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Abstract: Recent topology classification of 2D electron states induced by different homotopy classes
of mappings of the planar Brillouin zone into Bloch space can be supplemented by a homotopy
classification of various phases of multi-electron homotopy patterns induced by Coulomb interaction
between electrons. The general classification of such type is presented. It explains the topologically
protected correlations responsible for integer and fractional Hall effects in 2D multi-electron systems
in the presence of perpendicular quantizing magnetic field or Berry field, the latter in topological
Chern insulators. The long-range quantum entanglement is essential for homotopy correlated
phases in contrast to local binary entanglement for conventional phases with local order parameters.
The classification of homotopy long-range correlated phases induced by the Coulomb interaction
of electrons has been derived in terms of homotopy invariants and illustrated by experimental
observations in GaAs 2DES, graphene monolayer, and bilayer and in Chern topological insulators.
The homotopy phases are demonstrated to be topologically protected and immune to the local
crystal field, local disorder, and variation of the electron interaction strength. The nonzero interaction
between electrons is shown, however, to be essential for the definition of the homotopy invariants,
which disappear in gaseous systems.

Keywords: homotopy phases; long-range quantum entanglement; FQHE; Hall systems; Chern
topological insulators

1. Introduction

The discovery of fractional quantum Hall effect in 2D electron systems (1982, experi-
ment [1], 1983, theory [2]) followed former observation of the integer quantum Hall effect
for 2D electrons (1980 [3]) pointed out the role of interaction of electrons in organization of
strongly correlated multiparticle systems in planar geometry. Earlier, the special topolog-
ical behavior in 2D electron systems was proposed [4] to remedy the disruption of long
range order in planar systems [5]. In 2D electron systems, phase transitions with broken
symmetry and with local order parameter cannot occur because a long range order is
destabilized by planar Goldstone excitations [6]. In addition, in quantum Hall states in 2D,
no local order parameter exists and any symmetry is broken. Instead of this, the topological
multi-electron phases occur with various long range multi-particle correlations protected
by homotopy invariants. The experimental and theoretical study of such collective pla-
nar states flourished after the discovery of graphene and the development of Hall-type
experiment in monolayer and bilayer graphene, which achieved unattainable previously
precision. The specific 2D quasi-relativistic dynamics in graphene [7] connects with the
former idea of quantum Hall-type behavior without Landau levels [8], generalized next
onto a wide family of materials called topological insulators [9]. The predominant factor
unifying all these phenomena is the planar geometry of the physical space where electrons
are located, which opens an avenue to topological effects both in single particle planar
dynamics and in collective multi-electron planar-correlation effects conditioned by electron
interaction. To describe and classify such topological correlations, the homotopy methods
of algebraic topology are especially convenient [10,11].
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To classify general topological properties, the notion of invariants for continuous
transformations of topological spaces is utilized. These invariants, if used in physical
systems, are robust against local disorder and thermal chaos and are thus suitable to
characterize topologically protect stable collective states. The most important invariants
are homotopy groups linked to homology and cohomology [10,11]. The algebraic structure
of homotopy groups defined on some space reflects the global properties of this space in
terms of continuity of mappings, which describe trajectories or surfaces and hyper-surfaces
in this space. The homotopy groups are named as πi groups. For i = 1, the π1(A) group
(the first homotopy group, frequently called also as the fundamental group of A) collects
disjoint classes of trajectories (closed loops) in the space A, which cannot be transformed
one into another by any continuous deformation without cutting (such trajectories are
called nonhomotopic). The classes of non-equivalent up to continuous deformations
surfaces build π2(A) group and πi(A), i > 2 for hyper-surfaces of higher dimension [10].
This mathematical apparatus finds applications in physics: in crystallography to classify
defects, in condensed matter to classify textures in various phases with multi-component
order parameters like in liquid crystals or in superfluid He3 [10], in field theory to classify
instantons [12] and, recently, to classify 2D topological insulators, 2D superconductors, and
quantum Hall phases [13–15]. In particular, in the topological insulator case, the topological
invariants may numerate various nonhomotopic mappings from the 2D Brillouin zone
into the Bloch space and in this way they may distinguish between different types of band
structures topologically protected and typically linked with the presence of Dirac-like
points known from graphene and topological insulators [7,9]. However, the band structure
is a single-particle quantum problem not concerning mutual interaction of electrons.

The multi-particulate correlation patterns that may manifest macroscopically are the
matter of electron interaction and they occur particularly spectacularly in 2D multi-electron
systems. Topological invariants appear to be helpful for the characterization and classifi-
cation of the multi-particle correlation collective effects driven by the electron interaction
which are beyond the single-particle band structure restrictions (like in topological insula-
tors) or conventional phase transitions due to spontaneous breaking of some symmetry
and coherent but binary channels of electron scattering (e.g., in superconductors) or binary
spin interaction (in magnetic phases) [16]. Topological correlations and related quantum
homotopy phase transitions [17] differ from the conventional thermodynamic phase tran-
sitions with local order parameter and also local binary quantum entanglement due to
some selected binary channel of electron interaction. Topological homotopy phases are
not linked with any local order parameters but display the correlation patterns between
all electrons simultaneously and thus exhibit the long-range quantum entanglement of all
electrons in the system [18].

In the present paper, we provide a homotopy classification of correlation patterns of
2D interacting multi-electron planar systems at the perpendicular magnetic field, utilizing
the notion of the cyclotron commensurability of electrons with 2D periodic lattice analogous
to the previously discussed problem of the fine structure of Landau levels (LLs) induced
by a periodic crystal potential referred to as a Hofstadter butterfly [19,20]. The fine fractal
structure of LLs of 2D electrons induced by the external crystalline 2D lattice has been
demonstrated in these papers and the graphical presentation of the result resembles a
butterfly shape (as illustrated in Figure 1).

The periodic crystal potential was in this study external, so that the problem was
of the single-electron type. In the present paper, we propose to consider the cyclotron
commensurability of 2D electrons with the Wigner crystal of electrons themselves instead
of an external crystal lattice. This makes the problem multi-electron and essentially collec-
tive, interaction dependent as opposed to single-electron non-collective problem of fine
LL structure in periodic external 2D potential at the Hofstadter butterfly effect. The in-
teraction of electrons will now play a fundamental role because the organization of the
Wigner crystal is a matter of the electron repulsion; thus, the problem is of a multi-particle
type. To distinguish between various classes of 2D electron correlations induced by their
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Coulomb interaction and defined by the cyclotron commensurability of electron dynamics
with the electron Wigner lattice, the homotopy approach is especially convenient and
allows for the identification of topological invariants, which protect different types of
multi-electron correlations.

ratio of unit cell surface to the cyclotron orbit size
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Figure 1. Rendering of Hofstadter butterfly—a fine structure of LLs for the single electron in the
periodic square type 2D external potential is shown as the function of the commensurability factor of
the cyclotron orbit size with the unit crystal cell. The energy levels are indicated versus the magnetic
field flux through the elementary cell, a2B, expressed in units of the elementary flux h

e , i.e., versus
the ratio of the unit cell surface a2 to the electron cyclotron orbit size h

eB [19,20].

The present consideration is a continuation of our former result related to a Feynman
path integral in multiple-connected coordination space of 2D particles [17]. The novelty
in the present paper is the discussion of the symmetry of multi-particle wave functions
independent of path integral in the way suggests by Sudarshan et al. [21,22]. We demon-
strate that homotopy invariants determine topologically protected multi-electron states
with distinct multi-particle wave functions and energies. Moreover, the linkage of factors
in the topological invariants with successive generations of the next-nearest neighbors
in electron Wigner lattice is clarified for the first time. The transparent explicit example
for two electrons satisfying distinct commensurability conditions resulting in different
homotopy patterns is presented, which can next be generalized onto large systems of
N electrons (in thermodynamic limits as well). The tabular summarizing of the general
homotopy classification in various systems depending on material and space dimension
is also presented. The paper is organized as follows. In the next paragraph, the idea of
the cyclotron commensurability of electrons on the plane is sketched, and the metrics
of homotopy objects are defined. These metrics are used, in the following paragraph,
to classify homotopy quantum phases of 2D correlated electron systems. The close linkage
of the homotopy correlation with the long range quantum entanglement [18] is demon-
strated, which essentially distinguishes the topological correlated states from conventional
collective phases with local order parameter and only binary quantum entanglement. Next,
the developed homotopy approach is presented in application to quantum Hall physics in
2D semiconductor systems and in graphene, including graphene monolayer and bilayer.
If a magnetic field is substituted by the Berry field [9], the similar homotopy classification
of 2D electron correlations is extended onto Chern topological insulators.



Materials 2021, 14, 1650 4 of 23

2. Metrics in Full Braid Group for 2D Electrons in Magnetic Fields

Multi-particle correlated systems can be in general described in terms of the first
homotopy group π1 of N-particle configuration space, called in this case the braid group
(because trajectories in multi-particle configuration space are the intertwined bundles of
individual electron trajectories) [10,23]. The π1 group consists of disjoint nonhomotopic
trajectory classes. The trajectories (closed loops) from distinct classes cannot be transformed
one onto another by any continuous deformation without cutting, and such trajectories are
called nonhomotopic [11,24]. For multi-particle systems of identical and indistinguishable
particles, the configuration space has the form, FN = (MN − ∆)/SN , where M is the
physical space where particles are located (e.g., 3D space or 2D plane), MN = M×M×
· · · ×M is N-fold product of M, N is the number of particles (electrons) in the system, ∆
is the diagonal subset of MN collecting points with coordinates of at least two particles
coinciding and subtracted from MN to assure particle number conservation. The division
by the permutation group SN introduces the indistinguishability of identical particles.
The homotopy group π1(FN) is called the full braid group [10,23]. The braid group
collects classes of closed trajectory loops in multi-particle space FN defining exchanges of
particles on M, i.e., multi-strand trajectories with start and final points which can differ
by renumbering of particles only (but due to the indistinguishability of particles in the
definition of FN , these points in FN coincide). Distinct classes of trajectories are topologically
disjoint and the trajectories from different classes cannot be transformed one into another
by any continuous deformation without cutting—they are nonhomotopic.

Because the braids from the full braid group correspond to various exchanges of in-
distinguishable particles, thus the scalar unitary representations of braids define quantum
statistics of particles. It has been proved [21,22] that any multi-particle wave function of N
particles in the space M must transform according to a scalar unitary representation of the
braid when the arguments of these wave functions, i.e., classical positions of particles, mutu-
ally exchange according to this particular braid [22,23]. For three-dimensional space M, the
full braid group of N particles is always the finite permutation group SN [10,24], which only
has two scalar unitary representations, corresponding to bosons and fermions. However,
for two-dimensional M, the full braid group is infinitely complicated group [10,21,23–25]
with many representations corresponding to anyons [23,26]. In the case of 3D space,
an exchange of particle positions resolves itself to only their renumbering (permutation
of indices) because the full braid group for M = R3 is the permutation group, but in
2D the paths of exchanges of particles (electrons) are important because braids are not
permutations for two-dimensional space M [10,23–25].

The simple scheme sketched above becomes, however, more complicated in the
presence of a magnetic field, especially in a spectacular manner for M = R2 and also for
locally planar manifolds M like a sphere or torus. In the presence of the magnetic field,
braids that describe exchanges of indistinguishable electrons on the plane must be built of
pieces of cyclotron orbits (because no other trajectories are available when the magnetic
field is switched on) and cyclotron orbits in 2D are planar without the drift motion along
the field perpendicular to the plane. This influences the homotopy classes of trajectories in
2D multi-particle charged systems exposed to a perpendicular magnetic field.

The full braid group is generated by elementary braids, σj, j = 1, . . . , N − 1, being
exchanges of neighboring electrons, j-th with (j + 1)-th one at certain electron enumera-
tion [23,24]. However, these elementary braids at magnetic field presence must be half-
pieces of the cyclotron orbits, cf. Figure 2 (we remind readers that braids are classical
trajectories in the multi-particle configuration space and consist of individual paths of
all particles; for σj, only j-th and (j + 1)-th particles move, while the others remain at
rest [10,23]), and therefore the braids σj are of a finite size in a 2D case, as planar cyclotron
orbits are spatially ranged. Electrons in 2D at the presence of a magnetic field (neglecting
interaction) fill (LLs) [27] and due to the degeneracy of these levels the cyclotron orbits for
each LL are defined as (2n + 1) h

eB , where Φ1 = h
e is the magnetic field flux quantum, n

is the Landau index and B is the magnetic field strength. Hence, all generators σj of the
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braid group have the same size for electrons in the same LL. This constant size can be
considered as the metrics imposed on the braid group for these electrons. These metrics are
convenient to be expressed as the surface of the cyclotron orbit (regardless of its particular
shape in the interacting multi-particle system), remembering that braids σj are half-pieces
of cyclotron orbits.

The braids σj must exchange neighboring electrons. Thus, their metrics must be
precisely accommodated to electron positions in the classical electron Wigner lattice; other-
wise, these generators cannot be defined. In the Wigner crystal, all electrons are uniformly
distributed on the positively charged plane (jellium) and repulse themselves, thus the
separation between electrons is rigidly fixed at T = 0 K, cf. Figure 2. The neighboring
electrons cannot be closer than this separation. Hence, the condition for the existence of
the braid group with σj generators is as follows for the lowest LL (LLL) (n = 0),

S
N

=
Φ1

B
=

h
eB

, (1)

where S is the surface of the total sample plane, N is the number of electrons placed on this
plane. Taking into account that the degeneracy of LLs equals N0 = BSe

h (cf. Appendix A),
we get from Equation (1), ν = N

N0
= 1, which is the filling rate for integer quantum Hall

effect (IQHE). The commensurability condition (1) thus defines the correlation between all
electrons in the completely filled LLL.

B=3B0

B=B0

B=3B0

B=B0

v=1

B=3B0

v=1/3 

B=3B0

v=1/3 

Wigner latticecyclotron orbit braid trajectory

a)

b)

c)

Figure 2. (a) left panel—a single-loop cyclotron orbit is schematically presented together with the
corresponding braid generator σj of the full braid group (central panel)— its metrics perfectly fits at
ν = 1 to the separation of interacting electrons in the Wigner lattice on the plane (right panel). (b) left
panel—three-loop cyclotron orbit for a three-times larger magnetic field and the related generator
of cyclotron braid group σ3

j (central panel)—its metrics also perfectly fit at ν = 1
3 to the electron

separation in the Wigner lattice (right panel); (c) a visualization that the small single-loop cyclotron
orbits for the field three times larger than in the case of (a) i.e., at at ν = 1

3 preclude the definition of
braids σj (such braids cannot reach even the closest electrons in the Wigner lattice (right panel)).

We see that the IQHE state is the correlated state of electrons according to the full
braid group homotopy pattern (1) and this is not equivalent with only an integer filling
rate of LLs (here, the LLL). Complete filling of LLs can also happen in gaseous systems
without interaction, but is not protected there by any homotopy invariant in contrast to (1).
The commensurability condition (1) is a matter of electron mutual interaction and cannot
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be fulfilled in the gas (in the gas, no Wigner lattice can be defined). Thus, we conclude
that the metrics h

eB of generators σj together with the interaction of electrons define correla-
tions between all electrons via the commensurability condition (1) and the corresponding
multi-particle correlated quantum state is responsible for IQHE. In the gaseous system,
without inter-particle interaction, no correlations exist, despite the generators σj and their
metrics still being able to be defined, but the condition (1) disappears for noninteracting
particles (the metrics of braids still holds if particles are charged, but the separation of
gaseous particles is arbitrary when the interaction is neglected), cf. Appendix C.

However, what about the metrics of other braid group elements? To answer this
question, we will apply the Bohr–Sommerfeld (B–S) rule. The B–S rule refers quasiclassically
to the case of 1D classical phase space and the trajectory of a particle in arbitrarily shaped
1D well with turning points at barriers of the well, and this rule expresses the surface in
1D phase space ranged by the phase trajectory in terms of multiplicity of its quantum, h
(Planck constant), ∮

pdx = h(n + 1/2). (2)

One can apply the B–S rule to the pair of components of the kinematic momentum of
an electron in 2D at the presence of perpendicular magnetic field B, when these components
do not commute because of the field presence. Let us assume the Landau gauge for the
vector potential, A = (0, Bx, 0), then the kinematic momentum components have the form,

P̂x = −ih̄∇x,
P̂y = −ih̄∇y − eBx,

(3)

for which the commutator [P̂y, P̂x]− = −h̄eB (this commutator is gauge invariant). There-
fore, one can define a pair of canonically conjugated variables, Ŷ and P̂y, for which
[P̂y, Ŷ]− = −ih̄, and thus they can be treated as a generalized position, Ŷ = P̂x/(eB),
and momentum, P̂y. From the B–S rule applied to Ŷ and P̂y, we get∮

PydY = h(n + 1/2), (4)

which is the same as
∮

PydPx = heB(n + 1/2) (due to the definition of Ŷ).
The 1D phase space of these canonically conjugated variables P̂y and Ŷ coincides with

the 2D space (Px, Py) if multiplied by eB. The 1D phase trajectory is thus the (Px, Py) 2D
trajectory. Any trajectory in kinematic momentum space (Px, Py) is repeated in the real
position 2D space (x, y), but rescaled and rotated by π/2, which follows from the Lorentz
force formula, dP = −edr× B. From (4), we thus obtain for the surface of the orbit in the
space (x, y), ∮

ydx =
h

eB
(n + 1/2). (5)

Multiplying Equation (5) by B, the quantum of magnetic field flux can be determined,
Φ1 = h

e resulting from Equation (5) if n changes by 1.
Now, let us turn back to braids in the multi-electron 2D system. Trajectories for

exchanges of 2D electrons in the magnetic field presence are planar cyclotron braid trajec-
tories. In the full braid group, we have braids which are arbitrary group products of the
generators σj (j = 1, 2, . . . , N). Especially interesting are braids σ2k+1

j where k is a positive

integer. The braids σ2k+1
j also describe exchanges of particles j-th with (j + 1)-th ones,

but with additional k loops [17]. We see that braids σ2k+1
j repeat k times the exchanges

of particles j-th and (j + 1)-th ones, which were exchanged without any repetition by the
generators σj. The difference between braids σ2k+1

j and σj is only in additional k loops in
the former ones. However, in the case when the generators σj cannot be defined as too
short to match the closest neighbors in the Wigner lattice (as illustrated in Figure 2c), then
we anticipate that the role of the simplest braids (and generators of the braid group) is
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taken by σ2k+1
j instead of σi, provided the size (metrics) of multi-loop braids σ2k+1

j fits to
electron separation in the Wigner lattice.

One can prove [17] that the size of braids σ2k+1
j actually is larger than the metrics

of σj, when the latter cannot be implemented in the Wigner lattice. In the case when σj
(j = 1, . . . , N − 1) are excluded from the braid group (as too short), the simplest electron
exchange trajectories can be σ2k+1

j and such must be taken to the B–S rule as paths back
and forth in the contour integral in Equation (2) (the trajectories between turning points in
the derivation of the B–S rule). Instead of Equation (2), we thus get∮

pdx = (2k + 1)h(n + 1/2). (6)

Repeating for Equation (6) the above presented derivation of the flux quantum Φ1 = h
e ,

we get for multi-loop trajectories (i.e., for (2k + 1)-loop cyclotron orbits, or equivalently,
braids with additional k loops as shown in Figure 2) the effective flux quantum which
equals Φ2 = (2k + 1) h

e —it is larger than Φ1 = h
e . Larger flux quantum defines a larger size

of the corresponding cyclotron orbit, (2k + 1) h
eB instead of former h

eB .
Loops can appear only one by one in the braid paths between turning points in

Equation (2), and these loops are counted by k = 1, 2, . . . , thus, on the total closed phase-
space cycle in the B–S rule, we have jointly 2k + 1 loops and the B–S circular integral grows
2k + 1 times, as shown in Equation (6).

This effective flux quantum for multi-loop orbits, Φ2 = (2k + 1)Φ1, has the larger
surface, Φ2/B, at the same magnetic field as that for single-loop orbits with the surface,
Φ1/B. Φ2/B determines the size of the multi-loop cyclotron orbit and the metrics of
corresponding braids, σ2k+1

j . This proof holds, however, only if σi are precluded as too

short. In the case when σj are not precluded, the braids σ2k+1
j have the same size (metrics)

as σj because the simplest paths between turning points in the B–S rule must be σj and
cannot be substituted by σ2k+1

j . However, if σj are excluded at sufficiently strong magnetic
field presence, then the situation changes, as described above.

To define the braids σ2k+1
j , the appropriate positions of the electrons in the Wigner

lattice must be accessible, so that these electrons can exchange according to these braids. It
is clear that such electrons must be separated in consistence with the metrics of these braids
and, on the other hand, in consistence with the electron distribution in the Wigner lattice,
in order to allow exchanges. The metrics of σ2k+1

j is larger than that of σj (if σj are precluded)

and perfectly fits to separation of electrons S
N at the magnetic field (2k + 1)B, at which the

metrics of σj is too small, i.e., S
N > Φ1

(2k+1)B (for k ≥ 1), but S
N = Φ2

(2k+1)B . In such (2k + 1)-
times larger fields, the generators σj cannot be defined and must be removed from the full
braid group and substituted by new generators σ2k+1

j with larger metrics (as illustrated in
Figure 2b). The new generators generate a subgroup of the full braid group (as expressed
by σj) and we call this subgroup the cyclotron braid subgroup [17,28]. Again, the condition
of the equality of the generator metrics with the closest particle separation (expressed as
the surface per particle, S

N with S and N kept constant) defines the homotopy invariant,

S
N

=
Φ2

(2k + 1)B
=

(2k + 1)Φ1

(2k + 1)B
. (7)

However, for the larger magnetic field, (2k + 1)B, the degeneracy of Landau Levels
grows, N0 = (2k+1)BSe

h , which, via Equation (7), gives ν = N
N0

= 1
2k+1 . This fractional filling

rates of the lowest Landau level correspond to the main Laughlin hierarchy of the fractional
quantum Hall effect (FQHE) [2].

The specific phase shift of the Laughlin functions for states from this hierarchy is
naturally given by the scalar unitary representation of the cyclotron braid subgroup, i.e., by
the projective representation of the initial full braid group onto the cyclotron subgroup [17],
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σ2k+1
j → ei(2k+1)α, for original representation of the full braid group, σj → eiα (for original

electrons, α = π).
Let us emphasize that the B–S rule and its application to the quantization of the

magnetic field flux is independent of the interaction (as the quasiclassical approach of B–S
rule is not perturbative in interaction), and thus holds for arbitrary strongly interacting
systems. Hence, the metrics of multi-loop braids and related homotopy correlation patterns
are invariant with respect to the interaction strength, but need the nonzero repulsion of
electrons to constitute their Wigner lattice.

3. General Cyclotron Commensurability for 2D Interacting Electron Distribution

The commensurability condition (7) can be rewritten as follows:

S
N

=
(2k + 1)h

eB
=

h
eB

+
h

eB
+ · · ·+ h

eB
, (8)

where the sum extends over q = 2k + 1 terms, i.e., over all loops of the multi-loop cyclotron
orbit. The cyclotron braid commensurability scheme presented in the preceding paragraph
and expressed by the above formula can be also generalized by the inclusion of the nesting
of braids with next-nearest neighbors in the Wigner lattice and for each loop of the multi-
loop braid separately, which leads to the commensurability condition [17,28],

S
N

=
h

eBx1
± h

eBx2
± · · · ± h

eBxq
, (9)

where q = 2k + 1 is the number of cyclotron loops (k is the number of loops in the braid
as braids in 2D are half-pieces of cyclotron orbits). The factors xi (i = 1, . . . , q, q =
2k + 1) denote the portions of the next-nearest neighbors in the Wigner lattice selected to
commensurate with the i-th loop of the multi-loop orbit and± in the above formula account
for congruent (+) or opposite (−) circulation of i-th loop with respect to the preceding
one. For xi = 1 for all i (and taking + before each component), the formula (9) coincides
with Equation (8) or Equation (7), which refer to the nearest neighbor commensurability of
all loops.

To clarify the transition between Equations (8) and (9), let us first explain the meaning
of xi > 1 in denominators in Formula (9). If one considers the single-loop commensurability
for every x-th electron, i.e., for the portion N′ of electrons, where N′ = N

x , then the
commensurability condition attains the form, S

N/x = h
eB , which is the same as S

N = h
eBx .

We see that this is of the same form as the one-loop component in the sum in Equation (9),
if one takes xi = x. Hence, the components of the sum in Equation (9) describe nesting
of consecutive loops of multi-loop cyclotron orbit with next-nearest electrons and the
portions of these electrons are determined by xi independently for each loop i = 1, . . . , q,
q = 2k + 1. This can be illustrated schematically in Figure 3. When all xi = 1, we
arrive back at Equation (8), i.e., at nesting of all loops of the q-loop cyclotron orbit with
only nearest neighboring electrons. To account for a most general form of the cyclotron
commeasurability, we also admitted an inverse orientation of particular loop with respect
to preceding one, which is marked with sign minus of ± in the sum in Equation (9).

Possible factors xi for electrons are precisely defined and associated with the Wigner
crystal as is directly shown in Appendix B.

For each filling ratio of LLs (i.e., the specific value of magnetic field at constant S
and N) when the condition (9) is satisfied, it is possible to define the cyclotron subgroup
generator, σ̃2k+1

j = σ±j,j+x1
σ±j,j+x2

. . . σ±j,j+x2k+1
, where σ−i is the inverse braid group element

of the generator σ+
j = σj and the second subscript of σj,j+xi indicates the elementary

exchange of j-th electron with (j + xi)-th one at the enumeration of electrons on the plane
for which every xj-th electron is followed by the appropriate next-nearest neighbor in the
Wigner lattice and N/xi is the portion of the selected generation of next-nearest neighbors—
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cf. Appendix B (for xi = 1, σj,j+xi = σj). The more detailed form of the cyclotron subgroup
generator is described in Ref. [17].

a

c

b

Figure 3. Schematic presentation of exemplary commensurability patterns acc. to Equation (9) for
single-loop cyclotron orbit and ν = 1 (a), three-loop cyclotron orbit with all loops nested with nearest
neighboring electrons and ν = 1

3 , i.e., x1 = x2 = x3 = 1, q = 3 in Equation (9) (b) and three-loop
cyclotron orbit with loops nested with next-nearest electrons, i.e., for x1 = 1, x2 = 3 and x3 = 4,
q = 3 in Equation (9), for which ν = (1/1 + 1/3 + 1/4)−1 = 12

19 (cf. Figure A2 for the explanation of
values for xi displaying fractions of succeeding generations of next-nearest neighbors in the Wigner
lattice) (c).

For the field B which satisfies Equation (9), the degeneracy of Landau levels equals to
N0(B) = BSe

h , which gives the filling rate for the corresponding homotopy phase,

ν =
N

N0(B)
=

(
1
x1
± 1

x2
± · · · ± 1

xq

)−1
. (10)

This is the general hierarchy of FQHE in the LLL.
In [17], we have shown that the energy preference allows for the simplification of

Equation (9) for GaAs via assumption x1 = x2 = . . . xq−1 = x and xq = y, q = 2k + 1
leading to the following form (and maintaining ± before only last term in (9)),

S
N

=
(q− 1)h

eBx
± h

eBy
. (11)

Equation (11) defines FQHE hierarchy in the lowest Landau level of GaAs,

ν =
N
N0

=
yx

(q− 1)y± x
, (12)

with q = 2k + 1 odd integer and y ≥ x ≥ 1 positive integers 1, 2, . . . (as defined in
Appendix B). The hierarchy (12) reproduces all FQHE filling rations observed experimen-
tally in the LLL of GaAs including so-called enigmatic states impossible to be explained
for composite fermion (CF) model, ν = 4

11 , 5
13 , 3

8 , 3
10 , . . . [29]. These enigmatic state filling

ratios are obtained by the hierarchy (12), but exclusively for x > 1 [17].
This indicates that the phenomenological model of CFs is not effective even in the

LLL of GaAs. The CF model assumes in a heuristic manner that to each electron is
pinned somehow even number of flux quanta of the auxiliary fictitious magnetic field in
order to reproduce the phase shift in the Laughlin function via the Aharonov–Bohm-type
phase correction when two such complexes (called composite fermions) interchange their
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positions on the plane. Moreover, Jain has been suggested [30] that the averaged field
of fluxes pinned to electrons may screen the external magnetic field and in the resultant
reduced field some higher (spinless) LLs can be completely filled. He confused the y-th
integer in the formula (12), which corresponds to the fraction of next-nearest neighbors in
the Wigner crystal with y-th spinless LL (also integer) and he got the hierarchy ν = 1

(q−1)y±1 ,
i.e., the hierarchy (12) for x = 1. Despite a formal agreement in this particular case the
Jains’ hierarchy is not able to explain the enigmatic FQHE states as they need X > 1.
Moreover, this confusion causes the next complications. In the CF model, it is heuristically
assumed that the multiparticle wave function for states belonging to the Jain hierarchy
can be approximated by wave functions from y-th LL in a gaseous spinless system. These
states are, however, singular in contrast to states in the LLL and some procedure of the
removal of poles occurred necessary. Nevertheless, this artificial procedure (called as the
projection onto LLL) [31] is not unambiguously defined and play a role of the variational
factor allowing for better energy minimization. This, however, leads to uncontrolled
violation of the symmetry of the wave function. This symmetry is properly defined by the
cyclotron braid group generators and their scalar unitary representation. Thus, one can
conclude that the CF model is wrong and can be at most considered as the pictorial effective
illustration for the simplest homotopy phase when nesting of multi-loop cyclotron orbit
concerns only nearest neighbors in the Wigner lattice except for a one loop nested with
y-th fraction of next-nearest neighbors (artificially interpreted in CF model as y-th spinless
LL). The integer y does not mean y-th completely filled spinless LL (as assumed in the CF
model), but is the value of xq defining the fraction of electrons for consecutive generations
of next-nearest neighbors in the Wigner lattice. CFs do not allow for mimicking a more
complicated homotopy braid patters involving next-nearest neighbors for the cyclotron
commensurability, like for so-called enigmatic FQHE states in the LLL of GaAs [29].

However, for the graphene monolayer, the simplification by Equation (11) is not
admitted due to different envelope functions for Landau level wave functions in compar-
ison to GaAs and the general hierarchy (10) must be considered. This has been proved
experimentally [32,33].

The cyclotron braid generators of cyclotron subgroups are associated with more
complicated instances of the homotopy braid commensurability (i.e., with y ≥ x ≥ 1) as
given by (11) together with the corresponding scalar unitary representations defined in
an unambiguous manner for the polynomial part of related multi-particle eigenfunctions.
This polynomial must be regular dependent on all particle coordinates, which, together
with the requirement to transform itself according to scalar unitary representation of the
cyclotron braid group, leads to its unique form for each homotopy phase. The polynomial
must be multiplied by nonsingular (as in the LLL any multiparticle wave function must be
a holomorphic function without singularities) factor invariant against particle exchanges,
thus of the form of an N-fold product of single-particle exponents e−|zi |2/4l2

B (zi is the

complex position of j-th particle on the plane and lB =
√

h̄
eB is the magnetic length). Such

a form of the exponential factor is the same as in the gas system and is maintained for an
arbitrary state when inter-particle interaction is switched-on. This factor is assumed for a
GaAs two-dimensional electron system.

Nevertheless, in graphene, the single-particle Landau states are not of a gaseous form
because they are modified by a single-particle crystal field in graphene. This affects the
envelope factor invariant against the interchanges of electrons, but the polynomial part
that one defined by the homotopy invariant, is the same as in GaAs. The polynomial
parts of multi-particle wave functions in the LLL at filling fractions from the general
FQHE hierarchy are defined for particular homotopy patterns in an unambiguous manner,
as illustrated in [17]. This procedure is exact in contrast to the so-called projection onto
the LLL of the wave function for completely filled some higher LL in order to remove
singularities in the CF model [31]. The projection onto LLL is not unambiguously defined
and breaks the wave function symmetry in an uncontrolled way. This symmetry is precisely
defined by the cyclotron braid subgroup generators and their unitary scalar representations.
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Hence, the trial wave functions in CF model with violated symmetry can be only treated as
approximate and optimized in energy gain via the projection recipe variation.

4. Topological Correlations and Quantum Entanglement

In homotopy phases defined by appropriate braid groups, i.e., by the full braid group
or its cyclotron subgroups, the long range multi-particle correlation of all electrons exists,
which causes also long range, throughout the whole system, quantum entanglement of
all electrons simultaneously. Multi-particle wave functions corresponding to particular
homotopy phases are non-separable functions from the N-fold tensor product of single
electron Hilbert spaces,H = H1⊗ · · · ⊗HN , whereHj is the Hilbert space for j-th electron.
Hj is the same space for each j though of wave functions with respect to different variables,
coordinates of j-th electron in the space M where electrons are located. In the case when
M is the 2D plane, coordinates of electrons can be denoted as the complex numbers,
zj = xj + iyj, i is the imaginary unit. In homotopy phases, all electrons are involved in the
multi-particle functions in the same manner. In means that the entanglement is symmetrical
and each electron is in a similar mixed state described by the density matrix,

ρ̂j = Tr1,....j−1,j+1,...,N |Ψ(z1, . . . , zN) >< Ψ(z1, . . . , zN)|, (13)

where |Ψ >< Ψ| denotes the density matrix of the pure entangled multi-particle state of
all electrons, Tr1,...,j−1,j+1,...,N means the trace over the subspaceH1 ⊗ · · · ⊗Hj−1 ⊗Hj+1 ⊗
· · · ⊗ HN of the tensor product of Hilbert spaces of all electrons in the system. A typical
example of the long-range entangled multi-particle wave function of N electrons on the

plane is the Laughlin function, ΨN(z1, . . . , zN) = const ∏N
l>j(zl − zj)

2k+1e
−∑j

|zj |
2

4l2B , where

lB =
√

h̄
eB is the magnetic length. For k = 0, the Laughlin function is the Slater function

of N 2D electrons in the LLL. Apparently, the Laughlin function and the Slater function
are nonseparable.

Note that, for a gaseous system without interaction, the full braid group is also
properly defined. As gaseous particles do not interact and their distribution is not restricted
by any constraints (no Wigner crystal exists in the gas), the cyclotron commensurability
loses its sense in this case. The full braid group does not define here the interaction-induced
correlations, but only the statistical Pauli correlation (defining bosons, fermions, or anyons
in 2D). Despite the Pauli correlation not being induced by any interaction, the multi-particle
wave functions both for gaseous fermions and bosons are nonseparable and long-range
entangled. This shows that the Pauli correlation leads to the entanglement without any
interaction. The role of the interaction here plays the indistinguishability of identical
particles. This property has the same features as the binary interaction: (1) needs at least
two particles to be considered, (2) concerns all particles in the system in an uniform manner,
and (3) disappears for a single particle. These features shared by the indistinguishability
condition with the true interparticle interaction are sufficient to induce the long range
entanglement. The entanglement is the property of the wave function, which cannot be
disentangled by any unitary transformation in the Hilbert space [18].

However, only interacting electrons can create the correlated IQHE state, the topologi-
cal homotopy state with the commensurability condition (1) being imposed. For the gas,
the states with complete filled Landau levels are not IQHE states. Despite the gas of N
fermions always exhibiting Pauli correlation and related long-range entanglement, the in-
teraction of 2D electrons at magnetic field is needed for the commensurability condition (1)
or (9) to be fulfilled in order to create some homotopy topologically protected correlated
state (including the states of IQHE and FQHE, no such effects cannot occur in the gas).

In states correlated by braids, i.e., in homotopy phases, none of the electrons are
distinguished. Thus, all electrons are simultaneously entangled in a symmetrical man-
ner and such an entanglement over the whole system is called the long range quantum
entanglement [18]. This is in contrast to the local quantum entanglement being character-
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istic to phases of multi-particle systems with local order parameters [18]. The coherent
superconducting state is a good example of local binary type entanglement of electrons
due to Cooper pairing induced by effective attraction of electrons (mediated by phonons).
The specific two-particle interaction causes a local entanglement that reflects the dressing of
bare electrons with interaction and leads to eventual quasiparticles. The mass operator and
a pole of the retarded Green function, defining a quasiparticle, are the relevant notions in
such situations of local entanglement. In the case of long range entanglement, this picture
is not useful, and the role of the interaction is different. The correlations expressed by
braids are nonlocal of topological character and can be expressed by the commensurability
condition (homotopy invariant) exclusively for interacting particles [18].

5. Homotopy Braid Group Phases

The full braid group π1(FN(M)) is the first homotopy group [10,23,24] (called fre-
quently as the fundamental group), which collects disjoint nonhomotopic classes of closed
loops in FN(M), i.e., loops from different classes cannot be transformed one into another
by any continuous deformation without cutting. Because points in FN , which differ only in
particle numbering, are unified (due to indistinguishability of identical particles, which
has been accounted for via the division of the multi-particle configuration space by the
permutation group), elements from the group π1(FN(M)) thus describe exchanges of parti-
cle positions along trajectories of individual particles which entangle into braids. These
braids can be disentangled or not. For M = R3 (or for higher dimension of M), all braids
can be disentangled. For M = R2 (or for locally 2D manifolds, like a sphere or torus)
braids usually cannot be disentangled [10,23,24]. Therefore, in 3D, the braid groups are
always finite permutation groups, i.e., exchanges of particles on 3D manifold are only
permutations—renumbering of indexes of particles, whereas, in 2D, trajectories of parti-
cle exchanges on the plane are also important, which create bunches usually impossible
from being disentangled and with infinite possible structure of different weaves creating
nonhomotopic tangles. In 2D, the braid groups are thus infinite (but always countable).

Braid groups have the following properties: (1) In gaseous systems (i.e., for noninter-
acting particles), no constraints on particle separation are imposed and also no constraints
are imposed on linking the braids. (2) When particles mutually interact, then the situation
changes significantly. In the case when particles repulse themselves and are deposited on
neutralizing jellium, just like electrons in 2D crystalline ion structure treated as the posi-
tive jellium, then electrons are uniformly distributed and uniformly separated in classical
picture. These electrons create the classical Wigner crystal (if one neglects their kinetic
energy, in the framework of classical description at temperature, T = 0 K). The triangle
Wigner crystal is the lowest energy static classical distribution of repulsing electrons on the
jellium at zero temperature. If the magnetic field is switched on, then braids must be built
of pieces of cyclotron orbits (no other trajectories exist at the magnetic field presence, let us
remind readers that braids are classical trajectories), but, in the 2D case, cyclotron orbits
have a finite size (are planar in perpendicular magnetic field without the drift motion),
and, hence, braids are also of the finite size. In 3D, cyclotron braids are not limited in size
because of the drift motion along the field direction. The cyclotron orbit size in 2D depends
on velocity (kinetic energy) of particles. If all particles have the same kinetic energy, like
electrons in a LLL, then all cyclotron orbits are of the same size. This size in the LLL is
given by Φ1

B = h
eB , where Φ1 = h

e is the magnetic field flux quantum. In higher LLs, the

size of cyclotron orbits grows proportionally to the LL energy, and equals (2n+1)h
eB , where n

is the Landau index.
Elementary braids σj, the exchanges of neighboring particles without any additional

loop, are of the same size as ordinary single-loop cyclotron orbits and cannot match
particles on the plane if particles are diluted too much, i.e., when h

eB < S
N (S is the surface

of 2D sample, N is the number of electrons). Hence, for sufficiently large magnetic field
B, the braids σj cannot be defined. In 3D, no such constraint is imposed because, in 3D, a
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helical drift along the field direction makes braids arbitrarily long at any field value and
such long braids may reach arbitrary distanced particles—in 2D, this does not happen.

The full braid group is generated by the elementary braids σj, j = 1, . . . , N − 1 being
the exchanges of j-th and (j + 1)-th particles. It is always possible to enumerate particles
on the plane that j + 1 assigns the nearest neighbor with respect to the j-th one, though this
numeration is not unequivocal in 2D. Due to indistinguishability of particles, it is enough
to assure it for one particle in the Wigner lattice [10]. For 2D interacting electrons and for
magnetic field B > B0 (where S

N = h
eB0

), the cyclotron braids σj (of size h
eB ) are too short

to reach neighboring particles. In the braid group, there are, however, multi-loop braids
expressed by σj generators σ

q
j , which for q = 2k + 1 (k—positive integer) also describe

exchanges of particles j-th and (j + 1)-th, but with additional k loops. It has been proved
above by application of the B–S rule [17] that such braids have a larger size, (2k + 1) h

eB ,
in the case when they are the simplest paths of particle exchanges. The braids σ2k+1

j
generate the subgroup of the original full braid group, and we have called this subgroup
the cyclotron braid subgroup.

Braids do not display any particular dynamics in the system, and they can be modified
only by topological constraints. In a graphene monolayer, which is a 2D system, braids
in the magnetic field presence will be the same as in GaAs 2DES despite different single-
particle energy levels. In graphene monolayer LL, energies have the form, En =

√
n 2h̄vF

lB
(where vF is the Fermi velocity, lB is the magnetic length) [7], whereas in GaAs 2DES En =
h̄ωB(n + 1

2 ), ωB = eB
m , n is the Landau index—cf. Appendix A. However, the cyclotron

orbit size is governed by the bare kinetic energy and in graphene in the LLL, it is the same
as in gaseous system, h

eB . Thus, Equation (9), defining patterns of the commensurability,
holds also in the graphene-monolayer (the same is also the degeneracy of each LL subband,
N0 = BSe

h ). In the graphene-monolayer, the number of subbands in each LL is, however,
different in comparison to GaAs—in the graphene monolayer, this number is four, due to
the spin-valley structure [7] (in GaAs 2DES, only two spin subbands occur). Due to a Barry
phase shift in the graphene-monolayer, the zero energy at the Dirac cone tops is also zero LL
energy [7]. These all are, however, only corrections of the single particle energy spectrum
induced by the electric-type crystal field not perturbing neither the bare kinetic energy nor
the braid homotopy invariants. In bilayer-graphene, the situation is similar, though the
LLL is 8-fold split (SU(4) × 2) due to an additional degeneracy of Landau oscillatory states
with indices n = 0 and n = 1 in graphene bilayer [34]. Not perfect 2D structure in the
bilayer-graphene is, however, a topological factor which significantly modifies the braid
commensurability conditions in this material resulting in different homotopy patterns and
topological invariants [28].

In bilayer graphene, inter-layer hopping of electrons is admitted. Hence, loops of
cyclotron orbit can also hop between layers. Each layer has its own surface and sepa-
rately contributes to the total flux of the magnetic field B passing the bilayer graphene
(like in 3D case). Thus, for a multi-loop structure of the cyclotron orbit, loops can be
arbitrarily distributed among layers and individually adjusted to nearest or next-nearest
neighbors in electron Wigner lattice in each layer, which perturbs the commensurability
condition [28,35].

By application of the vertical voltage, one can restore the monolayer homotopy in
bilayer graphene. A vertical voltage can block electron hopping in one direction, which
completely precludes hopping of loops (braid loops are closed, thus must return back if
hops)—FQHE hierarchy in the bilayer graphene exposed to the vertical voltage becomes
that one as in the monolayer graphene. This effect has been observed experimentally [36].

In higher LLs in every Hall material, with the Landau index n > 1, the quantized bare
kinetic energy is (2n + 1)-times greater than the energy in the LLL (because En = h̄ωB(n +
1
2 ), where ωB = eB

m ). Therefore, cyclotron orbits in higher LLs are (2n + 1)-times larger in
comparison to the LLL. The metrics of braids in higher LLs are thus also (2n + 1)-times
larger than the metrics of σj in the LLL. It means that, in higher LLs, the loop-less braids
σj (corresponding to the ordinary single-loop cyclotron orbits) can match particles more
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separated than in the LLL. This completely changes the commensurability condition (9) and
explains why the experimentally observed hierarchy of FQHE in higher LLs is different than
that in the lowest one. The cyclotron commensurability with electron separation in higher
LLs has been analyzed in [37,38] for GaAs consistent with the experiment [39]. In particular,
in GaAs 2DES, the experimentally observed FQHE states at ν = 7

3 , 8
3 and ν = 10

3 , 11
3 in two

spin subbands for n = 1 (and similar states at fillings with the denominator 5 for subbands
with n = 2)—cf. Figure 4, are single-loop homotopy phases in contrast to similar fractional
fillings of the LLL (fractions ν = 1

3 , 2
3 and ν = 4

3 , 5
3 in two spin subbands with n = 0) at

which the multi-loop FQHE occur [37]. This important observation indicates that FQHE in
higher LLs is not of a CF type because the latter can be utilized as the phenomenological
picture for multi-loop braids homotopy phases in the LLL and are useless for single-loop
homotopy phases in higher LLs [37].
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Figure 4. Visible in experiment [39] single-loop FQHE states for Landau index n = 1 i n = 2 (N
in the figure) (in GaAs)—indicated in red color; blue ones—4/3, 5/3 are three-loop FQHE in the
lowest Landau level at n = 0; ν = 5/2, 7/2, 9/2, 11/2 are paired states, but at 3/2 is the Hall metal;
the green color marks a few FQHE from multi-loop series pushed toward band edges at n > 0 and
obscured by IQHE-reentrant in the vicinity of integer fillings [17,37].

The same holds in graphene. The cyclotron commensurability with electron sepa-
ration in graphene monolayer and bilayer has been successfully applied to explain an
unconventional FQHE in these Hall materials [17,28].

Finally, let us address the homotopy approach to electrons in topological Chern
insulators, where the Hall physics are reproduced but without a uniform magnetic field
and without LLs. The role of magnetic field takes the Berry field [9] with similar flux
quantization. The Berry field flux quantum corresponds here to single circulation along
the circumference of the planar elementary cell in crystalline structure. The degeneracy
of Landau levels is substituted in Chern topological insulators by the number of states
in an extremely flattened band which is equal to the number of crystalline nodes in the
sample, n0. Thus, the filling rate is counted per crystalline node, ν = N

n0
. The typical FQHE

hierarchy found in numerical simulations of fractional Chern topological insulators at the
same as for FQHE fractional fillings ν = N

n0
of a flattened band counted by the filling of 2D

crystal lattice nodes [40] strongly emphasizes the universal character of FQHE in various
2D systems and reflects the same homotopy classification of electron trajectories (the same
homotopy invariants) as in the ordinary Hall systems.

The discussion presented above and the review of homotopy correlation phases in var-
ious materials are summarized in Table 1. In the listing in the table, the metrics imposed on
braids by the cyclotron effect is highlighted in 2D geometry, and not in 3D. The metrics can
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appear in 2D electron systems regardless of the electron-interaction (i.e., both for interacting
electrons and noninteracting gaseous models) as the response to the action of the perpen-
dicular quantizing magnetic field (in conventional Hall systems) as well as of the Berry
field (in the case of Chern topological insulators). The role of the interaction of electrons in
arrangement of IQHE and FQHE strongly correlated states is visible due to existence of the
Wigner lattice exclusively for repulsing electrons. The commensurability patterns being
homotopy invariants are listed both for the LLL in GaAs, graphene monolayer and bilayer,
and Chern topological insulators. The specific non-CF-type FQHE hierarchy in all of these
materials is addressed to single-loop homotopy phases in higher LLs and in graphene
bilayer both in LLL and in its higher LLs taking into account jumps of cyclotron loops
between layers. The presented homotopy classification found a perfect consistency with
current experimental observations. The particularities of the hierarchy and comparison
with experiment are considered in details in references indicated in Table 1.

Table 1. Classification of multi-electron homotopy phases [m(b)GN—monolayer(bilayer)-graphene,
ChTI—Chern topological insulator].

Dim. System Braid Metrics and Nesting Type Homotopy Phases

3D gas or interacting electrons no braid metrics no homotopy correlation phases
except for Pauli correlations

2D gas no cyclotron braid nesting, no
Wigner lattice

no homotopy correlation phases
except for Pauli correlations

2D interacting electrons single-loop cyclotron braid nesting
in Wigner lattice

homotopy phases of IQHE,
ν = N

N0
= 1; FQHE in higher LLs,

ν = 2 + (1[i]) + 1/3(2/3), 4[6] +
(1[i]) + 1/5(..., 4/5) (GaAs),

([...]mGN, i = 1, 2, 3) [17,28,41]

2D interacting electrons multi-loop cyclotron braid nesting
in Wigner lattice

homotopy phases of FQHE,
ν = xy

(q−1)y±x (GaAs) [17]

ν =
(

1
x1
± · · · ± 1

xq

)−1

(mGN) [33]

bGN 2D-2D interacting electrons multi-loop cyclotron braid nesting
in double Wigner lattice

homotopy phases of FQHE,
interlayer distribution of loops
and interlayer flux leakage [28]

ChTI 2D gas no Berry braid [9] nesting, no
Wigner lattice

no homotopy correlation phases
except for Pauli correlations

ChTI 2D interacting electrons single-loop Berry braid nesting in
Wigner lattice

homotopy phases of IChTI (integer
ChTI), ν = N

n0
= 1, n0 number

of nodes

ChTI 2D interacting electrons multi-loop Berry braid nesting in
Wigner lattice

homotopy phases of FTChI
(fractional ChTI),

ν = N
n0

= ( 1
x1
± · · · ± 1

xq
)

6. Conclusions

By application of homotopy methods, the classification of 2D interacting multi-electron
systems in the magnetic field (or Berry field) is given (and summarized in Table 1).
The structure of correlations responsible for IQHE and FQHE is recognized consistent
with experimental observations in 2DES of GaAs and in graphene monolayer and bilayer.
It is shown that the homotopy invariants related to the effective flux quanta for various
correlation patterns are immune to the variation of interaction strength (though must be
nonzero) and local crystal field, and thus the universal hierarchy of FQHE is repeated in
all 2D charged Hall systems in a perpendicular quantizing magnetic field (like in GaAs
2DES or graphene) as well as in a quantizing Berry field in fractional topological Chern in-
sulators. Homotopy invariants are also resistant to local thermal chaos, and corresponding
homotopy phases are visible at the same filling rates unless thermal energy kT exceeds the
energy gain due to topological correlations (in correlations in higher LLs, they take part
in lowering portions of electrons, thus the energy gain is gradually reducing and experi-
mental observation of the homotopy features in these levels needs lower temperatures).
The unitary representations of cyclotron braid subgroups for particular homotopy phases
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allow for the reconstruction of the multi-particle wave functions of these phases and the
assessment of energy consistent with Laughlin function form, exact diagonalization of
interaction in small models and experimental observations of stable states at various filling
rates of LLs. Despite the degeneracy of LLs being lifted by the electron interaction, the
homotopy invariants still allow for identifying different topological phases with long range
correlation and long range quantum entanglement at topologically protected filling rates
conventionally expressed in terms of the degeneracy of single-particle LLs being the same
as the number of band-states in interacting multi-electron systems. The stability of different
homotopy patterns is a matter of the envelope part of the corresponding multi-particle
wave function also immune to the electron interaction but dependent on a crystal field
in various materials (as observed in graphene in distinction to observations in GaAs).
The interaction between electrons is, however, essential for the definition of topological
correlations (in gaseous systems, they cannot occur) which are governed by homotopy
invariants possible to be defined only in interacting 2D multi-electron systems, which have
been explicitly demonstrated.
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Appendix A. Versatility of the Degeneracy of Landau Levels and Flux Quantum

The degeneracy of LLs obviously is independent of material and interaction because
it the single-particle property. To calculate the value of this degeneracy, let us assume the
Landau gauge of magnetic field, A = [0, Bx, 0], B = ∇×A = [0, 0, B]. The single-particle
Hamiltonian thus attains the form

H = − h̄2

2m
∂2

∂x2 +
(−ih̄ ∂

∂y − eBx)2

2m
. (A1)

The wave function is thus of the form

Ψ = eipyy/h̄ f (x), (A2)

and the equation for f (x) is the oscillator equation,

− h̄2

2m
d2 f (x)

dx2 +
e2B2

2m

(
x−

py

eB

)2
f (x) = E f (x). (A3)

It gives the conventional energy spectrum, En = (n + 1
2 )h̄ωB, where ωB = eB

m , but the
degeneracy corresponds to the position of the oscillator center, x0 =

py
eB , which must be

placed inside the sample Lx × Ly, i.e., 0 < x0 < Lx, whereas py =
2πh̄ny

Ly
. The condition for

x0 is thus
0 < py < eBLx, (A4)

and the total number of states equals Lx LyBe
h . This is the degeneracy of LLs. Interaction

between electrons lifts degeneracy of Landau levels and leads to narrow bands with the
number of split states N0.

A filling rate of Landau levels is expressed by the ratio ν = N
N0

. In the case of
Chern topological insulators without Landau levels, an electron filling rate is counted
per crystalline node, i.e., ν = N

n0
, where n0 is the number of nodes in the lattice (the

quasi-degeneracy of the narrow band).
Quantization of the magnetic field flux is the result of the commutation relation of

the kinematic momentum components in the plane perpendicular to the magnetic field
vector, Equation (3). This commutator is gauge invariant and independent of the electron
interaction. Hence, the resulted flux quantum, determined by the B–S rule, is universal and
immune both to the electron dynamics and the interaction of electrons in multi-electron
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systems. Though found by the B–S rule, the value of the magnetic field flux quantum is not
limited to the quasiclassical approximation. It is interesting to outline the linkage of the
flux quantization with the Landau level structure. The degeneracy of Landau levels equals
N0 = BSe

h , which is the ratio of the total flux BS passing the sample by the flux quantum h
e .

In the case of the electron gas, the Fermi surface is spherical. The electron motion
in magnetic field is quasiclassically governed by the Lorentz force, dP

dt = e dr
dt × B, thus

with constant energy, ε = const. and constant pz = const. (in 3D case), which follows from
the Lorentz force formula, i.e., dpz

dt = 0 for B = (0, 0, B) and dε
dt = dε

dP ·
dP
dt = 0 (note that

P = p− eA).
Hence, for isotropic gaseous system Fermi surface, the quasiclassical trajectory in the

momentum space is a circle with the surface,

π(p2
x + p2

y) = π(2mε− p2
z), (A5)

as for ε = p2

2m . Quantization of the magnetic field flux (due to Equation (5) or Equation (7))
defines, on the other hand, the surface of this orbit in the kinematic momentum space as∮

PxdPy =

(
n +

1
2

)
heB. (A6)

Thus, from Equations (A5) and (A6), one immediately gets

ε =

(
n +

1
2

)
h̄

eB
m

+
p2

z
2m

= h̄ωB

(
n +

1
2

)
+

p2
z

2m
, (A7)

which is the Landau energy spectrum in the gas of fermions (in the 2D case, without the

free motion term in the z-direction, p2
z

2m ).
In the graphene monolayer with the Dirac-like dispersion, with ε = vF p, we get from

the above formula,

π(p2
x + p2

y) = π
ε2

v2
F

, (A8)

which with flux quantization (A6) imposed, gives the Landau energy spectrum,

ε =

√
n +

1
2

2h̄vF
lB
'
√

n
h̄vF
lB

. (A9)

As quasiclassical approximation holds for large n, thus
√

n + 1
2 '
√

n, and we see
that Equation (A9) agrees with modified LL energy formula in graphene monolayer (the
zero energy for n = 0 is beyond the quasiclassical approach) [7].

As is demonstrated in [34], the single-particle energy spectrum in bilayer graphene
again is parabolically close to Dirac points. This gives the linear dependence on n for
Landau level energies, similar as in a gas, ε = (n + 1

2 )h̄ωB. For large n, n + 1
2 '

√
n(n− 1),

and the latter is an exact form of the LL dispersion in bilayer graphene, if one takes into
account the degeneracy of oscillator states with n = 0 and n = 1 in this material [34].

Note that the Formula (A6) is quasiclassical, however, the value of the step, ∆SPx ,Py =
heB, is exact and interaction independent.

The above illustrates the universal character of the magnetic field flux quantization
and proves that Landau quantization is in fact its consequence, though the dispersion is
governed by a single-particle energy without magnetic field. The dispersion includes the
bare kinetic energy (the same in all 2D systems) and the corrections induced by the crystal
field as in graphene. However, the flux quantum independent of the single-particle energy
spectrum and of the electron interaction defines the cyclotron orbit size in an universal
manner as the ratio of the flux quantum and the magnetic field value, h

eB . The same holds
for a multiply-connected configuration space with a cyclotron braid group instead of the
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full braid group, i.e., with multi-loop cyclotron orbits and multi-loop braids as generators—
the elementary exchanges of neighboring particles. For (2k + 1)-loop cyclotron orbit, we
thus get its universal size in the LLL, (2k + 1) h

eB , also independent of the single-particle
energy spectrum and of electron interaction.

Appendix B. Definition of Factors xi in the Homotopy Invariant (9)—Link to
Next-Nearest Neighbors in the Wigner Lattice

The lowest energy classical 2D Wigner lattice at T = 0 K is the triangle hexagonal
lattice as shown in Figure A1

Figure A1. Triangle Wigner 2D lattice of electrons with indicated nearest neighbors and next-nearest
ones up to a 4th order.

The elementary Bravais cell in this lattice is shown in Figure A2a—it has the surface of
two triangles and one electron per cell. If one considers next-nearest neighbors of the first
order, then the similar hexagonal planar lattice has an elementary cell with the surface of six
minimal triangles—cf. Figure A2b. Assuming that N electrons are distributed on the surface
S (in the thermodynamic limit at constant planar concentration of electrons, N

S = const.
and S, N → ∞), then, for each electron, the surface area is A = S

N . Hence, in the case of
the Wigner lattice as in Figure A2a, A = S

N = ad, where ad is the size of the elementary

cell in this lattice (a is the sight of the triangle and d =
√

3
2 a is its height). If the nearest

neighbors are avoided, then the elementary cell of the rest of electrons attains the surface
3ad = 3A for the first order neighbors (Figure A2b). When the next-nearest neighbors of
the first order are also avoided, then the elementary cell attains the size 4ad = 4A for the
second order neighbors (Figure A2c). Similarly, the next elementary cell grows to 7ad = 7A
with two sublattices for third order neighbors (Figure A2d) and 9ad = 9A for fourth order
neighbors (Figure A2e). Hence, in the general commensurability condition,

S
N

=
h

x1eB
± h

x2eB
± · · · ± h

xqeB
, (A10)

(q is an odd integer—the number of loops in the multi-loop cyclotron orbit, ± stands for
congruent (+) or opposite (−) circulation of a loop with respect to preceding one) for xi,
one can take 1, 3, 4, 7, 9, . . . , as N

xi
indicates the portion of electrons creating the selected

next-nearest neighbor sublattice of the Wigner crystal. Another series for these factors
follows from the alternate square-type Wigner lattice with the same size of the elementary
cell as in the hexagonal lattice, as shown in Figure A3b, i.e., xi = 1, 2, 4, . . . . The square
lattice with the elementary Bravais cell bb also has the single electron per a cell and bb = ah
(Figure A3b). However, in contrast to the triangle lattice, the second order neighbors in the
square lattice take the N/2 fraction of all electrons as the corresponding elementary cell
for the sublattice of these neighbors having the surface area 2bb = 2ah = 2A (Figure A3b).
The third order neighbors in the square lattice give the factor xi = 4.
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a) b) c)

d) e)

Figure A2. Triangle Wigner 2D lattice created by nearest (a) and next-nearest neighbors (b–e)
up to 4-th order with a visualized elementary Bravais cells with a growing surface for selected
neighbor sublattices.

A = S/N = ad

d

A = ad

A’’ = 3ad = 3A

A = S/N = bb = ad

b

b

A’ = 2bb = 2A

a

i-th electron

(i+1)-th electron

i-th electron

(i+1)-th electron

a) b)

Figure A3. Wigner 2D square lattice of electrons (b) with indicated nearest neighbors and next-
nearest ones compared to triangle lattice (a). The geometricized shape of the cyclotron orbit in
hexagonal (a) and square 2D lattice (b) shown by contours deformed from the circular shape by
the electron repulsion. These orbits allow the exchange of closest electrons in the Wigner lattice
(semi-loops of cyclotron orbits build 2D braids for interacting electrons at magnetic field presence).

It must be emphasized that topological criteria are of existential character, i.e., they
indicate possibilities for trajectory organization or exclude some, without, however, detailed
definition of the dynamics. Thus, the factors xi in the commensurability condition (A10)
must express all possibilities for the multi-loop trajectory organization. In 2D, it is possible
to fill the surface completely using regular polygons only with regular triangles, squares, or
hexagons [16]. Thus, only the hexagonal (triangle) or square Wigner 2D lattices are possible.
The minimal energy is achieved at a triangle Wigner lattice; however, in the case when the
braids are larger than the separation of nearest electrons in triangle lattice, the first order
next-nearest neighbor lattice is more convenient in the square lattice than in the triangle
one. This gives the factor xi = 2 for the square lattice, whereas xi = 3 for triangle lattice (cf.
Figure A3a,b).

Appendix C. Explicit Demonstration of Distinct Homotopy Phases for Two Electrons

It is possible to directly illustrate various cyclotron commensurability patterns in the
simplest case of two electrons deposited on a positive planar jellium and exposed to a
perpendicular magnetic field.
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At the field B0 for which the degeneracy of corresponding LLs N0 = B0Se
h = 2, two

electrons completely fill the LLL, ν = N
N0

= 1 and the commensurabilty pattern is that

for IQHE, S
2 = h

eB0
, i.e., the cyclotron braid (half of the cyclotron orbit) perfectly fits the

electron separation, as shown in Figure A4 (left). The wave function for this simplest
homotopy phase at B0 thus attains the form,

Ψ1(z1, z2) = A(z1 − z2)e
−(|z1|2+|z2|2)/4l2

B0 , (A11)

whereA is the normalization constant, zj = xj + iyj is a complex position of the j-th particle

(here j = 1, 2) and lB =
√

h
2πeB is the magnetic length at field B here taken at B = B0. This

function is unequivocally determined in the LLL by the scalar unitary representation of
the full braid group (being the cyclotron subgroup for ν = 1). The simplest uniform
polynomial z1 − z2 transforms in agreement with this representation eiπ , when particles

exchange positions. The invariant factor e−(|z1|2+|z2|2)/4l2
B0 is independent of interaction.

Function (A11) is the Laughlin function for N = 2 and q = 1, i.e., the Slater function for
the completely filled LLL. Here, the Laughlin function of interacting electrons coincides
with the Slater function, being, on the other hand, the wave function of two noninteracting
particles in the LLL of a gas. This is an exceptional situation when two different systems,
with and without interaction, have the same ground state eigenfunction. It corresponds,
however, to different Hamiltonians (and different eigenenergies),

Hnint =
2

∑
j=1

(p̂j − eAj)
2

2m
, (A12)

with the vector potential Aj =
1
2 (−Byj, Bxj) in the symmetrical gauge for B = B0, and

Hint = Hnint +
e2

4πε0ε|r1 − r2|
+ Hjj + Hej, (A13)

where the jellium–jellium interaction,

Hjj =
ρ2

0
2

∫
S

d2r
∫

S
d2r′

e2

4πε0ε|r− r′| , (A14)

(with the charge density ρ0 = 1
2πl2

B0

) and the electron–jellium interaction,

Hej = −ρ0

2

∑
j=1

∫
S

d2r
e2

4πε0ε|r− rj|
, (A15)

ε0 and ε are the dielectric constant and the material permittivity, respectively. The function
(A11), if related to Hnint (without interaction), is not any correlated state (in the gas, no
correlations can be present, and no braid commensurability can be defined), whereas, if
related to Hint (as uniquely determined by the braid group scalar unitary representation for
ν = 1), it describes the strongly correlated state of the IQHE—the simplest homotopy phase.

We see that this homotopy correlation is not explicitly built in the form of the wave
function. The charge distribution and the averaged electron distance at ν = 1 shown in
Figure A5 (left and right) are the same for interacting and noninteracting systems because
the wave function has the same form in both systems in the case ν = 1. In the gas case,
the finite averaged separation of electrons (i.e., the mean separation of electron densities
acc. to the wave function (A11)) is caused by fermionic ’repulsion’ and can be called Pauli
virtual crystallization in a Fermi gas [42], although no other homotopic class exists in the
gaseous system. In the gas, any commensurability cannot hold because noninteracting
particles can be arbitrarily distributed.
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An example of other homotopy phases for two interacting electrons (impossible in
the gas) corresponds e.g., to the commensurability pattern S

2 = 3h
eB1/3

at ν = 1
3 , i.e., to

the homotopy class with three-loop cyclotron orbit and thus braids with one additional
loop for B1/3 = 3B0 (cf. Figure A4, (right)). The wave function for this state attains the
form (unambiguously defined by the scalar unitary representation of the cyclotron braid
subgroup, e3π),

Ψ1/3(z1, z2) = B(z1 − z2)
3e−(|z1|2+|z2|2)/4l2

B . (A16)

This is the Laughlin function with unequivocally defined Jastrow polynomial (z1 − z2)
3

and with a universal in the LLL homotopy invariant exponential envelope.

single-loop cyclotron

orbit is too short

B0

υ = 1

B1/3=3B0

υ = 1/3 SS

two distinct homotopy phases for 2 electrons for the same

planar density N/S upon the perpendicular magnetic field

            two indistinguishable repulsive particles exchanging

along the braid built of cyclotron semi-loops of each particle

S/2=h/(eB0) S/2>h/(eB1/3)

S/2=3h/(eB1/3)

single-loop

cyclotron orbit

tripple-loop

cyclotron orbit

Figure A4. Two electrons at T = 0 K are symmetrically positioned on the circular jellium at the radius
ca. 0.7r, where 2r is the diameter of the jellium (the simplest Wigner-type distribution). At magnetic
fields B0 (left) corresponding to ν = N

N0
= 1 and B1/3 = 3B0 (right) corresponding to ν = 1

3 ,
the commensurability conditions are fulfilled for single-loop and three-loop orbits, respectively.

0,10
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0,00
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2
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v = 1

v = 1/3

v = 1

v = 1/3

Figure A5. Single-particle density for the wave function,
∫

d2r2|Ψν(r1, r2)|2 for ν = 1 (brown) and
ν = 1

3 (blue)—pushing of charge density out of the center is visible for a homotopy class at ν = 1
3 (left

panel). The averaged separation of particles,
∫

d2r2
∫

d2r1Ψ∗ν(r1, r2)|r1 − r2|Ψν(r1, r2)), is larger for
the homotopy class for ν = 1

3 (the averaged distance is presented by the circle diameter) (right panel).

The energies for both defined above homotopy phases can be easily calculated as

∆E = 〈Ψν(z1, z2)|Ĥint − Ĥnint|Ψν(z1, z2)〉, (A17)

for ν = 1 or ν = 1/3. By the direct estimation, we obtain the energies, ∆E
N = −0.58

[
e2

4πε0εlB

]
for ν = 1, ∆E

N = −0.39
[

e2

4πε0εlB

]
for ν = 1

3 . The minus sign indicates stability, which displays
that the jellium–electron attraction energy overcomes the jellium–jellium repulsion and
electron–electron repulsion energies. One can notice that the energies for distinct homotopy
phases are different.

For both homotopy classes, for ν = 1 and ν = 1
3 , we can compare the charge

density distribution, ∫
d2r2|Ψν(r1, r2)|2, (A18)
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and the averaged separation of electrons,∫
d2r1

∫
d2r2Ψ∗ν(r1, r2)|r1 − r2|Ψν(r1, r2). (A19)

We see in Figure A5 that, for three-loop cyclotron orbit, the single-particle charge dis-
tribution is pushed out from the center of the jellium, resulting in a larger mean separation
of the electron distributions, which lowers the electron repulsion energy. This energy gain
overcomes the increase in the electron–jellium interaction and the homotopy phase is stable
with respect to the nearby quantum states, which cannot be correlated if ν is slightly shifted
out of the homotopy commensurability condition.

These simple examples of the homotopy phases in the case of N = 2 can be generalized
to systems with a large number of electrons (also in the thermodynamic limit, provided
that the planar density remains constant).
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