

Supplementary Materials

Intramolecular C-N Bond Formation via Thermal Arene C-H Bond Activation Supported by Au(III) Complexes

Julianna Mruk ¹, Agata J. Pacuła-Miszewska ¹, Leszek Pazderski ², Joanna Drogosz-Stachowicz ³, Anna E. Janecka ³ and Jacek Ścianowski ^{1,*}

- ¹ Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; julianna@doktorant.umk.pl (J.M.) pacula@umk.pl (A.J.P.-M.)
- ² Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; leszek.pazderski@umk.pl
- ³ Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; joanna.drogosz@stud.umed.lodz.pl (J.D.-S.); anna.janecka@umed.lodz.pl (A.E.J.)
- * Correspondence: jsch@umk.pl

Citation: Mruk, J.; Pacuła-Miszewska, A.J.; Pazderski, L.;

Drogosz-Stachowicz, J.; Janecka, A.E.; Ścianowski, J. Intramolecular C-N Bond Formation via Thermal Arene C-H Bond Activation Supported by Au(III) Complexes. *Materials* **2021**, *14*, 1676. https:// doi.org/10.3390/ma14071676

Academic Editor: Daniela Iannazzo and Víctor A. de la Peña O'Shea

Received: 2 February 2021 Accepted: 23 March 2021 Published: 29 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

TABLE OF CONTENTS

`S1. Yields, melting points, elemental analysis, ¹H, ¹³C, ¹⁵N and ¹H-¹³C HMBC NMR spectra of:

A. Ligands 9-11	3
B. Au(III) trichloride complexes 9a-11a	11
C. Tetrachloroaurate(III) salts 8b-15b	16
S2. ¹ H, ¹³ C and ¹⁵ N chemical shifts of salts 8b-15b and parent heterocycles 8-15	

S1. Yields, elemental analysis and ¹H, ¹³C, ¹⁵N NMR spectra

A. Ligands 9-11

Scheme S1. 2-phenylsulfanyl-6-methylpyridine 9.

Yield: 82%; light yellow oil; Anal. Calcd for C12H11NS: C, 71.61; H, 5.51; N, 6.96. Found C, 71.91; H, 6.80; N, 7.02.

¹H NMR (700 MHz, CDCl₃) δ 7.57 (m, 2H, 2 × CH_{ar}), 7.39 (m, 1H, CH_{ar}), 7.38 (m, 2H, 2 × CH_{ar}), 7.30 (t, *J* = 7.7 Hz, 1H, CH_{ar}), 6.83 (d, *J* = 7.7 Hz, 1H, CH_{ar}), 6.59 (d, *J* = 8.4 Hz, 1H, CH_{ar}), 2.49 (s, 3H, CH₃); ¹H NMR (700 MHz, DMSO-*d*₆) δ 7.58 (m, 2H, 2 × CH_{ar}), 7.53 (t, *J* = 7.7 Hz, 1H, CH_{ar}), 7.49 (m, 3H), 7.01 (d, *J* = 7.7 Hz, 1H, CH_{ar}), 6.65 (d, *J* = 7.7 Hz, 1H, CH_{ar}), 2.40 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (C_{ar}), 158.4 (C_{ar}), 137.2 (CH_{ar}), 135.0 (2 × CH_{ar}), 131.2 (C_{ar}), 129.6 (2 × CH_{ar}), 129.1 (CH_{ar}), 119.5 (CH_{ar}), 118.3 (CH_{ar}), 24.1 (CH₃); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.2 (C_{ar}), 158.2 (C_{ar}), 137.6 (CH_{ar}), 134.3 (2 × CH_{ar}), 130.6 (C_{ar}), 129.8 (2 × CH_{ar}), 129.1 (CH_{ar}), 118.1 (CH_{ar}), 23.7 (CH₃); ¹⁵N NMR (71 MHz, CDCl₃) δ -78.0 ppm.

Figure S1. ¹H NMR spectrum of 9 in CDCl₃.

Figure S3. ¹H NMR spectrum of 9 in DMSO-d₆.

Figure S4. ¹³C NMR spectrum of 9 in DMSO-d6.

The ¹H and ¹³C NMR assignments for **9**, based on ¹H-¹³C HSQC and HMBC spectra (and confirmed by ¹H-¹⁵N HMBC) are as follows:

¹H NMR of **9** in CDCl₃: H(3) 6.59, H(4) 7.30, H(5) 6.83, H(2'/6') 7.57, H(3'/5') 7.38, H(4') 7.39, CH₃ 2.49 ppm

¹³C NMR of **9** in CDCl₃: C(2) 161.0, C(3) 119.5, C(4) 137.2, C(5) 118.3, C(6) 158.4, C(1') 131.2, C(2'/6') 135.0, C(3'/5') 129.6, C(4') 129.1, CH₃ 24.1 ppm

¹H NMR of **9** in DMSO-d₆: H(3) 6.65, H(4) 7.53, H(5) 7.01, H(2'/6') 7.58, H(3'/5') 7.49, H(4') 7.49, CH₃ 2.40 ppm

¹³C NMR of **9** in DMSO-d₆: C(2) 159.2, C(3) 118.1, C(4) 137.6, C(5) 119.8, C(6) 158.2, C(1') 130.6, C(2'/6') 134.3, C(3'/5') 129.8, C(4') 129.1, CH₃ 23.7 ppm

Scheme S2. 2-phenylsulfanyl-5-methylpyridine 10.

Yield: 75%; light yellow oil; Anal. Calcd for C12H11NS: C, 71.61; H, 5.51; N, 6.96. Found C, 71.44; H, 6.57; N, 7.08.

¹H NMR (700 MHz, CDCl₃) δ 8.26 (dd, *J* = 2.1, 0.7 Hz, 1H, N-CHar), 7.54 (m, 2H, 2 x CHar), 7.37 (m, 3H, 3 x CHar), 7.28 (dd, *J* = 8.4, 2.1 Hz, 1H, CHar), 6.84 (d, *J* = 7.7 Hz, 1H, CHar), 2.24 (s, 3H, CH₃) ppm; ¹H NMR (700 MHz, DMSO-*d*₆) δ 8.25 (dd, *J* = 2.1, 0.7 Hz, 1H, N-CHar), 7.51 (m, 2H, 2 x CHar), 7.49 (m, 1H, CHar), 7.45 (m, 3H, 3 x CHar), 6.90 (d, *J* = 7.7 Hz, 1H, CHar), 2.22 (s, 3H, CH₃) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 157.7 (Car), 149.8 (CHar), 138.1 (CHar), 134.6 (2 x CHar), 132.0 (Car), 130.1 (Car), 129.8 (2 x CHar), 129.0 (CHar), 122.1 (CHar), 134.0 (2 x CHar), 131.2 (Car), 130.3 (Car), 129.8 (2 x CHar), 129.0 (CHar), 121.6 (CHar), 17.3

(CH₃) ppm; ¹⁵N NMR (71 MHz, CDCl₃) δ -78.9 ppm; ¹⁵N NMR (71 MHz, DMSO-*d*₆) δ -70.6 ppm.

Figure S7. ¹H NMR spectrum of 10 in DMSO-d6.

Figure S8. ¹³C NMR spectrum of 10 in DMSO-d₆.

The ¹H and ¹³C NMR assignments for **10**, based on ¹H-¹³C HSQC and HMBC spectra (and confirmed by ¹H-¹⁵N HMBC) are as follows:

¹H NMR of **10** in CDCl₃: H(3) 6.84, H(4) 7.28, H(6) 8.26, H(2'/6') 7.54, H(3'/5') 7.37, H(4') 7.37, CH₃ 2.24 ppm

¹³C NMR of **10** in CDCl₃: C(2) 157.7, C(3) 122.1, C(4) 138.1, C(5) 130.1, C(6) 149.8, C(1') 132.0, C(2'/6') 134.6, C(3'/5') 129.8, C(4') 129.0, CH₃ 18.0 ppm

¹H NMR of **10** in DMSO-d₆: H(3) 6.90, H(4) 7.49, H(6) 8.25, H(2'/6') 7.51, H(3'/5') 7.45, H(4') 7.45, CH₃ 2.22 ppm

¹³C NMR of **10** in DMSO-d₆: C(2) 156.0, C(3) 121.6, C(4) 138.2, C(5) 130.3, C(6) 149.7, C(1') 131.2, C(2'/6') 134.0, C(3'/5') 129.8, C(4') 129.0, CH₃ 17.3 ppm

Scheme S3. 2-phenylsulfanyl-3-methylpyridine 11.

Yield: 88%; light yellow oil; Anal. Calcd for C12H11NS: C, 71.61; H, 5.51; N, 6.96. Found C, 69.87; H, 5.42; N, 7.23.

¹H NMR (700 MHz, CDCl₃) δ 8.24 (d, *J* = 4.2 Hz, 1H, N-CHar), 7.49 (m, 2H, 2 x CHar), 7.39 (m, 1H, CHar), 7.36 (m, 2H, 2 x CHar), 7.33 (m, 1H, CHar), 6.97 (dd, *J* = 7.7, 4.9 Hz, 1H, CHar), 2.35 (s, 3H, CH₃) ppm; ¹H NMR (700 MHz, DMSO-*d*₆) δ 8.15 (d, *J* = 3.5 Hz, 1H, N-CHar), 7.53 (d, *J* = 7.0 Hz, 1H, CHar), 7.45 (d, *J* = 7.0 Hz, 2H, 2 x CHar), 7.37 (m, 3H, 3 x CHar), 7.07 (dd, *J* = 7.7, 4.9 Hz, 1H, CHar), 2.28 (s, 3H, CH₃) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (Car), 147.2 (CHar), 137.4 (CHar), 133.9 (2 x CHar), 132.1 (Car), 131.6 (Car), 129.1 (2 x CHar), 128.1 (CHar), 120.7 (CHar), 19.2 (CH₃) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.5 (Car), 146.9 (CHar), 137.5 (CHar), 134.2 (2 x CHar), 131.1 (Car), 130.5 (Car), 129.1 (2 x CHar), 128.3 (CHar), 120.9 (CHar), 18.3 (CH₃) ppm; ¹⁵N NMR (71 MHz, CDCl₃) δ -73.7 ppm; ¹⁵N NMR (71 MHz, DMSO-*d*₆) δ -72.4 ppm.

Figure S9. ¹H NMR spectrum of **11** in CDCl₃.

Figure S11. ¹H NMR spectrum of 11 in DMSO-d₆.

The ¹H and ¹³C NMR assignments for **11**, based on ¹H-¹³C HSQC and HMBC spectra (and confirmed by ¹H-¹⁵N HMBC) are as follows:

¹H NMR of **11** in CDCl₃: H(4) 7.39, H(5) 6.97, H(6) 8.24, H(2'/6') 7.49, H(3'/5') 7.36, H(4') 7.33, CH₃ 2.35 ppm

¹³C NMR of **11** in CDCl₃: C(2) 157.5, C(3) 132.1, C(4) 137.4, C(5) 120.7, C(6) 147.2, C(1') 131.6, C(2'/6') 133.9, C(3'/5') 129.1, C(4') 128.1, CH₃ 19.2 ppm

¹H NMR of **11** in DMSO-d₆: H(4) 7.53, H(5) 7.07, H(6) 8.15, H(2'/6') 7.45, H(3'/5') 7.37, H(4') 7.37, CH₃ 2.28 ppm

¹³C NMR of **11** in DMSO-d₆: C(2) 156.5, C(3) 131.1, C(4) 137.5, C(5) 120.9, C(6) 146.9, C(1') 130.5, C(2'/6') 134.2, C(3'/5') 129.1, C(4') 128.3, CH₃ 18.3 ppm

B. Au(III) trichloride complexes 9a-11a

Scheme S4. [Au(9)Cl₃] 9a.

Cl₃Aú

Yield: 86%; yellow powder; m.p. 137-139 °C; Anal. Calcd for C12H11AuCl3NS: C, 28.56; H, 2.20; N, 2.78. Found C, 28.70; H, 2.53; N, 2.60.

¹H NMR (700 MHz, CDCl₃) δ 7.65 (m, 2H, 2 x CHar), 7.64 (m, 1H, CHar), 7.52 (m, 1H, CHar), 7.48 (m, 2H, 2 x CHar), 7.26 (d, *J* = 7.0 Hz, 1H, CHar), 6.98 (d, *J* = 8.4 Hz, 1H, CHar), 3.06 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 164.2 (Car), 158.4 (Car), 141.1 (CHar), 135.5 (2 x CHar), 131.4 (CHar), 130.8 (2 x CHar), 129.0 (Car), 125.7 (CHar), 125.1 (CHar), 26.3 (CH₃); ¹⁵N NMR (71 MHz, CDCl₃) δ -149.8 ppm.

Figure S13. ¹H NMR spectrum of 9a in CDCl₃.

Figure S14. ¹³C NMR spectrum of 9a in CDCl₃.

Table S1. ¹H NMR assignments for **9a**, based on ¹H-¹³C HSQC and HMBC spectra in CDCl₃ and differences between ¹H chemical shifts for the same atom in the molecules of complex **9a** and ligand **9** (in parentheses).

H(3)	H(4)	H(5)	H(2′)/H(6′)	H(3')/H(5')	H(4′)	CH ₃
6.98	7.64	7.26	2x7.65	2x7.48	7.52	3.06
(+0.39)	(+0.34)	(+0.43)	(+0.08)	(+0.10)	(+0.13)	(+0.57)

Table S2. ¹³C and ¹⁵N NMR assignments for **9a**, based on ¹H-¹³C HSQC, HMBC and ¹H-¹⁵N HMBC spectra in CDCl₃, and differences between ¹³C or ¹⁵N chemical shifts for the same atom in the molecules of complex **9a** and ligand **9** (in parentheses).

C(2)	C(3)	C(4)	C(5)	C(6)	C(1′)	C(2')/C(6')	C(3')/C(5')	C(4′)	CH ₃	N(1)
164.2	125.7	141.1	125.1	158.4	129.0	2x135.5	2x130.8	131.4	26.3	-149.8
(+3.2)	(+6.2)	(+3.9)	(+6.8)	(0.0)	(-2.2)	(+0.5)	(+1.2)	(+2.3)	(+2.2)	(-70.1)

Scheme S5. [Au(10)Cl₃] 10a.

Yield: 88%; orange powder; m.p. 182-184 °C; Anal. Calcd. for C12H11AuCl3NS: C, 28.56; H, 2.20; N, 2.78. Found C, 28.09; H, 2.50; N, 2.99.

¹H NMR (700 MHz, CDCl₃) δ 8.32 (dd, *J* = 1.4, 0.7 Hz, 1H, N-CH_{ar}), 7.63 (m, 2H, 2 x CH_{ar}), 7.55 (d, *J* = 8.4 Hz, 1H, CH_{ar}), 7.51 (m, 1H, CH_{ar}), 7.47 (m, 2H, 2 x CH_{ar}), 7.08 (d, *J* = 8.4 Hz, 1H, CH_{ar}), 2.41 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 160.7 (C_{ar}), 148.5 (CH_{ar}), 142.0 (CH_{ar}), 135.3 (C_{ar}), 135.2 (CH_{ar}), 131.1 (CH_{ar}), 130.6 (2 x CH_{ar}), 128.9 (C_{ar}), 128.3 (CH_{ar}), 18.2 (CH₃); ¹⁵N NMR (71 MHz, CDCl₃) δ -153.5 ppm.

Figure S15. 1H NMR spectrum of 10a in CDCl3.

Figure S16. ¹³C NMR spectrum of 10a in CDCl₃.

Table S3. ¹H NMR assignments for **10a**, based on ¹H-¹³C HSQC and HMBC spectra in CDCl₃ and differences between ¹H chemical shifts for the same atom in the molecules of complex **10a** and ligand **10** (in parentheses).

H(3)	H(4)	H(6)	H(2')/H(6')	H(3')/H(5')	H(4′)	CH ₃
7.08	7.55	8.32	2 × 7.63	2×7.47	7.51	2.41
(+0.24)	(+0.27)	(+0.06)	(+0.09)	(+0.10)	(+0.14)	(+0.17)

Table S4. ¹³C and ¹⁵N NMR assignments for **10a**, based on ¹H-¹³C HSQC, HMBC and ¹H-¹⁵N HMBC spectra in CDCl₃, and differences between ¹³C or ¹⁵N chemical shifts for the same atom in the molecules of complex **10a** and ligand **10** (in parentheses).

C(2)	C(3)	C(4)	C(5)	C(6)	C(1′)	C(2')/C(6')	C(3')/C(5')	C(4′)	CH ₃	N(1)
160.7	128.3	142.0	135.3	148.5	128.9	2v135.2	2×130.6	131.1	18.2	-153.5
(+3.0)	(+6.2)	(+3.9)	(+5.2)	(-1.3)	(-3.1)	(+0.6)	(+0.8)	(+2.1)	(+0.2)	(-74.6)

Scheme S6. [Au(11)Cl₃] 11a.

Yield: 86%; orange powder; m.p. 171-173 °C; Anal. Calcd for C12H11AuCl3NS: C, 28.56; H, 2.20; N, 2.78. Found C, 27.96; H, 2.53; N, 3.01.

¹H NMR (700 MHz, CDCl₃) δ 8.55 (dd, *J* = 5.6, 0.7 Hz, 1H, N-CHar), 7.85 (dd, *J* = 7.7, 0.7 Hz, 1H, CHar), 7.60 (dd, *J* = 7.7, 6.3 Hz, 1H, CHar), 7.38 (m, 2H, 2 x CHar), 7.35 (m, 3H, 3 x CHar), 2.24 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 157.2 (Car), 148.3 (CHar), 144.3 (Car), 143.7 (CHar), 131.1 (2 x CHar), 130.5 (Car), 130.0 (2 x CHar), 129.1 (CHar), 127.2 (CHar), 21.5 (CH₃); ¹⁵N NMR (71 MHz, CDCl₃) δ -136.6 ppm.

Figure S17. ¹H NMR spectrum of 11a in CDCl₃.

Figure S18. ¹³C NMR spectrum of 11a in CDCl₃.

Table S5. ¹H NMR assignments for **11a**, based on ¹H-¹³C HSQC and HMBC spectra in CDCl₃ and differences between ¹H chemical shifts for the same atom in the molecules of complex **11a** and ligand **11** (in parentheses).

H(4)	H(5)	H(6)	H(2′)/H(6′)	H(3')/H(5')	H(4′)	CH ₃
7.85	7.60	8.55	2 × 7.38	2 × 7.35	7.35	2.24
(+0.46)	(+0.63)	(+0.31)	(-0.11)	(-0.01)	(+0.02)	(-0.11)

Table S6. ¹³C and ¹⁵N NMR assignments for **11a**, based on ¹H-¹³C HSQC, HMBC and ¹H-¹⁵N HMBC spectra in CDCl₃, and differences between ¹³C or ¹⁵N chemical shifts for the same atom in the molecules of complex **11a** and ligand **11** (in parentheses).

C(2)	C(3)	C(4)	C(5)	C(6)	C(1′)	C(2′)/C(6′)	C(3′)/C(5′)	C(4′)	CH ₃	N(1)
157.2	144.3	143.7	127.2	148.3	130.5	2 × 131.1	2 × 130.0	129.1	21.5	-136.6
(-0.3)	(+12.2)	(+6.3)	(+6.5)	(+1.1)	(-1.1)	(-2.8)	(+0.9)	(+1.0)	(+2.3)	(-62.9)

C. Tetrachloroaurate(III) salts 8b-15b

Scheme S7. Benzo[4,5]thiazolo[3,2-α]pyridin-10-ium tetrachloroaurate(III) **8b.**

Yield: 69%; yellow powder; m.p. 257-259 °C; IR (ATR) \tilde{v} 351 cm⁻¹; MS (ESI): Mass calcd for [M⁺] C₁₁H₈AuCl₄NS⁺: 186.0; found 186.1. Anal. Calcd for C₁₁H₈AuCl₄NS: C, 25.17; H, 1.54; N, 2.67; Cl, 27.01. Found C, 25.61; H, 1.99; N, 2.76; Cl, 24.56.

¹H NMR (700 MHz, DMSO-*d*₆) δ 10.10 (d, *J* = 7.0 Hz, 1H, N-CHar), 8.94 (m, 1H, CHar), 8.88 (m, 1H, CHar), 8.53 (m, 1H, CHar), 8.52 (m, 1H, CHar), 8.16 (m, 1H, CHar), 7.96 (m, 1H, CHar), 7.94 (m, 1H, CHar) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.3 (Car), 140.0 (CHar), 136.7 (Car), 135.1 (CHar), 130.3 (CHar), 129.1 (Car), 128.5 (CHar), 124.9 (CHar), 124.2 (CHar), 122.3 (CHar), 116.7 (CHar) ppm; ¹⁵N NMR (71 MHz, DMSO-*d*₆) δ -168.9 ppm.

Figure S19. ¹H NMR spectrum of 8b in DMSO-d6.

Figure S20. ¹³C NMR spectrum of 8b in DMSO-d₆.

Scheme S8. 1-Methylbenzo[4,5]thiazolo[3,2-a]pyridin-10-ium tetrachloroaurate(III) 9b.

Yield: 54%; brown powder; m.p. 180-182 °C; IR (ATR) \tilde{v} 355 cm⁻¹; Anal. Calcd for C₁₂H₁₀AuCl₄NS: C, 26.74; H, 1.87; N, 2.60. Found C, 27.09; H, 2.05; N, 2.45.

¹H NMR (700 MHz, DMSO-*d*₆) δ 8.90 (d, *J* = 8.4 Hz, 1H, CH_{ar}), 8.82 (dd, *J* = 8.4, 0.7 Hz, 1H, CH_{ar}), 8.53 (m, 1H, CH_{ar}), 8.41 (dd, *J* = 8.4, 7.7 Hz, 1H, CH_{ar}), 7.99 (m, 1H, CH_{ar}), 7.93 (m, 1H, CH_{ar}), 7.88 (m, 1H, CH_{ar}), 3.40 (s, 3H, CH₃) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.2 (Car), 150.9 (Car), 139.2 (CH_{ar}), 138.5 (Car), 129.7 (CH_{ar}), 129.3 (Car), 128.2 (CH_{ar}), 125.4 (CH_{ar}), 124.6 (CH_{ar}), 121.9 (CH_{ar}), 121.6 (CH_{ar}), 24.0 (CH₃) ppm; ¹⁵N NMR (71 MHz, DMSO-*d*₆) δ -167.6 ppm.

Figure S23. ¹H NMR spectrum of 9b in DMSO-d₆.

Figure S25. ¹H-¹³C HMBC NMR spectrum of **9b** in DMSO-d₆.

Scheme S9. 2-Methylbenzo[4,5]thiazolo[3,2-a]pyridin-10-ium tetrachloroaurate(III) 10b.

Yield: 71%; yellow powder; m.p. 147-149 °C; IR (ATR) \tilde{v} 354 cm⁻¹; Anal. Calcd for C₁₂H₁₀AuCl₄NS: C, 26.74; H, 1.87; N, 2.60. Found C, 27.93; H, 1.96; N, 2.60. ¹H NMR (700 MHz, DMSO-*d*₆) δ 10.01 (s, 1H, N-CHar), 8.83 (dd, *J* = 8.4, 5.6 Hz, 2H, 2 x CHar), 8.49 (m, 1H, CHar), 8.41 (m, 1H, CHar), 7.95 (m, 1H, CHar), 7.91 (m, 1H, CHar), 2.62 (s, 3H, CH₃) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 151.7 (Car), 141.8 (CHar), 136.5 (Car), 133.5 (CHar), 133.1 (Car), 130.2 (CHar), 129.3 (Car), 128.4 (CHar), 124.9 (CHar), 123.3 (CHar), 116.5 (CHar), 17.6 (CH₃) ppm; ¹⁵N NMR (71 MHz, DMSO-*d*₆) δ -168.1 ppm.

C2'

11

10

Figure S28. ¹H-¹³C HMBC NMR spectrum of **10b** in DMSO-d₆.

4

5

Scheme S10. 4-Methylbenzo[4,5]thiazolo[3,2-a]pyridin-10-ium tetrachloroaurate(III) 11b.

3

ł

2

1

140

160

0.00 Hz

0.00 Hz

100.6127648 MHz SINE

0 0

8

7

6

9

Yield: 82%; yellow powder; m.p. 154-156 °C; IR (ATR) \tilde{v} 352 cm⁻¹; Anal. Calcd for C₁₂H₁₀AuCl₄NS: C, 26.74; H, 1.87; N, 2.60. Found C, 26.17; H, 2.02; N, 2.70. ¹H NMR (700 MHz, DMSO-*d*₆) δ 10.00 (d, *J* = 7.0 Hz, 1H, N-CHar), 8.88 (m, 1H, CHar), 8.54 (m, 1H, CHar), 8.42 (m, 1H, CHar), 8.14 (m, 1H, CHar), 7.98 (m, 1H, CHar), 7.95 (m, 1H, CHar), 2.74 (s, 3H, CH₃) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.1 (Car), 139.5 (CHar), 137.5 (Car), 133.6 (Car), 132.9 (CHar), 130.4 (CHar), 128.7 (CHar), 128.2 (Car), 124.9 (CHar), 122.4 (CHar), 117.0 (CHar), 18.6 (CH₃) ppm; ¹⁵N NMR (71 MHz, DMSO-*d*₆) δ -168.8 ppm.

Figure S29. ¹H NMR spectrum of 11b in DMSO-d₆.

Figure S30. ¹³C NMR spectrum of **11b** in DMSO-d₆.

Figure S31. ¹H-¹³C HMBC NMR spectrum of 11b in DMSO-d₆.

Scheme S11. 8-Methylbenzo[4,5]thiazolo[3,2-a]pyridin-10-ium tetrachloroaurate(III) 12b.

Yield: 66%; yellow powder; m.p. 204-206 °C; IR (ATR) \tilde{v} 355 cm⁻¹; Anal. Calcd for C12H10AuCl4NS: C, 26.74; H, 1.87; N, 2.60. Found C, 26.82; H, 1.84; N, 2.51. ¹H NMR (700 MHz, DMSO-*d*6) δ 10.03 (d, *J* = 6.3 Hz, 1H, N-CHar), 8.91 (m, 1H, CHar), 8.75 (s, 1H, CHar), 8.49 (m, 1H, CHar), 8.37 (d, *J* = 8.4 Hz, 1H, CHar), 8.13 (m, 1H, CHar), 7.77 (m, 1H, CHar), 2.61 (s, 3H, CH3) ppm; ¹³C NMR (101 MHz, DMSO-*d*6) δ 154.5 (Car), 139.7 (CHar), 139.0 (Car), 136.8 (Car), 134.7 (CHar), 131.7 (CHar), 126.1 (Car), 124.4 (CHar), 124.2 (CHar), 122.2 (CHar), 116.4 (CHar), 21.2 (CH3) ppm; ¹⁵N NMR (71 MHz, DMSO-*d*6) δ -169.2 ppm.

Figure S33. ¹³C NMR spectrum of **12b** in DMSO-d₆.

Figure S34. ¹H-¹³C HMBC NMR spectrum of **12b** in DMSO-d6.

Yield: 75%; yellow powder; m.p. 178-180 °C; IR (ATR) \tilde{v} 355 cm⁻¹; Anal. Calcd for C₁₅H₁₆AuCl₄NS: C, 31.00; H, 2.78; N, 2.41. Found C, 31.50; H, 2.99; N, 2.56.

¹H NMR (700 MHz, DMSO-*d*₆) δ 10.26 (d, *J* = 7.0 Hz, 1H, N-CHar), 8.91 (m, 1H, CHar), 8.84 (d, *J* = 2.1 Hz, 1H, CHar), 8.51 (m, 1H, CHar), 8.42 (d, *J* = 8.4 Hz, 1H, CHar), 8.15 (m, 1H, CHar), 8.03 (dd, *J* = 8.4, 1.4 Hz, 1H, CHar), 1.46 (s, 9H, C(CH₃)₃); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.6 (Car), 152.4 (Car), 139.7 (CHar), 136.9 (Car), 135.2 (CHar), 128.3 (CHar), 126.3 (Car), 124.3 (CHar), 124.2 (CHar), 122.0 (CHar), 113.2 (CHar), 35.5 (<u>C</u>(CH₃)₃), 31.1 (C(<u>C</u>H₃)₃) ppm; ¹⁵N NMR (71 MHz, DMSO-*d*₆) δ -168.4 ppm.

Figure S35. ¹H NMR spectrum of 13b in DMSO-d6.

Figure S36. ¹³C NMR spectrum of 13b in DMSO-d₆.

Figure S37. 1H-13C HMBC NMR spectrum of 13b in DMSO-d6.

Scheme S13. 8-Bromobenzo[4,5]thiazolo[3,2-a]pyridin-10-ium tetrachloroaurate(III) 14b.

Yield: 53%; yellow powder; m.p. 227-229 °C; IR (ATR) \tilde{v} 350 cm⁻¹; Anal. Calcd for C₁₁H₇Au-BrCl₄N₂S: C, 21.88; H, 1.17; N, 2.32. Found C, 22.02; H, 2.11; N, 2.52.

¹H NMR (700 MHz, DMSO-*d*₆) δ 10.08 (d, *J* = 7.0 Hz, 1H, N-CHar), 9.27 (d, *J* = 2.1 Hz, 1H, CHar), 8.93 (d, *J* = 9.1 Hz, 1H, CHar), 8.54 (m, 1H, CHar), 8.45 (d, *J* = 9.1 Hz, 1H, CHar), 8.16 (m, 1H, CHar), 8.12 (dd, *J* = 8.4, 2.1 Hz, 1H, CHar) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.0 (Car), 140.6 (CHar), 138.0 (Car), 135.4 (CHar), 133.2 (CHar), 128.6 (Car), 126.5 (CHar), 124.3 (CHar), 122.4 (CHar), 121.3 (Car), 119.9 (CHar) ppm; ¹⁵N NMR (71 MHz, DMSO-*d*₆) δ -169.8 ppm.

Figure S38. ¹H NMR spectrum of 14b in DMSO-d₆.

Figure S39. ¹³C NMR spectrum of 14b in DMSO-d₆.

Figure S40. ¹H-¹³C HMBC NMR spectrum of 14b in DMSO-d6.

Scheme S14. 8-Nitrobenzo[4,5]thiazolo[3,2-a]pyridin-10-ium tetrachloroaurate(III) 15b.

Yield: 65%; yellow powder; m.p. 228-230 °C; IR (ATR) \tilde{v} 351 cm⁻¹; Anal. Calcd for C₁₁H₇AuCl₄N₂O₂S: C, 23.18; H, 1.24; N, 4.91. Found C, 23.15; H, 1.24; N, 4.91. ¹H NMR (700 MHz, DMSO-*d*₆) δ 10.40 (d, *J* = 7.0 Hz, 1H, N-CHar), 9.89 (d, *J* = 2.1 Hz, 1H, CHar), 9.00 (d, *J* = 8.4 Hz, 1H, CHar), 8.76 (m, 1H, CHar), 8.75 (m, 1H, CHar), 8.64 (m, 1H, CHar), 8.24 (m, 1H, CHar) ppm; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.8 (Car), 147.1 (Car), 141.5 (CHar), 137.3 (Car), 136.2 (CHar), 135.9 (Car), 126.2 (CHar), 124.5 (CHar), 124.4 (CHar),

122.7 (CHar), 113.1 (CHar) ppm; ¹⁵N NMR (71 MHz, DMSO-d₆) δ -168.7, -11.1 ppm.

Figure S42. ¹³C NMR spectrum of 15b in DMSO-d₆.

Figure S43. ¹H-¹³C HMBC NMR spectrum of 15b in DMSO-d6.

S2. H, ¹³C and ¹⁵N chemical shifts of salts 8b-15b and parent heterocycles 8-15

Scheme S15. Numbering of heterocyclic 8 and cation 8b rings.

Table S7. ¹H NMR chemical shifts for cations in the tetrachloroaurate(III) salts **8b-15b** (in DMSOd₆; $\delta_{cat^{1H}}$, ppm) and the relevant differences compared to the parent heterocycles **8-15** ($\Delta^{1H} = \delta_{cat^{1H}} - \delta_{het^{1H}}$, in parentheses).

Salt	H(3)	H(4)	H(5)	H(6)	H(3′)	H(4′)	H(5′)	H(6′)
0L a	8.94	8.53	8.16	10.10	8.88	7.94	7.96	8.52
oD "	(+2.01)	(+0.91)	(+1.03)	(+1.71)	(+1.41)	(+0.46)	(+0.49)	(+0.96)
01 - h	8.82	8.41	7.99	m a m ai	8.90	7.88	7.93	8.53
90%	(+2.17)	(+0.88)	(+0.98)	none	(+1.41)	(+0.39)	(+0.44)	(+0.95)
101.0	8.83	8.41	m a m ai	10.01	8.83	7.95	7.91	8.49
IUD	(+1.93)	(+0.92)	none	(+1.76)	(+1.38)	(+0.50)	(+0.46)	(+0.98)
11 d	1b ^d none ^k	8.42	8.14	10.00	8.88	7.98	7.95	8.54
11b ^a		(+0.89)	(+1.07)	(+1.85)	(+1.51)	(+0.61)	(+0.58)	(+1.09)
106.0	8.91	8.49	8.13	10.03	8.75	none ¹	7.77	8.37
12D e	(+2.05)	(+0.88)	(+1.02)	(+1.65)	(+1.45)		(+0.47)	(+0.91)
12 L f	8.91	8.51	8.15	10.26	8.84	none ^m	8.03	8.42
150	(+1.99)	(+0.88)	(+1.02)	(+1.87)	(+1.33)		(+0.52)	(+0.91)
14 L g	8.93	8.54	8.16	10.08	9.27		8.12	8.45
140 ^g	(+1.87)	(+0.87)	(+0.99)	(+1.68)	(+1.61)	none	(+0.46)	(+0.95)
1 5k k	9.00	8.64	8.24	10.40	9.89		8.75	8.76
130 "	(+1.58)	(+0.84)	(+0.91)	(+1.89)	(+1.67)	none	(+0.53)	(+1.07)

 a vs 8 in DMSO-d_6: H(3) 6.93, H(4) 7.62, H(5) 7.13, H(6) 8.39, H(2^\prime/6^\prime) 7.56, H(3^\prime/5^\prime) 7.47, H(4^\prime) 7.48 ppm 17

^b vs **9** in DMSO-d₆: H(3) 6.65, H(4) 7.53, H(5) 7.01, H(2'/6') 7.58, H(3'/5') 7.49, H(4') 7.49, CH₃ 2.40 ppm

° vs **10** in DMSO-d₆: H(3) 6.90, H(4) 7.49, H(6) 8.25, H(2'/6') 7.51, H(3'/5') 7.45, H(4') 7.45, CH₃ 2.22 ppm

^d vs **11** in DMSO-d₆: H(4) 7.53, H(5) 7.07, H(6) 8.15, H(2'/6') 7.45, H(3'/5') 7.37, H(4') 7.37, CH₃ 2.28 ppm

 $^{\rm e}\mathit{vs}$ 12 in DMSO-d6: H(3) 6.86, H(4) 7.61, H(5) 7.11, H(6) 8.38, H(2'/6') 7.46, H(3'/5') 7.30, CH3 2.35 ppm 17

^f vs **13** in DMSO-d₆: H(3) 6.92, H(4) 7.63, H(5) 7.13, H(6) 8.39, H(2'/6') 7.51, H(3'/5') 7.51, C(CH₃)₃ 1.31 ppm ¹⁷

 $^{\rm g}$ vs 14 in DMSO-d6: H(3) 7.06, H(4) 7.67, H(5) 7.17, H(6) 8.40, H(2'/6') 7.50, H(3'/5') 7.66 ppm $^{\rm 17}$ $^{\rm h}$ vs 15 in DMSO-d6: H(3) 7.42, H(4) 7.80, H(5) 7.33, H(6) 8.51, H(2'/6') 7.69, H(3'/5') 8.22 ppm $^{\rm 17}$

ⁱ CH₃ 3.40 ppm (+1.00 ppm)

^j CH₃ 2.62 ppm (+0.40 ppm)

^k CH₃ 2.74 ppm (+0.46 ppm)

¹ CH₃ 2.61 ppm (+0.26 ppm)

^m C(CH₃)₃ 1.46 ppm (+0.15 ppm)

Table S8. ¹³C NMR chemical shifts for cations in the tetrachloroaurate(III) salts **8b-15b** (in DMSOd₆; $\delta_{cat^{13C}}$, ppm) and the relevant differences compared to the parent heterocycles **8-15** ($\Delta^{13C} = \delta_{cat^{13C}} - \delta_{het^{13C}}$, in parentheses).

eh a	154.3	124.2	140.0	122.3	135.1	129.1	136.7	116.7	128.5	130.3	124.9
oD "	(-5.6)	(+3.1)	(+2.7)	(+1.9)	(-14.4)	(-1.1)	(+2.1)	(-13.1)	(-0.7)	(+0.5)	(-9.7)
0h b	155.2	121.9	139.2	125.4	150.9 ⁱ	129.3	138.5	121.6	128.2	129.7	124.6
90°	(-4.0)	(+3.8)	(+1.6)	(+5.6)	(-7.3)	(-1.3)	(+4.2)	(-8.2)	(-0.9)	(-0.1)	(-9.7)
10h c	151.7	123.3	141.8	133.1 ^j	133.5	129.3	136.5	116.5	128.4	130.2	124.9
100 °	(-4.3)	(+1.7)	(+3.6)	(+2.8)	(-16.2)	(-1.9)	(+2.5)	(-13.3)	(-0.6)	(+0.4)	(-9.1)
11L d	154.1	133.6 ^k	139.5	122.4	132.9	128.2	137.5	117.0	128.7	130.4	124.9
110 °	(-2.4)	(+2.5)	(+2.0)	(+1.5)	(-14.0)	(-2.3)	(+3.3)	(-12.1)	(+0.4)	(+1.3)	(-9.3)
10h e	154.5	124.2	139.7	122.2	134.7	126.1	136.8	116.4	139.0 ¹	131.7	124.4
120 °	(-6.1)	(+3.7)	(+2.4)	(+2.0)	(-14.7)	(-0.3)	(+1.8)	(-14.1)	(-0.3)	(+1.2)	(-10.6)
12h f	154.6	124.2	139.7	122.0	135.2	126.3	136.9	113.2	152.4^{m}	128.3	124.3
150 ¹	(-5.7)	(+3.5)	(+2.4)	(+1.7)	(-14.3)	(-0.4)	(+2.4)	(-13.5)	(+0.4)	(+1.6)	(-10.2)
14 L a	155.0	124.3	140.6	122.4	135.4	128.6	138.0	119.9	121.3	133.2	126.5
14D ⁵	(-3.7)	(+2.7)	(+3.1)	(+1.6)	(-14.3)	(-1.3)	(+1.7)	(-12.7)	(-1.4)	(+0.6)	(-9.8)
15 b b	155.8	124.4	141.5	122.7	136.2	135.9	137.3	113.1	147.1	124.5	126.2
130 "	(+0.2)	(-0.3)	(+3.5)	(+0.3)	(-14.1)	(-5.7)	(+5.2)	(-11.1)	(+0.5)	(+0.3)	(-5.9)

^a vs **8** in DMSO-d₆: C(2) 159.9, C(3) 121.1, C(4) 137.3, C(5) 120.4, C(6) 149.5, C(1') 130.2, C(2'/6') 134.6, C(3'/5') 129.8, C(4') 129.2 ppm ¹⁷

^b vs **9** in DMSO-d₆: C(2) 159.2 C(3) 118.1, C(4) 137.6, C(5) 119.8, C(6) 158.2, C(1') 130.6, C(2'/6') 134.3, C(3'/5') 129.8, C(4') 129.1 ppm, CH₃ 23.7 ppm

^c*vs* **10** in DMSO-d₆: C(2) 156.0 C(3) 121.6, C(4) 138.2, C(5) 130.3, C(6) 149.7, C(1') 131.2, C(2'/6') 134.0, C(3'/5') 129.8, C(4') 129.0 ppm, CH₃ 17.3 ppm

^d vs **11** in DMSO-d₆: C(2) 156.5 C(3) 131.1, C(4) 137.5, C(5) 120.9, C(6) 146.9, C(1') 130.5, C(2'/6') 134.2, C(3'/5') 129.1, C(4') 128.3 ppm, CH₃ 18.3 ppm

^e*vs* **12** in DMSO-d₆: C(2) 160.6, C(3) 120.5, C(4) 137.3, C(5) 120.2, C(6) 149.4, C(1') 126.4, C(2'/6') 135.0, C(3'/5') 130.5, C(4') 139.3, CH₃ 20.8 ppm ¹⁷

^f*vs* **13** in DMSO-d₆: C(2) 160.3, C(3) 120.7, C(4) 137.3, C(5) 120.3, C(6) 149.5, C(1') 126.7, C(2'/6') 134.5, C(3'/5') 126.7, C(4') 152.0, <u>C</u>(CH₃) 34.5 ppm, C(<u>C</u>H₃) 30.9 ppm ¹⁷

^g vs **14** in DMSO-d₆: C(2) 158.7, C(3) 121.6, C(4) 137.5, C(5) 120.8, C(6) 149.7, C(1') 129.9, C(2'/6') 136.3, C(3'/5') 132.6, C(4') 122.7 ppm ¹⁷

^h vs **15** in DMSO-d₆: C(2) 155.6, C(3) 124.7, C(4) 138.0, C(5) 122.4, C(6) 150.3, C(1') 141.6, C(2'/6') 132.1, C(3'/5') 124.2, C(4') 146.6 ppm ¹⁷

ⁱ CH₃ 24.0 ppm (+0.3 ppm)

^j CH₃ 17.6 ppm (+0.3 ppm)

^k CH₃ 18.6 ppm (+0.3 ppm)

¹ CH₃ 21.2 ppm (+0.4 ppm)

^m <u>C</u>(CH₃) = 35.5 ppm (+1.0 ppm), C(<u>C</u>H₃) 31.1 ppm (0.2 ppm)

Table S9. ¹⁵N NMR chemical shifts for cations in the tetrachloroaurate(III) salts **8b-15b** (in DMSOd₆; δ_{cal} ^{15N}, ppm) and the relevant differences compared to the parent heterocycles **8-15** ($\Delta^{15N} = \delta_{cal}$ ^{15N} – δ_{hel} ^{15N}, in parentheses).

Salt	N(1)
8b ^a	-168.9 (-96.9)
9b ^b	-167.6 (-89.6)
10b °	-168.1 (-97.5)
11b ^d	-168.8 (-96.4)
12b °	-169.2 (-96.5)
13b ^f	-168.4 (-96.0)
14b g	-169.8 (-98.1)
15b h	-168.7 ⁱ (-101.9)

^a vs 8 in DMSO-d₆: N(1) -72.0 ppm ¹⁷

^b vs **9** in DMSO-d₆: N(1) -78.0 ppm

^c vs 10 in DMSO-d₆: N(1) -70.6 ppm

- ^d vs **11** in DMSO-d₆: N(1) -72.4 ppm ^e vs **12** in DMSO-d₆: N(1) -72.7 ppm ¹⁷ ^f vs **13** in DMSO-d₆: N(1) -72.4 ppm ¹⁷ ⁷ ^g vs **14** in DMSO-d₆: N(1) -71.7 ppm ¹⁷
- ^h vs **15** in DMSO-d6: N(1) -66.8 ppm, NO₂ -9.0 ppm ¹⁷ ⁱ NO₂ -11.1 ppm (-2.1 ppm)