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Abstract: The presented studies are focused on the wear resistance and friction coefficient changes of
the thermal diffusion (TD) zinc coating deposited on steel. The aim of research was to evaluate the
variation in coating properties during dry friction as a result of the method of preparation of the basis
metal. The measured properties were compared to those obtained after classic hot-dip (HD) zinc
galvanizing—heat treated and untreated. Thermal diffusion zinc coatings were deposited in industrial
conditions (according to EN ISO 17668:2016-04) on disc-shaped samples. The results obtained during
the tribological tests (T11 pin-on-disc tester) were analysed on the basis of microscopic observations
(with the use of optical and scanning microscopy), EDS (point and linear) analysis and microhardness
measurements. The obtained results were similar to effects observed after heat treatment of HD zinc
coating. The conducted analysis proved that the method of initial steel surface preparation results in
changes in the coating’s hardness, friction coefficient and wear resistance.

Keywords: friction coefficient; thermal diffusion zinc galvanizing; coating hardness

1. Introduction

Thermal diffusion (sherardizing) is a diffusion zinc coating method which is increas-
ingly used as an alternative to hot dip zinc galvanizing, as the corrosion protection of
the different small elements (fasteners, wires, bolts, screws, nails, springs, etc.). Due to
important advantages (environmentally friendly process, no chromate treatment, surface
ready for varnishing and vulcanization, no risk of hydrogen embrittlement), this method
is constantly being developed and improved [1–5]. For example, in the paper [3,4], an
innovative solution was proposed—the forced recirculation of the reactive atmosphere.

Structural elements are made of a wide range of materials that require various types
of corrosion protection. For example, fasteners are manufactured from different metallic
materials ranging from common steel, alloy steel, stainless or corrosion resistant steel
to aluminium alloys and titanium [6]. Pressure to reduce the production cost means
that more and more often structural elements are made of less advanced materials that
guarantee only the appropriate mechanical properties. Additional functional properties,
such as corrosion resistance and wear resistance, are obtained by applying appropriate
coatings, whose thicknesses vary over a wide range—from nanometers [7] to several
hundred micrometers [8]. To increase the wear resistance, harder and harder coatings
are applied, with a hardness up to 1700 HV [9,10]. Hardness greater than 40 GPa was
reported for systems based on TiN NbN, TiN VN and TiN/ZrN layers [11]. Zinc is one of
the cheapest elements among those traditionally used in the production of anticorrosion
coatings (Zn, Cu, Ni, Cr) [12], and moreover, processes of Zn coating deposition are very
simply—they do not require large financial outlays [13]. Generally, zinc coatings applied to
different elements are obtained via four methods: hot-dip galvanizing, electro-galvanizing,
zinc lamella and sherardizing (thermal diffusion) [14–16]. In the case of some structural
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elements, where a very good surface representation is necessary, the requirements concern
the limitation of the coating thickness. This applies among others to the bolts designed
for joining structural elements [14]. In addition to corrosion resistance, an important
parameter of fasteners is friction coefficient. In the case of too low a friction value, there is
a potential risk of self-loosening of the joint. If the friction coefficient is too high, there is a
risk of too low clamping forces, resulting in a joint failure due to incomplete tightening
or complete fracture of the bolt. The requirements of a proper thread match between
the bolt and nut limit the application of a hot-dip zinc galvanizing of bolts, especially
with a small diameter. However, in some cases, the high-temperature (ab. 535 ◦C) hot-
dip zinc galvanizing [17] that allows for removal of the excess zinc from the surface of
bolts is applied, but such a treatment temperature can result in issues with the material
of the bolts—steel tempering and losing the mechanical properties. As an alternative to
electro-galvanizing, lamellar or thermal diffusion processes can be applied. According
to Kania [14], the corrosion resistance of electro-galvanized bolts decreases quickly due
to the small coating thickness. Moreover, the application of this method may result in
contamination of the natural environment and potential hydrogen embrittlement of the
steel [18–20]. Although lamella zinc technology increases its market share, especially in
the area of fasteners, i.e. bolts, screws, nuts, springs, etc., the comparative tests of coatings
(hot-dip, galvanic and lamellar) conducted in SO2 and NaCl environments showed that the
hot-dip galvanized coating has the best anticorrosion properties [21]. Thus, because better
results are reported even when zinc coatings on bolts are applied using sherardizing [14],
in this paper, the hot-dip and thermal diffusion zinc coatings’ properties are compared.

The anticorrosion and tribological properties of hot-dip and sherardized zinc coatings
depend on the microstructure observed on the coating cross section—Figure 1.
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According to the Fe-Zn diagram [24–26] (Figure 1c), there are three phases occurring
in the hot-dip zinc coating —Г(Fe3Zn10), δ (FeZn10, FeZn7), and ζ (FeZn13)—and an iron
solid solution in zinc—η, which is formed on the outer surface as it is pulled out of the
bath (Figure 1a). The current model [22] suggests that the sequence of the zinc coating
growth is as follows: first, the Г1 phase is observed; next, within a few seconds, a sublayer
of compact phase δc and palisade phase δp is created. There are a lot of factors that can
influence the reactivity of steel (the quality/roughness of the galvanized surface [27–31],
the kind of galvanized material [32–34], the alloyed elements added to the zinc bath [34–39],
the metallurgical process parameters [40–42]) and thereby change the microstructure of
the zinc coating. The coating microstructure obtained after thermal diffusion is similar
to hot-dip zinc coating, but there is no η phase—Figure 1b [43,44]. However, there is also
some controversy regarding the appropriate coating structure. Evans [23] claims that the
outer layer is a mixture of ζ and zinc, with 7–10% iron content in the form of FeZn7. The
second alloy layer δ contains 25% of iron in the form of Fe11Zn40. The inner layer creates
an Г phase with 50% iron content. According to Jiang [1], the sherardized coatings are
composed of the loose outer layer (ζ—FeZn13 phase) and the dense inner layer (δ—FeZn7
phase) with higher hardness. Konstantinov [45] analyses the two-phase structure: (Г +
δ). On the other hand, Wortelen [44] stated that after sherardizing the coating structure
is composed of Г, Г1, δ1 and ζ. Furthermore, an investigation conducted by Kania [14]
confirmed the presence of Г1(Fe11Zn40) and δ1(FeZn10) phases, although according to the
Fe-Zn equilibrium system, phases Г and ζ are also stabile.

The tribological properties of the zinc coating are closely correlated with its microstruc-
ture and are resultant of the properties of the phases visible in the coating cross section.
The chemical formula and hardness values available in literature of the Fe-Zn intermetallic
phases of the hot-dip and thermal diffusion zinc coatings are presented in Table 1.

Table 1. Chemical formula and hardness of Fe-Zn intermetallic phases.

Phase Iron Content, wt. %
Hardness

HD Coating TD Coating

η–Zn 0.03 [46] 52 HV [16]
70 HB [23]

n.d.
n.d.

ζ–FeZn13
6 [43]; 6.17 [46];

5–6 [16]; 5.9–7.1[47]
208 HV [16]
220 HB [23]

n.d.
n.d.

δ–FeZn10 7–11.5 [16]; 7.87 [46] 358HV [16] n.d.
δ–(FeZn11–FeZn6.67) 8.1–13.2 [47] n.d. n.d.

δ–FeZn7 7–10 [43]; 10.87 [46] 270 HB [23] 300 HB [23]

Г1–Fe5Zn21
17–19.6 [16]; 16.90

[46] 505 HV [16] n.d.

Г1–Fe11Zn40 19.02 [46] n.d. 350 HB [23]

Г–Fe3Zn10
23.5–28 [16]; 20.40

[46] 326 HV [23] n.d.

Г–(Fe5Zn21–Fe4Zn9) 18–31 [47] n.d. 600 HB [23]
n.d.—not determined.

Zinc coatings (hot-dip, galvanic, lamellar, sherardized) show a considerable differ-
entiation of the hardness [16,48,49]—the lowest values (50 HV) are measured after the
hot-dip galvanizing. Tribological properties are in direct correlation with the hardness
and microstructure of the applied coating. Thus, different methods are used to improve
zinc coating wear resistance by increasing its hardness. In article [50], heat treatment was
applied to increase the wear resistance of hot-dip (HD) zinc coating. The coating structure
formed after the conducted experiment was similar to that observed in thermal diffusion
coating, i.e., there was no pure η phase and the created coating was composed of δ and ζ

phases. As a result of the structure changes, the hardness of the coating increased fivefold
to values close to those measured in the case of thermal diffusion (TD) coatings.
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Considering the above analysis, the aim of this paper was to compare the wear
resistance of TD zinc coating to classic and heat treated HD coatings. Additionally, the ex-
periment was focused on determination of the relation between the coating’s microstructure
and measured friction coefficient value and possibilities of adjusting it to the requirements.

2. Materials and Methods

During the investigation, the pin-on-disc test was applied to measure the changes of
the instantaneous and average values of the friction coefficient on the zinc coating cross
section in the friction pair (zinc coating/steel pin). The applied test also allowed the rate of
wear of the tested coatings to be determined [51,52].

The tribological investigations with application of the T11 device consisted of testing
the steel pin/zinc coating couple in dry friction conditions and calculating the friction
coefficient. To conduct the experiment, surfaces of the tested disc-shaped samples were
subjected to friction with a Ø 4 steel rod, with a constant load of F = 9.8 N, which moved
in circles on the surface of the samples at a rate of n = 45 rotations/min for a duration of
30 min. The friction coefficient was measured every 0.2 s.

Zinc coatings were deposited on the disc-shaped samples measuring 25 mm in diame-
ter and 7 mm in thickness made of low-carbon DC01 steel (0.201% C, 0.009% P, 0.007% S,
1.01% Mn, 0.018% Al, 0.084% Si, 0.181% Cu, 0.067% Ni).

The thermal diffusion process was conducted in industrial conditions according to
EN ISO 17668:2016-04 [53] in the mixture of zinc powder (99% Zn, 0.009% Pb, 0.006% Cd,
<0.005% Fe, average grains size 3–4 µm) in rotary chambers that rotated at a rate of 5–10
turns per minute, at a temperature of 400 ◦C, for a period of 4 h. The disc-shaped samples’
surface before TD zinc deposition was prepared in different ways—grinded with sandpaper
with gradations 30 (TD30), 60 (TD60), 120 (TD120), 240(TD240), sandblasted (SB) and turned
(T). Samples used for comparison were hot-dip galvanized (marked as untreated—HDUT)
according to EN ISO 10684 [54]—a process of etching in 12% HCl, fluxing and dipping in a
Zn bath with Al (0.002%), Bi (0.055%) and Ni (0.058%), at a temperature of 460 ◦C within
1.5 min, followed by cooling in water. In addition, the heat treated HD galvanized samples
were used for comparison (HDHT—temperature T = 430 ◦C, τ = 7 min [50]). The follow-
ing parameters were analysed during investigations: the wear resistance —disc-shaped
samples weight loss, the friction coefficient (T11 pin-on-disc tester); the microstructure
of the zinc coating structure and steel using an Axiovert 100 A optical microscope (Zeiss
Group, Oberkochen, Germany) and an EVO 25 MA Zeiss scanning electron microscope
with an EDS attachment (Zeiss Group, Oberkochen, Germany); and microhardness changes
in the cross section of both the coating and the subsurface layer of steel (Vicker’s HV 0.02,
Mitutoyo Micro-Vickers HM-210A device 810-401 D, Mitutoyo Corporation, Kanagawa,
Japan). Additionally, the surface roughness was measured using an optical Phase View
ZeeScan system (Phase View, Paris, France). The test samples were carefully prepared in
order to avoid the overheating and spalling during cutting (hand cutting, hot embedded,
grinded and polished).

3. Results and Discussion
3.1. Metallographic Observations and Microhardness Distribution

The zinc coating thickness measured during the microscopic observations was verified
through measurements in a wider range with the use of the magnetic induction method—
an electronic PosiTector 6000 tester (DeFelsko Corporation, Ogdensburg, NY, USA). The
thickness of the coating on the disc-shaped samples, after hot dip and thermal diffusion
galvanizing, was in the range of 45–55 µm.

The TD zinc coating morphology presented in Figure 2 is in accordance with the
literature data [22–24]. It is very difficult to distinguish between the different phases in the
coating using SEM observation—Figure 2a. Only the linear and point EDS analysis shows
the existence of two areas—Figure 2b, Table 2. The outer layer has a higher Zn content
than the inner one adjoined to the basis metal—steel. Taking into account that the first
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point of the EDS analysis was several microns away from the outer surface and the trend
in the course of the Zn linear analysis, which was clearly downward near the surface, it
may be assumed that a δ phase (FeZn7 or FeZn10) was present in the outer layer [16,45,46].
The chemical composition of the zone close to the basis metal suggests that a Г1 phase is
located in this area [14,16,46].
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Table 2. The results of EDS analysis of the TD coating deposited on disc-shaped sample.

Element

Distance from the Coating Surface, µm

5 10 15 20 25 30 35 45

Content of the Element, Wt%

Fe 11.07 11.10 10.96 13.20 18.03 20.21 22.45 91.95
Zn 88.93 88.90 89.04 86.80 81.97 79.26 77.55 1.13

The tribological properties (weight loss, friction coefficient) of the TD coating were
compared to analogical data concerning HD and heat treated HD coatings. The classical
HD coating structure is composed of four phases, whereas in the structure after heat
treatment, three phases are visible (η phase is missing). The typical microstructure of a
tested HD zinc coating formed by phases η, ζ, δ and Г1 [8], is shown in Figure 3a.
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Most of the data [22,55] confirm that there are only three phases in a HD zinc coating
after heat treatment: Г (23.5–28.0 wt% Fe), δ (7.0–11.5 wt% Fe) and ζ (6.0–6.2 wt% Fe)—
Figure 4 [46,56]. During the heat treatment, the δ and Γ phases grow at the expense of
the ζ phase [57], and at higher temperatures, the ζ layer disappears and in its place the δ

phase grows reaching to the surface of the coating [24]. The conditions for the growth of
individual phases here are similar to the TD process but the Zn amount in the coating is
constant and the coating thickness is stable during the treatment [50].
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samples: (a) SEM; (b) linear EDS analysis.

Microscopic examinations (both optical—Figure 5—and scanning microscope—
Figures 2a and 4a) showed that the outer sublayer of TD coating was slightly cracked
and porous to a depth of 10 micrometres, whereas there were no discontinuities,
porosities, cracks or surface degradation visible as a result of the conducted heat
treatment of the hot-dip zinc coating.
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The profiles of the hardness changes on the cross sections of zinc coating and subsur-
face steel area are presented in Figure 6. Analysis of the obtained results showed that there
are no essential differences between measured hardness values of TD coatings deposited
on the steel surface with various surface conditions. The hardness values in the coatings’
outer layer were in the range 370–385 HV 0.02, while the values measured in the inner
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layer were in the range 325–345 HV 0.02. The downward trend in hardness changes was
observed over the entire cross section of the coatings. The highest average hardness values
were measured in the outer coating layer for the surface grinded using sandpaper with
gradation 30 and turned (385 and 383 HV 0.02). The lowest hardness values over the entire
cross section of the coating were measured for the steel surface grinded with sandpaper
with gradation 240 and sandblasted.
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harder than the HD HT430 °C coating. 

The structure observed in the compared coatings (Figures 2–5) deposited on the 
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Figure 6. Microhardness measured at the cross section of the TD zinc coating deposited on disc-
shaped steel samples (a) and comparison of obtained results to the microhardness measured after
HD galvanizing—untreated (HD UT)—and after heat treatment at 430 ◦ (HD HT 430 ◦C) (b).

The presented hardness changes are due to the changes in the microstructure (Г1+δ–
suggested by results of EDS analysis), caused by diffusion of iron from the steel surface
into the coating (Figure 2, Table 2). The hardness values measured by Pokorny [25] show
that the δ phase is generally about 10% harder than the Г phase; the obtained hardness
values of the δ phase were even in the range 330 to 460 HV. According to data [16,46], the δ

phase in TD coating is harder by about 15% than the Г phase. In the analysed results of the
current study, the difference is within the range 10–12%, but the coating micro-cracks may
affect the measured hardness values and can have a decisive importance here.
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For the compared samples (hot dip galvanized: untreated (UT) and heat treated in
430 ◦C (HT430 ◦C)), results are consistent with the literature data concerning the individual
phases that were obtained (Figure 6b) [50,58]. The outer area of the TD coating is 300 HV,
which is 0.02 harder than the analogic layer of the HD UT sample and 90 HV 0.02 harder
than the HD HT430 ◦C coating.

The structure observed in the compared coatings (Figures 2–5) deposited on the tested
disc-shaped samples corresponds well with the measured microhardness distribution
in the coatings and the cross section of subsurface steel layers. The steel area close to
the zinc/steel surface is slightly softer (in comparison to the UT sample), as a result of
overheating. At a distance of 75 µm from the steel surface, the measured average hardness
values were as follows: 195 (for HD UT samples), 165 (TD samples) and 175 HV 0.02 (HD
HT430 ◦C samples).

3.2. Friction Coefficient Measurements

The coating showed higher abrasion resistance with increasing of the initial steel
surface roughness, which was reflected by a reduction in weight loss (Table 3, Figure 7).
The difference was particularly significant in the case of TD30 and TD60 samples. The
difference in weight loss between the heat treated HD and TD samples was very small
(max. 0.004 g), whereas the weight loss of HD UT zinc galvanized samples was 4-7 times
higher with reference to both TD and HD HT samples.

Table 3. The roughness and friction coefficient measured on the surface of the disc samples.

Roughness (Sa), µm

TD30 TD60 TD120 TD240 SB T HD HDHT

Before Galvanizing

6.22 5.66 4.59 4.19 6.80 8.38 3.63 2.29

After Galvanizing

2.50 2.81 2.60 2.44 2.84 3.35 2.94 3.43

Average Friction Coefficient Value of Zinc Coating, µ

0.25 0.36 0.39 0.38 0.28 0.20 0.27 0.21

The base steel surface roughness exerts influence also on formed thickness of the zinc
coatings. Coating thickness increases with the increase of steel surface roughness as a result
of the higher reactivity of the basis metal (Figure 7b). The higher increment of the coating
thickness was observed when comparing TD240 and TDSB coatings (the biggest difference
in roughness).

The comparison of the investigated coating’s appearance observed after the “pin-on-
disc” test is presented in Figure 8. The assessment of the external appearance of the TD
coatings in “macro” scale revealed that there are no visible cracks and discontinuities on the
surface of the samples (before the friction test). The presence of the cracks in the upper part
of the coating was confirmed only via microscopic observations (Figures 2a and 5a), but
occurrence of the transverse cracks is characteristic of the intermetallic Fe-Zn phases [14].
The coatings’ colour (dark grey) is similar to that seen on the HD HT samples—Figure 8a,d.
As a result of the friction test, the regular groove was rubbed over the entire circuit of
the tested coatings. The friction products formed on the coating surface during the test
had a “coarse powder" shape with granularity depending on steel surface development
(higher roughness-coarse grains). The HDUT coating was much lighter and the rubbed
away particles were shaped like flakes, up to 0.4 mm long (Figure 8c). This confirmed the
higher plasticity of this coating with comparison to TD and HDHT coatings.
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Figure 9 shows the course of changes in the instantaneous values of the friction
coefficient of the TD zinc coatings. In the process of friction, three main stages can be
distinguished. In the initial period of cooperation, the friction coefficient increased rapidly
and, after forming a contact, dropped down to the value 0.18–0.24. In the second stage, its
value gradually increased and finally stabilized (third stage) in the range of 0.27–0.43. The
average values of obtained friction coefficient were in the range 0.20–0.39 (Table 3). The
measured friction coefficient values correspond well with the microhardness and weight
loss trends of changes presented in Figures 6 and 7. The TD coating layer was composed
of a mixture of δ and Г phases in different proportions. It is probable that increasing the
degree of development of the base steel surface and its roughness causes both an increase
in the thickness and the hardness of the coating. The above changes may be caused by
the increase of the steel reactivity and in consequence the extended range of occurrence
of the harder δ phase. Therefore, the friction coefficient of the coatings TDT, TD30 and
TDSB shows lower values (0.18–0.33) for an extended period of time than the coefficient
determined for the coatings TD120, 240 and SB, which constantly shows a strong upward
trend and stabilizes only after about 1000 s, at the level 0.42–0.44.
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Figure 9. The friction coefficient values registered during pin-on-disc testing of TD zinc coatings.

In the case of the reference samples (HDUT and HDHT), the tendency to change the
hardness along the cross section of the coating is quite different (in comparison to TD
coating—Figure 6b)—the hardness increases from the outer surface into the coating. In
the HD UT coating the η phase was relatively soft (about 55 HV 0.02) and probably was
partially removed during the first stage of friction (grinding-in of the pin-and-disc sample
contact). The appearance of a mixture of the ζ and δ phases resulted in a reduction in the
coefficient of friction from the value of 0.29 (η) to approximately 0.25 (ζ + δ)—Figure 10.
After the HT (430 ◦C), the subsurface coating layer was composed of a mixture of η and ζ
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phases [53]. Therefore, the value of the friction coefficient was lower—0.28—and decreased
slightly to 0.21, as the layers closer to the steel surface were rubbed.
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4. Conclusions

(1) The method of the base steel surface preparation affects the friction coefficient value,
thickness and wear resistance of the TD zinc coating.

(2) In the applied test conditions, the value of the friction coefficient of the TD coating var-
ied within the range 0.20–0.39, with a coating thickness of 44.5 to 47.5 µm, respectively.

(3) The measured friction coefficient values correspond well with the microhardness
profile determined on the cross section of the TD coating and the weight loss trend
of changes obtained during the “pin-on-disc” test. With increasing of the coating’s
hardness, both the TD coating’s coefficient of friction and the weight loss are reduced.

(4) The lower values of the friction coefficient were measured for samples with higher
roughness of the base steel surface. The observed changes may be caused by the
increase of the steel reactivity and in consequence extending the range of occurrence
of the harder δ phase.

(5) The changes in properties of compared coatings are due to the differentiation in
the microstructure (verified by results of EDS analysis), caused by specific growth
or diffusion conditions during individual coating formation. The TD coating was
composed of δ (outer) and Г (inner) phases. The microstructure of a tested HD zinc
coating was formed by phases η, ζ, δ and Г1, whereas in a HD zinc coating after heat
treatment, only three phases occurred: ζ, δ and Г.

(6) The TD coating (δ+Г) showed higher abrasion resistance (in comparison to HD UT
coating—η+ζ+δ), which was expressed in a reduction in weight loss measured during
the tribological test. In the conducted test the HD zinc coating weight loss was four
times greater.

(7) The abrasion resistance of the TD zinc coating (δ+Г) is similar to the HD HT coating
(ζ+δ+Г)—the measured difference in the weight loss was a maximum of 0.004 g.

(8) The hardness of the TD zinc coating reached the values of 325–385 HV 0.02 and was
greater by 40–90 HV 0.02 than the values obtained for the HD HT zinc coating.

(9) With the use of the proper method of the base steel surface preparation, it is possible
to improve the tribological properties of the thermal diffusion zinc coating, decrease
its wear and to adjust/change the coefficient of friction according to the requirements
within the range of 0.20–0.39.
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