as
skeletal sites. Electronic databases were screened for this review in January 2020 and searched from
1960 to 2019. This review aims to provide a foundation on the preclinical studies of Allo-DDM, which
could enable future researches on its osteogenic capability and antigenicity. In conclusion, Allo-DDM
showed great potential for osteoinductivity in extraskeletal sites with low antigenicity, which neither
adversely affected osteogenic capability nor provoked immunologic reactions. However, the risk of
viral disease transmission should be researched before the clinical application of Allo-DDM.

Keywords: allogeneic; antigenicity; bone substitutes; demineralized dentin matrix; osteoinductivity

1. Introduction

Dentin is a cell-free matrix without vascularization, while bone includes osteocytes
and vessels. The organic and inorganic components of dentin and bone consist of similar
components, such as biological apatite (HAp: 70%), collagen (18%), non-collagenous
proteins (NCPs, 2%), and body fluid (10%) in weight by volume [1]. Dentin was reported
to have a bone-inducing function in a study from 1967, and demineralized dentin matrix
(DDM) was revealed to be an osteoinductive and osteoconductive collagen material with
less antigenicity; it enabled the release of growth factors such as bone morphogenic proteins
(BMPs) [2,3].

The general method for producing DDM, which is an acid-insoluble type I collagen
showing a high degree of cross-linking with collagenous and matrix-binding proteins such
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as transforming growth factors (TGFs), insulin growth factor, fibroblast growth factor (FGF),
and bone morphogenetic proteins (BMPs), involves crushing dentine, after removing the
cementum and enamel, into a powder and demineralizing it [1,4–6].

Demineralization is a necessary process for DDM to act as a bone substitute because
HAp inhibits the release of growth factors, and carrying out this process does not lead to
the degradation of these growth factors [1].

Major osteoinductive growth factors, similar to dentin-matrix-derived BMPs, have
been identified in rats [7], bovines [8], rabbits [9], and humans [10]. The molecular weight
of human dentin-matrix-derived BMP was estimated to be approximately 20.0 kDa by
SDS-PAGE and its pH was found to be 8.8 by isoelectric focusing; these values somewhat
resemble those of bone-matrix-derived BMPs [10].

Accordingly, several forms of autogenous DDM (Auto-DDM) (e.g., powder and blocks)
have been developed and their clinical safety and effectiveness in implant dentistry have
been tested [4]. An Auto-DDM powder was first applied for maxillary sinus augmentation
in humans in 2003 [11]. In 2006, Gomes et al. [12] conducted the first clinical study involving
humans with Auto-DDM slices at a thickness of 8 µm. They reported that bone formation
was higher with Auto-DDM than with the negative control (empty) and polytetrafluo-
roethylene membrane. Since then, studies on the regenerative potential of Auto-DDM
blocks, including clinical studies involving humans, for guided bone regeneration (GBR),
socket preservation (SP), and sinus augmentation have been reported [13–18].

The applications of Auto-DDM, as an alternative to autogenous bone grafts, have
shown promising clinical and histological results for SP and GBR in implant dentistry
owing to its inherent osteoinductive and osteoconductive capacity [13–17]. However, Auto-
DDM has limitations despite its proven bone-formation capacity: (1) dependence of the
Auto-DDM quantity on the number of teeth indicated for extraction and the condition of
the extracted teeth, (2) lack of a standard method to process Auto-DDM, and (3) patient
preference. Therefore, the application of dentin graft material from other individuals—
allogeneic DDM (Allo-DDM)—has been considered as an alternative to Auto-DDM [19,20].

Allo-DDM was conceptualized from the demineralized bone matrix (DBM), which
was largely developed and defined for the bone induction principle (BIP), which states that
a protein macromolecule in dentin and bone induces the differentiation of mesenchymal
cells into osteoblasts; this was postulated by Urist in 1965 [2,20]. The DBM is a refined
allograft that has osteoinductivity and has been clinically used since the 1980s. However,
many studies have indicated that the osteoinductive properties of DBM can be affected
by several factors, such as donor age, gender, particle size, and methods of preparation,
sterilization, and storage [21,22].

Although Auto-DDM is commonly applied in some countries such as Korea, India, and
Japan, very few studies have investigated the application of Allo-DDM as bone substitutes
for bone graft surgery with regard to its osteoinductivity and antigenicity. This narrative
review aims to summarize the preclinical evidence on the osteoinductivity and antigenicity
of Allo-DDM and to provide future directions for research on the clinical safety and efficacy
of Allo-DDM in maxillofacial bone regeneration.

2. Methods

Google Scholar, Scopus, PubMed, and the Cochrane Library databases were screened
for this review in January 2020. The years searched were from 1960 to 2019, using the
keywords “Demineralized Dentin Matrix” AND (“Allogenic” OR “Allogeneic”) AND
(“In vivo” OR “Animal”). The relevant full-length articles were obtained from the electronic
databases, and the authors read and selected relevant studies for review according to the
following inclusion criteria: (1) articles written in English in a peer-reviewed journal, (2)
any in vivo (animal) studies that included any of the search keywords, and (3) articles that
focused on osteoinduction or antigenicity. The exclusion criteria were: (i) articles for which
full-text was not available, (ii) articles that did not pertain to the allogeneic application
of demineralized dentin matrix, and (iii) classifications described in a textbook. The final
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articles selected were classified based on the application of the extraskeletal and the skeletal
sites after the inclusion and exclusion criteria were applied (Figure 1).
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Figure 1. Flow diagram for the review process.

3. Results

Among the selected articles, twelve in vivo studies evaluated the osteoinductivity of
allogeneic dentin at extraskeletal sites of the abdominis muscle or subcutaneous pockets in
rabbits, guinea pigs, and rats mainly during the 1960s and 1970s (Table 1) [23–34]. Twelve
other in vivo studies evaluated the bone-forming capacity of Allo-DDM in skeletal defects
after the 1990s (four studies were conducted using alveolar defects in rats, rabbits, and
monkeys [24,34–36]; seven used calvarial defects in rabbits and mice [37–43]; one used
femoral defects in rabbits [44]). Two of these twelve studies were performed both in
the muscles and alveolar bone (Table 2) [24,34]. As the preclinical in vivo studies on the
implantation of allogeneic dentin grafts at the extraskeletal site began in the 1960s along
with the development of BIP, most Allo-DDM research had stopped in the 1980s, when
the clinical application of DBM began. Since the 2000s, the number of in vivo studies on
allogeneic dentin grafts at skeletal sites for alveolar bone repair in implant dentistry began
to increase (Figure 2).
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in vivo studies on allogeneic dentin grafts at skeletal sites has begun to increase abruptly.
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Table 1. Summary of preclinical evidence on bone induction capacity of allogeneic dentin at extraskeletal sites.

Year (Author)
[Ref.] Theme Donor

(Tooth)
Geometry
(Dentin)

Processing
Method

Implant
Site/Time Key Findings

1967
(Bang &

Urist)
[23]

Osteoinduction

Rabbit
(Mature molar)

Whole root
dentin

Complete dem-
ineralization
(0.6 N HCl)

Abdominis
muscle/

12 weeks

Demineralized dentin (DDM):
Similar to the matrix of bone,
induces bone formation at
4 weeks proportional to the
volume of the original implant.

Rat
(Mature molar)

Un-
demineralization

Abdominis
muscle/

12 weeks

Undemineralized dentin
(MDM): Does not begin to be
resorbed until 8–12 weeks later
than demineralized dentine.

1967
(Yeomans &

Urist)
[24]

Osteoinduction
Young New

Zealand rabbit
(Dentin)

Grinding
dentin 1.0 mL

Complete dem-
ineralization
(0.6 N HCl)

Rectus
abdominis

muscle/
4, 8, 12 weeks

DDM: Rapidly resorbed more
than bone, induces bone in 100%
of implants within 4 weeks
(3H-glycine autoradiograph:
Positive evidence of
translocation of 3H-glycine from
the donor tissue to the cells of
the host bed. Figure 2 in text)

Un-
demineralization

Rectus
abdominis

muscle/
4, 8, 12 weeks

Undemineralized dentin (MDM)
induces bone in 75% of implants,
but only after a latent period of
8–12 weeks.

1968
(Urist et al.)

[25]

Inductive
substrate

antigenicity
(HCl vs. EDTA)

Rabbit
(Dentin)

Grinding
dentin 1.0 mL

Demineralization
(0.6 N HCl)

Abdominis
muscle/

4–12 weeks

Inductive substrate such that
new bone formation is the best
at 0.6 N HCl and 150 mmol
NaCl, and is derived from the
extracellular and not
cytoplasmic proteins.
Antigenicity: The immune
response is lowered, and the
inductive activity appears
earlier with lyophilized and
irradiated 60Co at the dose of
0.2 Mrads or less.

Rat
(Dentin)

Demineralization
(0.25 M EDTA)

EDTA: The inductive activity
had been eliminated only from
the exposed surface.
Bone: The inductive activity was
completely destroyed, Dentin:
Persisted inductive activity for a
longer time.

1970
(Huggins &

Urist)
[26]

ALP activity Rat
(Incisor)

Whole root
dentin

Complete dem-
ineralization
(0.5 N HCl,
1 mL/mg)

Rat abdominis
muscle/1 year

Alkaline phosphatase activity
(ALP) within 24 h: Reached
maximum on day 7.
Matrix transformation: Cartilage
appeared within 5 days; bone
and bone marrow formed within
14 days. The induced cartilage
disappeared within 5 weeks.
Transforming effects in postnatal
life are comparable to
embryonic induction because of
highly cross-linked, exceptional
resistance to the deleterious
action of strong acid of
dentin matrix.



Materials 2021, 14, 1713 5 of 17

Table 1. Cont.

Year (Author)
[Ref.] Theme Donor

(Tooth)
Geometry
(Dentin)

Processing
Method

Implant
Site/Time Key Findings

1970
(Huggins

et al.)
[27]

Transformation
of fibroblasts

Rat
(Incisor)

Mice
(Incisor)

Dentin powder
(pooling)

200–400 µm
(10–15 mg)

Complete dem-
ineralization
(0.5 N HCl) Subcutaneous

pockets/
9–21 days

DDM: Active transformation.
An early and intense attraction
for fibroblasts of the
subcutaneous tissue.

Un-
demineralization

MDM: Does not induce ALP,
cartilage, or bone.

Guinea pig
(Incisor)

Dentin powder
(Pooling)

200–400 µm
(10–15 mg)

Complete dem-
ineralization
(0.5 N HCl) Subcutaneous

pockets/
9–21 days

DDM: No bone induction in
guinea pig
Transformation of fibroblast:
Rat, mouse > guinea pig

Un-
demineralization

MDM: Does not induce alkaline
phosphate, cartilage, or bone.

1972
(Bang)

[28]

Antigenicity
Guinea pig

(Incisor)

Root dentin
pieces

2 × 2 × 1 mm

Demineralization
(0.2 N HCl)

Abdominis
muscle/4–12

weeks

Antigenicity: Histological
examination
1. Demineralized and
undemineralized dentin could
evoke an immune reaction.
2. The first set of Allo-DDM
induces bone formation in high
percentages of cases.
3. Induction was reduced in 2nd
set of grafts
4. No difference was observed in
bone-inducing capacity between
DDM and lyophilized DDM.

Guinea pig
(Molar)

Pieces
2 × 2 × 1 mm

Un-
demineralization

Osteoinduction is prevented in
the 2nd set of implants in MDM.

1973
(Reddi &
Huggins)

[29]

Role of
geometry

Rat
(Incisor)

Whole tooth
root

Demineralization
(0.5 N HCl)

Subcutaneous
tissue/

7–35 days

Cartilage–chondrolysis–
osteogenesis–ossicle with
hemopoietic marrow.
Figure 3a,b in Text

Whole tooth
root

Un-
demineralization

Bone and cartilage:
Not observed.
Finding of fibrosis: Consistent
with hypoxic environment of
pulp chamber. Figure 3c in Text

1973
(Bang)

[30]
Osteoinduction
(HCl vs. EDTA)

Guinea pig
(Molar)

Molar dentin
1/2 root

6–7 × 3 ×
1.5 mm,

30 mm3, 30 mg

Demineralization
(0.6 N HCl,

0.5 M EDTA) Abdominis
muscle/

4–12 weeks

HCl, DDM: 13 out of 30
implants induce bone formation
EDTA, DDM: 12 out of 30
implants induce bone formation

Un-
demineralization

MDM: Bone induction process is
retarded, and the yield of new
bone is low.

Rat
(Molar, Incisor)

Whole molar
tooth bud

Abdominis
muscle/

4–12 weeks

Tooth bud: No induction

Incisor dentin
6–7 × 3 × 1.5
mm, 30 mm3,

30 mg

Demineralization
(0.6 N HCl,

0.5 M EDTA)

HCl DDM: 1 out of 12 implants
induce bone formation
EDTA DDM: 3 out of
12 implants induce bone
formation
No distinct differences in the
bone-inducing capacity of HCl
and EDTA demineralization.

Incisor dentin
6–7 × 3 × 1.5
mm, 30 mm3,

30 mg

Un-
demineralization

3 out of 24 MDM:
Osteoinduction after 12 weeks,
bone induction process was
retarded, and the yield of new
bone was low
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Table 1. Cont.

Year (Author)
[Ref.] Theme Donor

(Tooth)
Geometry
(Dentin)

Processing
Method

Implant
Site/Time Key Findings

1975
(Linden)

[31]

Osteoinduction
cell sequences

Ash-Wistar rat
(Incisor)

Whole root
dentin block

Demineralization
(0.6 N HCl)

Abdominis
muscles/
40 days

Cell Sequences in bone
induction
Qualitative trends may be listed
as: (1) inflammation;
(2) formation of vascularized
connective tissue; (3) erosion;
(4) recalcification;
and (5) bone formation.

1977
(Nilsen)

[32]
Cell reaction Guinea pig

(Molar)

Root dentin
Piece

6–7 × 3 ×
1.5 mm

Demineralization
(0.2 M HCl)

Abdominal
muscles/
22 days

Induce osteoid formation:
Resorption of DDM is a
prerequisite for osteoid formation
(1) Matrix resorptive reaction
mediated by monocytes,
macrophages, and dentinoclasts.
(2) Fibroblastic reaction as an
unspecific capsulation process.
(3) Osteoblastic reaction with
osteoid matrix formation

1986
(Inoue et al.)

[33]

Chondrogenesis
in the

muscle, skin,
periodontal

ligament, and
bone marrow

Wistar rat
(Incisor)

Dentin rolls
One incisor-one

implant (not
pool)

Demineralization
(0.6 N HCl)

Abdominal
muscles

pouch/21 days

Cartilage is formed at 7 days
Rectus abdominis muscle
(cartilage induce) > Chest
subcutaneous tissue (cartilage
induce) > Periodontal ligament
(deposits of cartilage were not
seen)

Subcutaneous
pocket in the
chest/21 days

Cartilage is first found at
10 days

Periodontal
ligament of the

first molar/
21 days

Cartilage was not seen

Bone marrow in
the femur/

21 days
Woven bone is found at 10 days

1990
(Pinholt et al.)

[34]
Osteoinduction Male Wistar rat

(Incisor)
4 Granules1 × 1

× 1 mm
Demineralization

(0.2 N HCl)

Abdominis
muscle/
4 weeks

Dentin induced new bone
formation in 100% of implants
No inflammatory or foreign
body reactions were observed.

Abbreviations: DDM—demineralized dentin matrix; MDM—mineralized dentin matrix; HCl—hydrochloric acid; EDTA—ethylene diamine
tetraacetic acid; ALP—alkaline phosphatase activity; PRP—platelet-rich plasma.
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Table 2. Summary of preclinical evidence on the bone-forming capacity of allogeneic dentin at the skeletal site.

Year
[Author] Theme Donor

(Tooth)
Geometry
(Dentin)

Processing
Method

Implant
Site/Time Key Findings

1967
(Yeomans &
Urist) [24]

Osteoinduction New Zealand
rabbit

Grinding
Dentin
1.0 mL

Complete dem-
ineralization
(0.6 N HCl)

Mandibular
drill hole
(ø 5 mm)/

4, 8, 12 weeks

DDM: Induce osteogenesis, not
dentinogenesis.
(1) Bone formed by extension of
proliferating osteogenetic cells
from the host bed and (2) bone
formed by induction inside of
dentine matrix are generally
interwoven and
continuous processes.
The old DDM: Resorbed and
partially refilled with new bone
within 4 weeks, more slowly
than bone; produced a separate
and unattached ossicle inside
the cavity. After 12 weeks, the
end product is bone marrow
and not solid bone tissue.

Extraction
socket/

4, 8, 12 weeks

DDM: Induce osteogenesis and
not dentinogenesis.
The processes of (1) The
regeneration from host bed and
(2) the osteoinductive new bone
formation from the dentin
matrix generally progressed
separately. Bone induction is the
same as implants in the
abdominal wall.

Un-
demineralization

Mandibular
drill hole
(ø 5 mm)/

4, 8, 12 weeks

MDM: New bone formation in
75% of implants only after a
latent period of 8–12 weeks.
Same results with (23, 24) in
soft tissue

Extraction
socket/

4, 8, 12 weeks

MDM: New bone formation in
75% of implants only after a
latent period of 8–12 weeks.
Same results with (23, 24) in
soft tissue

1990
(Pinholt et al.)

[34]
Osteoinduction Male Wistar rat

(Incisor)
Granules

1 × 1 × 1 mm
Demineralization

(0.2 N HCl)

Premaxilla,
alveolar ridge

(subperiosteal)/
4 weeks

All 10 DDMs: Induced new
bone formation
Tissue response: No
inflammatory or foreign body
reactions were observed

1972
(Bang et al.)

[35]

Osteoinduction
Osteoconduction

16 Java
monkeys

Root dentin
pieces

4 × 1 × 1 mm,

Demineralization
(0.2 N HCl)

Mandibular
defect

(ø 7 mm)/1
week–1 year

DDM: Osteoinduction and
osteoconduction in
histologic study

2004
(Carvalho

et al.)
[36]

Osteopromotion
36 adult rabbits

(Central
incisor)

Slices, 8 mm
thick

(Consisting of
enamel, dentin,
and cementum)

Complete dem-
ineralization
(0.6 N HCl)

Mandibular
defect

(ø 5 mm and
2 mm in

depth)/Approx.
13 weeks
(90 days)

DDM slices: Biocompatible,
stimulated newly formed bone
until 30 days after implantation;
resorbed during the bone
remodeling process.
The volume of the newly formed
bone is significantly greater in
the dentin graft than in
ungrafted negative controls with
low antigenicity during
13 weeks in a histologic study

2007
(Gomes et al.)

[37]
Osteopromotion

48 New
Zealand rabbits.
Central incisors

Slices, 8 mm in
thickness

(Consisting of
enamel, dentin,
and cementum)

Complete dem-
ineralization
(0.6 N HCl)

Parietal defect
(ø 8 mm)/

Approx. 13
weeks (90 days)

DDM: Significantly greater bone
density than the ungrafted
controls with low antigenicity
for 13 weeks
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Table 2. Cont.

Year
[Author] Theme Donor

(Tooth)
Geometry
(Dentin)

Processing
Method

Implant
Site/Time Key Findings

2008
(Gomes et al.)

[38]

Osteopromotion
Optical density

48 New
Zealand rabbits

(Central
incisor)

Slices, 8 mm in
thickness

(Consisting of
enamel, dentin,
and cementum)

Complete dem-
ineralization

(0.6 HCl)

Parietal defect
(ø 8 mm)/
Approx.

13 weeks
(90 days)

DDM: Dentin shows
significantly greater
radio-opacity and better
trabecular bone arrangement
than the empty negative
controls during 13 weeks in a
radiological study

2010
(Al-Namnam

et al.)
[44]

Osteocompatibility
Quantitative

comparison of
bone formation

16 New
Zealand white

rabbits (Central
incisor root)

Dentin particles
2–4 mm

Un-
demineralization

Femoral defects
(ø 5 mm)/
12 weeks

MDM particle: No significant
difference in new bone
formation between autogenous
bone graft, ungrafted sites, and
MDM particles on
histomorphometric analysis
until 12 weeks.

2012
(Bormann

et al.)
[39]

Inflammatory
and neovascu-

larization
response

24 isogenic
mice

(Mandibular
central incisor)

Perforated
(300 µm)

dentin slices.
3 × 3 × 1 mm1

mm thick

Un-
demineralization

Calvarial defect
(36 mm2)/

3 weeks
(22 days)

Perforated MDM slice and
ß-TCP scaffolds are similar to
isogenic bone in terms of
inflammatory and
neovascularization response,
highlighting their potential
utility in the regeneration of
bone defects.

2013
(Bakhshalian

et al.)
[40]

Osteopromotion
6 rabbits
(Central
incisor)

Dentin pieces
2 mm3

Complete dem-
ineralization
(0.6 N HCl)

Parietal defect
(ø 8 mm,

0.5 mm in
depth)/

15–90 days

The amount of bone
regeneration: Significantly
higher in the DDM group than
in the ungrafted group.

2013
(Bakhshalian

et al.)
[41]

Osteopromotion
Blood

biomarkers

24 New
Zealand white

rabbits
(Mandibular

incisor)

Powders
300 µm in
pooling

Complete dem-
ineralization
(0.6 N HCl)

Skull defect
(ø 8 mm,

0.5 mm in
depth)/

15–90 days

DDM: Significantly increased
bone mass and improved bone
quality without causing an
inflammatory reaction
or infection.
WBC count: Higher in the early
stage, but lower in the later
stage than that in the
empty control.
ALP: There was no difference in
the plasma.

2016
(Gomes et al.)

[42]
Osteopromotion

60 adult New
Zealand rabbits

(Central
incisor)

Slices, 8 mm in
thickness

(Consisting of
enamel, dentin,
and cementum)

Complete dem-
ineralization
(0.6 N HCl)

Parietal defect
(ø 8 mm)/
Approx.

13 weeks
(90 days)

ALP: Significantly higher in the
DDM group than in the empty
control, empty diabetic, and
DDM–PRP groups, confirming
the findings of intense
osteoblastic activity and
increased bone mineralization.
DDM promoted superior bone
architectural microstructure in
bone defects in diabetic rabbits
because of its effective
osteoinductive and
osteoconductive activity,
whereas PRP stimulated
angiogenesis and red bone
marrow formation.

2018
(Um et al.)

[43]
Osteopromotion 6 rabbits

(Dentin)
Powder

300–800 µm

Partial deminer-
alization

(0.6 N HCl)

Calvarial defect
(ø 8 mm)/
1–4 weeks

DDM: Osteoinductive and
osteoconductive function in a
histological study.

Abbreviations: DDM—demineralized dentin matrix; MDM—mineralized dentin matrix; HCl—hydrochloric acid; ALP—alkaline phos-
phatase activity; PRP—platelet-rich plasma; WBC—white blood cells.
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4. Discussion
4.1. Osteoinductivity

Most of the studies evaluated the osteoinduction property of dentin with regard to
histological, radiological, and biochemical outcomes at the extraskeletal sites (Table 1).

In 1967, Bang and Urist [23] first reported bone induction at 4 weeks after Allo-DDM
implantation without causing inflammation or foreign body reactions in the abdominal
muscle of rabbits and rats. After 12 weeks, the new bone was remodeled into the bone
marrow without a solid bone matrix [24]. Since then, many researchers have revealed that
Allo-DDM induced bone formation in extraskeletal sites of rats and rabbits, and produced a
high yield of new bone and cartilage in volumes that seemed to be proportional to that of the
original grafts [23–35,40,41,43]. This inductive substrate, which is similar to DBM owing to
its ability to allow the differentiation of fibroblasts from mesenchymal cells into cartilage or
bone [2,25], is derived from the extracellular components of the dentin matrix and not from
cytoplasmic proteins, which are dispersed in the ground substrate or extracellular material
among the inducing and responding cells of the recipient (Figure 3) [19].
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Figure 3. A schematic of the new bone formation process after human demineralized dentin matrix (DDM) transplantation
in rat skeletal defects [19]. When the human DDM is transplanted into the rat calvarial defect, a small amount of bone
morphogenic proteins (BMPs) that are gradually released from the DDM induce mesenchymal cells to differentiate into
osteoblasts. The osteoblasts secrete the matrix and form a new osteoid with embedded osteocytes, which are buried
osteoblasts. The osteocytes then form a network on the DDM surface, with some of them extending into the dentinal tubules.

The qualitative trends of cellular sequences after the implantation of Allo-DDM could
be as follows: (1) inflammation, (2) vascularized connective tissue formation, (3) erosion,
(4) recalcification, and (5) bone formation [31]. Nilson [32] summarized the cellular events
during induced bone formation as follows: (i) resorptive reactions mediated by monocytes,
macrophages, and dentinoclasts, (ii) fibroblastic reaction, as an unspecific encapsulation
process, and (iii) osteoblastic reaction with osteoid formation (Table 1).

The sequences of cellular transformation following the implantation of Allo-DDM
suggest that the graft is invaded by the vascular “mesenchyme” with a brief inflammatory
reaction. Some of the mesenchymal cells became multinucleated giant cells that proceed to
erode tunnels in the matrix and enlarge the pre-existing cavities (the dentinal tubules). The
matrix around the eroded chambers is then re-calcified, presumably due to the diffusion of
mineral ions from the new blood vessels. Osteoblasts then replace the multinucleated cells
on the eroded and calcified surfaces, which start to deposit the bone matrix and cement
line [27,45]. In extraskeletal sites, Allo-DDM showed penetration into the bone and was
resorbed slower than DBM, presumably because DDM is a denser collagen matrix, and has
neither vascular channels nor marrow space [26]. The new bone induced by Allo-DDM
was almost twice the size of the decalcified cortical bone graft [24,29].

In general, osteoinduction is a surface-oriented reaction that does not involve the deep,
relatively non-available structures of the matrix [2,46]. In an extraction socket as a four-wall
skeletal defect, the induced bone produced a separate unattached ossicle inside the bone
cavity. The process of bone regeneration from the pre-existing cavities and bone induction
from DDM were separated and delineated by a fibrous envelope. On the other hand, in the
mandibular critical-sized defect, the induced bone from DDM was not separate from the
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recipient bone and showed a generally interwoven and continuous pattern [24]. Regardless
of whether the induced bone from the graft and host was separate or continuous in the
skeletal defect, a separate unattached ossicle was produced inside the bone cavity. After
12 weeks, a large part of the structure of the final tissue profile was that of a cancellous
bone and not a solid bone tissue [24,35].

Gomes and his colleagues [36–38,42] reported that new bone formation on implanta-
tion with Allo-DDM in rabbit skeletal defects was greater than that in ungrafted defects.
Um et al. [43] reported that bone induction by Allo-DDM was interwoven and continuous
with the recipient bone. In 2018, Tanoue et al. [19] suggested that in the new bone formation
process, after xenogeneic transplantation with human DDM in rat calvarial bone defects,
a small number of BMPs were gradually released from the DDM, induced mesenchymal
cells to differentiate into osteoblasts which secrete, and formed a new osteoid on the DDM
surface (Figure 3).

Bone morphogenetic activity in the DDM indicates that BMPs reside in or on the qua-
ternary structures of collagen fibrils, or the protein core of proteoglycans [1,43]. During the
demineralization process, by using ethylenediaminetetraacetic acid (EDTA), hydrochloric
acid (HCl), and lactic acid, BMPs were found to be more stable in the dentin than the bone
because of the highly cross-linked structure of the fibrous (insoluble) protein and high
density of collagen in the dentin matrix [25,26,47]. However, BMPs are heat-stable and
resistant to strong acid but can be destroyed by ultraviolet (UV) irradiation and dilute
solutions of sodium hydroxide (NaOH) [2,22,25,26]. However, DDMs retain the BMP
activity in the insoluble organic matrix (98% collagen) after the removal of most of the
soluble components, as the collagen fibril may be the locus of BMPs (Figure 4) [1,7–10,48].
Recently, enzyme-linked immunosorbent assay quantification of growth factors in human
dentin indicated the predominance of TGF-β1 (15.6 ng/mg of DDM), with relatively lower
concentrations of BMP-2 (6.2 ng/mg of DDM), FGF (5.5 ng/mg of DDM), vascular endothe-
lial growth factor (5.0 ng/mg of DDM), and platelet-derived growth factor (4.7 ng/mg
of DDM) [1]. Consequently, Allo-DDM showed great bone morphogenetic activity with
growth factors as osteoinductive property in extraskeletal sites and bone healing capacity
in skeletal sites.

4.2. Antigenicity

A few studies assessed the levels of antigenicity by immunologic reaction markers
such as histocompatibility, second-set reaction of skin grafts in extraskeletal sites, and white
blood cell (WBC) count in skeletal sites (Tables 1 and 2).

At the extraskeletal site, histocompatibility antigens in Allo-DDM were first investi-
gated in 1968 [25]. Weaker antigens produced only a thin wall of inflammatory tissue and
caused only a brief delay in the onset of inductive interaction of mesenchymal cells. The
tolerance and biological activity could be enhanced by preliminary treatment of Allo-DDM
with the combination of lyophilization and co-radiation, which inactivates the histocompat-
ibility antigens in the allogeneic dentin matrix. The inductive activity of the treated matrix
could be retained by using chloroform and methanol to remove nearly all lipoproteins and
lipids (Table 1).

In an experimental model with the rejection reaction in skin allografts in 1972, Bang [28]
reported that Allo-DDM might have some tissue antigens that could evoke an immune
response in the host, resulting in a decreased survival time of the skin allografts [28,34,40].

When used in skeletal defects, Allo-DDM showed no or low antigenicity at the tissue
level [34,36,37]. Except for the initial inflammatory reaction, no immunological rejec-
tion response or foreign body reaction was observed with the Allo-DDM graft [41]. The
mean WBC count was higher in the Allo-DDM group than in the negative control group
at two days postoperatively but reached equivalence at postoperative days 15 through
90 (Table 2) [41]. Even the different WBC results of both the groups were in the range of
that of a homogeneous group without immunologic symptoms [49]. Therefore, this initial
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inflammatory reaction of Allo-DDM could not be associated with an immunologic reaction
and did not inhibit the osteoinductivity of Allo-DDM [2,30].
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Some BIPs are lost in DBM with lyophilization, irradiated, or heating processes [2].
Several methods, including sequential chemodigestion and chemosterilization, for anti-
gen depletion, have been utilized to reduce the host immune response while preserving
the osteoinductive properties [2,50]. Allogeneic reactive glycopeptides in the DBM, de-
rived from osteocytes or other cell membranes in the marrow component, can elicit an
immune response through indirect antigen presentation [51]. A vital dentin might have
allogeneic immune components, such as cytoplasmic membrane antigens, odontoblastic
dentin processes, and cementocyte membranes of cementum [52]. In conclusion, owing to
the acellular and avascular nature of the dentin matrix, which does not induce antigenic-
ity [3], DDMs have low antigenicity [3,22], but this insignificant antigenic effect from the
potential immune components could possibly lead to reduced osteogenesis [23,28,34,40].

4.3. Demineralization of Dentin Matrix

In many studies, complete demineralization of the dentin matrix, until a calcium-
free state, is achieved using 0.25–0.5 M EDTA and 0.2–0.6 N HCl [23–34]. Among the
several demineralization protocols, the treatment with 0.6 N HCl led to the most effective
osteoinductivity, as revealed by histological and roentgenographic examinations in rats
and rabbits after 4–12 weeks of implantation [25]. The osteoinductive capacity was not
different between demineralization with 0.2 and 0.6 N HCl. Although chelating agents
such as EDTA have deleterious effects on bone [25], Bang [30] argued that no definite
difference in osteoinductivity existed between dentin demineralized with HCl and EDTA.
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According to Glowacki [22] and Russell et al. [53], demineralization with 0.1 N EDTA had
detrimental effects on the osteoinductivity of bone implants.

The minerals from the dentin matrix insulate the BMPs and interfere with the transmis-
sion of the bone morphogenetic property [1,24,53]. Demineralization of the dentin matrix
not only contributes to removing allogeneic immune components including minerals and
acid-soluble proteins but also to opening the dentinal tubules [29,45]. Additionally, after
demineralization, the widened nanoporous dentinal tubules and exposed collagen fibers
could help in the release of the dentin-matrix-derived growth factors, resulting in the pro-
liferation of mesenchymal cells, activation of collagenolytic enzymes, the transformation of
fibroblasts to osteoblasts, favorable cell attachment, and osteoinduction [1,5,6,24,53–55].

With regard to partial demineralization, a study from 1998 on human DDM as a
carrier for recombinant human BMP-2 reported that partially demineralized dentin matrix
(partial-DDM, % not specified) did not cause osteoinduction on allogeneic transplantation
into the muscle of mice [56]. On the other hand, in 2018, a similar study of partial-DDM in
rabbits showed bone induction in both the subcutaneous tissue of mice and the skeletal
defect of rabbits [43]. Koga et al. [57] showed superior bone regeneration with partial-DDM
(70% demineralization) than that with complete-DDM (complete-DDM) in rat skeletal
defects. Partial-DDM can contain more growth factors that promote osteogenesis than
complete-DDM since many NCPs are released from the dentin matrix during complete
demineralization [57]. Controversies still exist regarding the ideal demineralization degree
of DDM owing to the scarcity of related research; however, such information is available
for extrapolation from the research on DBM [53]. The demineralization agents and the time
used to make the DDM affect the mineral percentage of the resulting DDM. The DDM in
powder form has a mineral content of about 5–10%/volume, while DDM in block form
has a mineral content of about 10–30%/volume with approximately 90%/volume of type I
collagen [4,43,58] (Figure 4).

Many researchers found that undemineralized allogeneic dentin matrix (Allo-MDM)
did not induce alkaline phosphate activity and cartilage or bone formation in the extraskele-
tal sites [27–29,31,32]. Allo-MDM required a lag phase of 8 to 12 weeks to produce a scanty
deposit of bone in 75% of the grafted area [23,24,30]. The resorption of Allo-MDM was
always incomplete and delayed, whereas osteogenesis was induced at 4 weeks after the
implantation of Allo-DDM.

However, in rabbit skeletal defects, Allo-MDM acted as a three-dimensional osteocon-
ductive scaffold contrary to the results obtained in the extraskeletal sites [24,27,30,39,44].
Histomorphometrically, the bone regeneration capacity of Allo-MDM was similar to that
of autogenous bone grafts [44]. In mice with skeletal defects, Allo-MDM slices were found
to have been completely vascularized at 22 days postoperatively and osseointegrated
within 12 weeks, similar to autogenous bone, ß-tricalcium phosphate (ß-TCP) scaffolds,
and ungrafted sites [39]. Nonetheless, in a recent in vivo study, human DDM showed
superior bone healing than MDM in the skeletal defects of rats [59].

Therefore, MDM appears to act as an osteoconductive scaffold; however, it has poor
bone formation capacity or is rejected in extraskeletal sites, which requires the activation
of inducible osteogenic precursor cells (IOPCs). According to Friedenstein et al. [60] and
Owen [61], at the extraskeletal tissue, osteogenesis occurred only in the presence of IOPCs,
which need an inducer from the demineralization or osteoclastic resorption of the dentin
matrix.

In summary, the demineralization with 0.2–0.6 N HCl showed the most effective
osteoinductivity of Allo-DDM. With regard to the degree of demineralization, partial-DDM
was superior for bone-forming outcomes in comparison with complete-DDM, since many
endogenous growth factors could be lost during complete demineralization.

4.4. Geometry of Allo-DDM

The osteoinductivity of Allo-DDM at extraskeletal sites was not affected by its var-
ious shapes and sizes, including pieces of 2 × 2 × 1 mm3 [28,30,32], whole root dentin
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blocks [29,31], and dentin rolls [33]. Other geometric structures of Allo-DDM include
whole dentin or 1.0 mL or 3 mm3 of dentin used by Urist and colleagues [23–26], and coarse
powders of 200–300 µm and granules of 1 mm3 introduced by Reddi et al. [27] and Pinholt
et al. [34] (Table 1). Reddi et al. [29] conducted an experimental study that implanted teeth
in the rat subcutaneous tissue and showed the transformation of fibroblasts into the carti-
lage and bone tissues at the end of the tooth root, where it allowed the capillary penetration
from the subcutaneous tissue. However, cartilage formation was observed inside of the
root, probably because of the lower oxygen tension in this zone. When capillaries were
provided access to both the ends of the root by cutting the other end, bone was formed
at both ends with cartilage in the middle. In mineralized tooth implantation, a cavity
inside the tooth was populated with fibroblasts that failed to differentiate into bone and
cartilage [29,62].

In skeletal sites, Allo-DDM showed bone formation capacity regardless of shape and
size (Table 2) [24,34–44]. Macroporous (200–300 µm) human DDM blocks, that completely
penetrated the whole DDM, provided the space for vascular invasion, resulting in os-
teoconductive bone formation and osteoinductive deposits of new osteoids on the DDM
surface (Figure 5) [63]. A 500-µm macroporous human DDM block was more effective
for bone formation than non-perforated DDM in the rabbit skeletal sites [64]. A 1000-µm
macroporous human DDM block showed new bone formation on the entire DDM in the
skeletal defects of sheep [65]. These results indicated that the geometric structure of human
DDM could contribute to active bone ingrowth in critical-size bone defects [65].
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Figure 5. Histological findings of dentin block grafts into the skeletal sites [63]. (A) Macropores (300 µm, red arrow)
on the dentin block that penetrated from the surface to the pulp space provided the space for vascular invasion. (B) At
8 months after the graft, the macropores (300 µm, black line) were filled with newly formed osteoids with embedded active
chondrocyte-like cells (red arrow) that closely contacted the inner wall of the macropore. (C) At 3 months after the graft, a
newly formed osteoid, which had osteocytes (black arrow) and vessels (black asterisk), had been deposited on the dentin
block surface. Cellular fusion without fibrous tissue invasion was observed on the border between the osteoid and the
dentin matrix (black arrowhead).

With regard to the particle size of DDM, the only studies available are regarding DDM
powders (particle size, 200–400 µm) in 1970 and 1 × 1 × 1 mm3 granules in 1990 [29,34].
Most subsequent studies used a DBM size that might have a similar influence on the
transformation of fibroblasts into osteoblasts [2,29,62,66]. DBM powder with a particle size
of 420–850 µm showed the maximum effect on local fibroblasts for the induction of endo-
chondral bone, whereas DBM with smaller particles (≤74 µm) delayed cartilage formation
with scanty chondroblasts [62]. Another study compared three different DBM particle
sizes, and concluded that large particle sizes of 500–1000 µm were desirable when the DBM
was implanted alone, whereas small particles (<500 µm) were recommended in conjunc-
tion with mesenchymal stem cells [67]. In the 2010s, Allo-DDM powders with a particle
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size of 300–800 µm showed excellent bone-forming capability in skeletal defects [40,43].
Recently, Koga et al. [57] reported that human DDM (70% demineralized) with a large
particle size (1000 µm) showed superior bone regeneration than that with small parti-
cle sizes (180–212 and 425–600 µm), which was consistent with the findings of previous
studies [34,44]. Nam et al. [68] compared two different sizes of human DDM particles
(250–1000 vs. 1000–2000 µm) and concluded that smaller particles were more effective in
promoting osteogenesis.

Dentinal tubules in dentin (20,000–60,000/mm3, approximately 3 µm diameter) are
a unique spatial nanoporous structure that can be enlarged to microporous geometric
structures by the demineralization process, resulting in increased porosity from 3% to
20% [25,54,55,69]. This modified geometry of DDM can facilitate the release of the dentin-
matrix-derived growth factors, such as BMPs inside the dentin matrix, and hydroxyapatite-
binding proteins, as well as the influx of proteins from host tissues [45,54,70].

In 2018, Tanoue et al. [19] reported that the transplantation of human DDM into
rat skeletal defects caused the osteocytes embedded in the newly formed bone to create
a network on the DDM surface with a connection into the enlarged dentinal tubules
(Figure 3). This finding was consistent with those of fundamental studies conducted in
the 1960s that showed macromolecular networks between the dentinal tubules and newly
deposited osteoids [24,25].

5. Conclusions

This article represents the first comprehensive review focused on the osteoinduc-
tivity and antigenicity of Allo-DDM. Allo-DDM has demonstrated a great potential for
osteoinductivity in extraskeletal sites. Allo-DDM showed low antigenicity, which neither
adversely affected osteoinductivity nor provoked immunologic reactions. Owing to the
limited amount of research related to Allo-DDM and the lack of follow-up studies after the
initial research, there has been no clear evidence to support the free antigenicity of Allo-
DDM due to the potential immune components from vital dentin, which might be removed
during demineralization process. Further, even though acellular and avascular dentin
matrix cannot be a carrier for a virus, safety from the risk of viral disease transmission has
not been mentioned so far in the condition of in vivo. Future studies should investigate
the optimization of the processing methods and the geometry of Allo-DDM, which plays
an important role in its osteoinductivity and osteoconductivity. Furthermore, the risk
of viral disease transmission should be researched in vivo before the clinical application
of Allo-DDM.
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