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Abstract: Mg-Zn-Sn-based alloys are widely used in the industrial field because of their low-cost,
high-strength and heat-resistant characteristics. However, their application in the biomedical field
has been rarely reported. In the present study, biodegradable Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr
alloys were fabricated. Their microstructure, surface characteristics, mechanical properties and
bio-corrosion properties were carried out using an optical microscope (OM), X-ray diffraction (XRD),
electron microscopy (SEM), mechanical testing, electrochemical and immersion test. The cell viability
and morphology were studied by cell counting kit-8 (CCK-8) assay, live/dead cell assay, confocal laser
scanning microscopy (CLSM) and SEM. The osteogenic activity was systematically investigated by
alkaline phosphatase (ALP) assay, Alizarin Red S (ARS) staining, immunofluorescence staining and
quantitative real time-polymerase chain reaction (qRT-PCR). The results showed that a small amount
of strontium (Sr) (0.2 wt.%) significantly enhanced the corrosion resistance of the Mg-1Zn-1Sn alloy by
grain refinement and decreasing the corrosion current density. Meanwhile, the mechanical properties
were also improved via the second phase strengthening. Both Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr
alloys showed excellent biocompatibility, significantly promoted cell proliferation, adhesion and
spreading. Particularly, significant increases in ALP activity, ARS staining, type I collagen (COL-I)
expression as well as the expressions of three osteogenesis-related genes (runt-related transcription
factor 2 (Runx2), osteopontin (OPN), and osteocalcin (Bglap)) were observed for the Mg-1Zn-1Sn-
0.2Sr group. In summary, this study demonstrated that Mg-Zn-Sn-based alloy has great application
potential in orthopedics and Sr is an ideal alloying element of Mg-Zn-Sn-based alloy, which optimizes
its corrosion resistance, mechanical properties and osteoinductive activity.

Keywords: Mg-Zn-Sn alloy; corrosion behavior; mechanical properties; biocompatibility; osteoin-
ductive activity

1. Introduction

Biodegradable implants represented by magnesium (Mg) alloys have attracted in-
creasing interest in the last few years. Compared with traditional metal materials, the
biggest advantage of Mg alloys is the ability to be completely degraded gradually after
exerting biological functions in the body, thereby avoiding subsequent surgical removal
procedures [1,2]. Consequently, lifelong problems caused by permanent implants such as
tissue dysfunction, long-term foreign body stimulation and local chronic inflammatory
reactions can be effectively alleviated or eliminated [3]. In addition, the density and elas-
tic modulus of Mg alloys are close to those of human cortical bone [4], which are more
suitable for orthopedic implant applications and can effectively eliminate/decrease the
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stress shielding effect and resulting osteoporosis induced by traditional metal materials [5].
Moreover, Mg implants have been proven to stimulate the formation of new bone [6].

However, the rapid degradation rate of Mg alloys in the physiological environment is
the main reason hindering its clinical application. Furthermore, during the degradation
of Mg alloys, it will result in increasing of local pH and accumulation of hydrogen (H2),
causing inflammation and destruction of surrounding tissues [7]. This also means that
the Mg alloy may lose sufficient mechanical support strength before the expected task is
completed. Therefore, the development of new biodegradable Mg alloy by adding new
alloy elements is a current research focus.

From a clinical viewpoint, an ideal Mg alloy orthopedic implant should meet the
following standards: First, the degradation rate should be less than or equal to 0.5 mm/y.
Second, the mechanical strength must be higher than 200 MPa and the elongation is
preferably greater than 10%. Simultaneously, the mechanical integrity should be maintained
for at least 90–180 days in vivo [6,8]. Third, the limit of acceptable H2 evolution rate for
humans was reported as 0.01 mL/cm2/day [6,9]. Moreover, biosafety and bioactivity,
etc. must also be considered. To date, Mg-based alloys that have been developed and
intensively studied include Mg-Zn [10], Mg-Ca [11], Mg-Zr [12], Mg-Sr [13] et al., and
ternary or multicomponent alloys developed on those bases. In 2013, magnesium-based
alloy compression screws received the CE mark and became the first Class III medical
device made of Mg alloy approved for clinical use. However, due to the presence of
rare-earth (RE) metal elements, their long-term biosafety remains controversial.

Mg-Zn-Sn-based alloys are widely used in the industrial field due to their low-cost,
high-strength and heat-resistant characteristics. However, there are few reports on applica-
tion of Mg-Zn-Sn-based alloys in the biomedical field. Tin (Sn) is an ultra-trace element that
does not exceed 1 mg per kilogram of body weight in the human body. The task of Sn as a
trace element in the body is not really known, but a deficiency of Sn may disrupt kidney
function. Studies have reported that Sn may be a good alloying element for biodegradable
magnesium alloys [14]. In addition, Sn is an element with high H2 evolution overpotential,
which can control H2 release of Mg alloys [15]. Strontium (Sr), as an essential trace element
for the human body, has been in good repute to endorse the proliferation of osetoblasts and
restrain the activity of osteoclasts [16]. Moreover, microalloying Sr in different Mg-based
systems can indeed improve the performance of Mg alloys [17], but in the Mg-Zn-Sn-based
alloy, no relevant literature has been reported.

In the present study, the application possibility and potential in the biomedical field
of Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys were systematically studied, focusing on
the surface characteristics, mechanical properties, corrosion performance and in vitro
biocompatibility and bioactivity.

2. Materials and Methods
2.1. Alloys Preparation

The ingots of Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys were prepared by casting
from melting Pure Mg (purity > 99.98), pure Zn (purity > 99.99), pure Sn (purity > 99.99)
and Mg-15 wt.% Sr master alloys in an electric resistance furnace under the protection of
an SF6 and CO2 gas mixture in a graphite crucible.

The actual compositions of the alloys are shown in Table 1. After homogenization
treatment at 500 ◦C for 6 h, the ingot casting was extruded at 280 ◦C with an extrusion
ratio of 28:1. Subsequently, the Mg–1Zn–1Sn and Mg–1Zn–1Sn-0.2Sr ingots were cut into
sheets, and commercial pure-Mg (p-Mg) was used as a reference. The sheets were cut into
ϕ15 mm × 1 mm wafers for follow-up experiments.
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Table 1. Actual composition of the Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys (wt.%).

Nominal Composition
Actual Composition

Zn Sn Sr Fe Si Ni Mg

Mg-1Zn-1Sn 1.04 1.13 0 <0.01 <0.01 <0.001 Balance
Mg-1Zn-1Sn-0.2Sr 1.02 1.12 0.21 <0.01 <0.01 <0.001 Balance

2.2. Microstructure Analysis and Mechanical Testing

The microstructure and surface morphology of the samples were examined by using
an OM (OLYMPUS, Fuji, Japan) and a SEM (Vega III LMH, TESCAN, Shanghai, China)
equipped with energy-dispersive X-ray spectroscopy (EDS). Moreover, the phase composi-
tions were detected by XRD (Rigaku, Tokyo, Japan) with CuKα radiation at a scan rate of
5◦/min. Compression tests were conducted in accordance with the procedures listed in
ASTM standard E9-09 [18] by using a universal testing machine (AOUDE, Beijing, China),
and the initial strain rate is 10−3/s. According to the specifications of American Society
for Testing Materials (ASTM) standard B557-15 [19], tensile specimens were tested at room
temperature, and the tensile speed is 2 mm/min. Three parallel samples were tested for
each group of materials.

2.3. In Vitro Corrosion Evaluation

Potentiodynamic polarization (PDP) curves were obtained using an electrochemical
workstation (CHI600C, CHINSTRUMENTS, Shanghai, China) in simulated body fluid
(SBF). Specific details are given elsewhere [20]. Briefly, The Mg-1Zn-1Sn and Mg-1Zn-1Sn-
0.2Sr alloys were embedded in epoxy resin as the working electrode (only 1 cm2 exposed).
Platinum foil was used as the counter electrode, and a saturated calomel electrode was
employed as reference. Afterward, a PDP curve was performed at a scanning speed of
1 mV·s−1 for all the measurements. Taking ASTM G102-89 [21] as the guide standard,
the Tafel method was used to calculate the values of corrosion current density (icorr) and
corrosion potential (Ecorr).

Immersion tests were carried out in SBF. The chemical compositions of SBF were
shown in Table 2. The ratio of SBF volume to the surface area of the material was
50 mL: 1 cm2. The H2 evolution and pH value were monitored during a period of 336 h.
The mass loss was also recorded after 3, 7, 15 and 35 day-immersion, respectively. A
mixed solution composed of chromic acid (180 g/L) and silver nitrate (10 g/L) was used to
eliminate the corrosion products on the surface of samples. The corrosion rate (CR) was
calculated by the following formula:

CR = (K ×W) ÷ (D × T × A)

where the coefficient K = 8.76 × 104, W is the mass loss (g), D is the density of the material
(g.cm−3), T is the exposure time (h) and A is the sample area exposed to the solution (cm2).

Table 2. The chemical compositions of SBF.

Components Concentration

NaCl 7.996 g/L
KCl 0.224 g/L

CaCl2 0.278 g/L
NaHCO3 0.350 g/L

MgCl·6H2O 0.305 g/L
K2HPO4·3H2O 0.228 g/L

Na2SO4 0.071 g/L
HCl (1 mol/L) 40 mL

(CH2OH)2CNH2 6.051 g/L
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2.4. In Vitro Cell Test
2.4.1. Cell Culture and Preparation of Extraction

The murine calvarial preosteoblasts (MC3T3-E1) were utilized to realize the evaluation
of in vitro experiments. P-Mg extracts and normal culture medium were used as a control
and reference, respectively. The extraction was prepared according to a reference [22]. In
short, samples were immersed in Dulbecco’s modified Eagle’s medium (DMEM, Hyclone)
containing 10% (v/v) fetal bovine serum (FBS, Gibco), 100 U/mL penicillin and 100 mg/mL
streptomycin for 72 h under a standard cell culture environment (95% humidity, 5% CO2
and 37 ◦C). The extraction ratio of medium volume to material weight was 5 mL/g.

2.4.2. Cytocompatibility and Cell Morphology

MC3T3-E1 cells were seeded in 96-well plates with a density of 1 × 104 cells per well
and incubated for 1 day to allow the cells to adhere completely, and then replace the culture
medium with the extracts. After incubating for 1, 2 and 3 days, 20 µL CCK-8 assay reagent
was added to each well and incubated for another 1 h in an incubator. The optical density
(OD) was measured by using a microplate reader (Thermo Scientific, Waltham, MA, USA)
at the wavelength of 450 nm.

The live/dead cell assay was performed according to the protocol from the manufac-
turer (BestBio, Shanghai, China). In brief, cells treated with extracts for 3 days were stained
with 200 µL (1:10,000) of calcein-AM solution for 30 min and 200 µL (1:5000) of PI solution
for 5 min. Images were collected by fluorescence microscopy (Zeiss, Jenoptik, Germany);
the viable cells were stained green, while dead cells were stained red.

The morphology of cells co-cultured with extracts and materials were observed by
CLSM. Briefly, cells were fixed and permeabilized with 4% paraformaldehyde (PFA)
and 0.1% Triton X-100 successively, and then dyed the nucleus with 4′,6-diamidino-2-
phenylindole dilactate (DAPI). F-actins were stained with Actin-Tracker Green (Beyotime
Biotechnology, Shanghai, China) and rhodamine-phalloidin (Sigma-Aldrich Co., Shanghai,
China). Fluorescence images were captured under the same exposure condition.

SEM was used to observe the cell adhesion and spreading morphology on the surface
of the samples. In brief, samples were immersed in 2.5% glutaraldehyde for 15 min.
Next, samples were dehydrated in graded ethanol (10, 30, 50, 70, 90, and 100% ethanol
sequentially; 10 min each) and then immersed in graded tertiary butanol (50, 70, 90, 95, 100
and 100% tertiary butanol sequentially, 5 min each). Finally, samples were air-dried and
sprayed with gold. SEM was used to observe the morphology of cells.

2.4.3. In Vitro Osteogenic Differentiation

The alkaline phosphatase (ALP) assay was used to analyze the intracellular ALP
activity. Briefly, cells seeded in 12-well plates were incubated with extracts (containing
100 nM dexamethasone, 10 mM β-glycerophosphate, 50 mM ascorbate and glutamine.)
for 14 days and the extracts were replaced every other day. The cellular ALP expression
was detected by BCIP/NBT ALP Color Development Kit (Beyotime, Shanghai, China) and
corresponding quantitative analysis was measured by the Alkaline Phosphatase Assay Kit
(Beyotime, Shanghai, China) according to manufacturer’s instructions.

Calcium nodules, an important sign of extracellular matrix mineralization, was qual-
itatively tested by Alizarin Red S (ARS) (Sigma-Aldrich Co., Shanghai, China) staining.
In brief, after 14 days of osteogenesis induction, samples were collected and fixed with
4% PFA for 30 min and then stained with 1% AR solution for 45 min. Then, the calcium
nodules were observed under the microscope. In order to semi-quantitatively analyze the
mineralization of extracellular matrix, cetylpyridinium chloride (10%, Sigma-Aldrich Co.,
Shanghai, China) solution was used to dissolve the mineralized nodules, and then the
absorbance value of the dissolving solution was detected at 620 nm by using a microplate
reader (Thermo Scientific, Waltham, MA, USA).

The expression of COL-I protein after 14 days osteogenic induction was determined
by immunofluorescence staining. Cells were washed gently with PBS three times and
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then fixed in 4% PFA for 30 min. Then, Triton X-100 (0.1 v/v%) and bovine serum albumin
(10%) were used to permeabilize and block cells, respectively. Next, incubated the cells
overnight with anti-COL-I (Abcam) primary antibody. Afterward, cells were incubated
with fluorescent secondary antibody for 1 h. Finally, cells were stained with DAPI for 5 min
and observed by CLSM.

The expression of osteogenic genes such as Runx2, OPN, and Bglap were deter-
mined by qRT-PCR. Briefly, MC3T3-E1 cells were harvested for RNA extraction using
Trizol (Sigma-Aldrich Co., Shanghai, China) method. Nanodrop 2000 (Thermo Scientific,
Waltham, MA, USA) was used to detect the purity and concentration of RNA. The First
Strand cDNA Kit (Takara, Dalian, China) was employed to reverse transcribe the total
mRNA into cDNA. Next, 1 µL of synthesized cDNA was taken from each group and added
into a 10 µL reaction system containing SYBR Green Mastermix and primers (Table 3).
The expression of Runx2, CON and Bglap was quantified by the ABI 7900HT real-time
PCR system (Applied Biosystems, Foster City, California, USA), β-actin was employed
as a housekeeping gene. The expression of relative genes was calculated by using the
2−44CT formula.

Table 3. Primer sequences used for qRT-PCR.

Gene Primers (F = Forward; R = Reverse)

Runx2
F: 5′-ATCCAGCCACCTTCACTTACAAA-3′

R: 5′-GGGACCATTGGGAACTGATAGG-3′

OPN
F: 5′-CCAAGCGTGGAAACACACAGCC-3′

R: 5′-GGCTTTGGAACTCGCCTGACTG-3′

Bglap F: 5′-GAGCTGCCCTGCACTGGGTG-3′

R: 5′-TGGCCCCAGACCTCTTCCCG-3′

β-actin
F: 5′-ATCGTGGGCCGCCCTAGGCA-3′

R: 5′-TGGCCTTAGGGTTCAGAGGGG-3′

2.5. Statistical Analysis

Statistical analysis was performed using a Student’s t-test for two groups comparison
and one-way ANOVA followed by post-hoc tests for multiple-group comparisons via SPSS
18.0 software. Results that were statistically significant were determined by p-values < 0.05.

3. Results and Discussion
3.1. Microstructures and Electrochemical Evaluations

Figure 1A shows the OM, SEM images and corresponding EDS diagram of the Mg-
1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys. From the OM images, the grain size was slightly
reduced from 26 ± 3 µm to 20 ± 2 µm with the incorporation of Sr, which is consistent
with a previous study indicating that Sr has the effect of grain refinement [23–25]. With
the addition of Sr, the second phase (bright spot) in the alloy matrix increases, the volume
fraction of the second phase increased from 0.5% (Mg-1Zn-1Sn) to 1.1% (Mg-1Zn-1Sn-
0.2Sr). To determine the composition of the bright spot, EDS was used to analyze the two
marked points (A and B) in the alloys. The results (Figure 1C) showed that the elemental
composition of point A included Mg, Zn and Sn, while those of point B included Mg, Zn,
Sn and Sr, which was the same as that of the alloy matrix.
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In order to further analyze the phase composition of the alloy microstructure, the
XRD patterns of the Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys are shown in Figure 1B.
The microstructure of both alloys is mainly composed of α-Mg; although the second phase
can be clearly observed in the SEM images, it is difficult to detect by XRD due to the
low content and high solid solubility of Zn and Sn in Mg. Moreover, the content of Sr
is as low as 0.2 wt.%, which may even exceed the detection accuracy of XRD. Figure 2A
shows the representative dynamic polarization (PDP) curves of p-Mg, Mg-1Zn-1Sn and
Mg-1Zn-1Sn-0.2Sr samples, and the values of Ecorr and Icorr are also obtained (Figure 2B).
Significant differences in Icorr values were detected between the mean value for Mg-1Zn-1Sn
(7.36 ± 0.86 µA cm−2) and Mg-1Zn-1Sn-0.2Sr (6.55 ± 0.41 µA cm−2), both of which were
all significantly lower than p-Mg (14.05± 1.5). Similarly, the Ecorr of p-Mg was significantly
greater than Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr. Electrochemical test results confirmed
that the corrosion resistance of Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr was significantly better
than p-Mg. Moreover, the addition of Sr can further reduce the Icorr of Mg-1Zn-1Sn alloy to
enhance corrosion resistance.
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p < 0.05.

3.2. Mechanical Properties

The mechanical properties of Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys are shown in
Figure 3. The compressive yield strength, ultimate compressive strength, and compressive
strain of p-Mg were 64 ± 6 MPa, 261 ± 18 MPa and 26.4 ± 1.5%, those of Mg-1Zn-1Sn alloy
were 88± 3 MPa, 404± 14 MPa and 20.5± 1.1%, and those of Mg-1Zn-1Sn-0.2Sr alloy were
93± 5 MPa, 410± 12 MPa and 19.9± 0.8%, respectively. The tensile yield strength, ultimate
tensile strength, and tensile strain of p-Mg were 121± 3 MPa, 178 ± 10 MPa and 15.4 ± 1%,
those of Mg-1Zn-1Sn alloy were 151 ± 2 MPa, 229 ± 1 MPa and 9.0 ± 0.9%, and those
of Mg-1Zn-1Sn-0.2Sr alloy were 168 ± 8 MPa, 245 ± 8 MPa and 9.0 ± 0.4%, respectively.
The mechanical strength of Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr were significantly stronger
than that of p-Mg. It also showed that the addition of Sr further improved the mechanical
properties of Mg-1Zn-1Sn alloy. We speculate that the reasons for the improved mechanical
properties may be due to the second phase strengthening [26,27] or slight texture variations,
and the specific mechanism still needs further study.
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3.3. Immersion Tests

The results of immersion tests about general observation, H2 evolution, pH change,
mass loss and corrosion rate calculated by mass loss are shown in Figure 4. Obviously, the
degradation products were deposited on the surface of all samples as the extension of the
immersion time. Specifically, corrosion products deposited on the surface of p-Mg samples
were more and uneven, while those of that on the Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr
samples are less and evenly distributed. After removing the corrosion products, there are
obvious corrosion holes on p-Mg and Mg-1Zn-1Sn samples, while the Mg-1Zn-1Sn-0.2Sr
sample tends to be uniformly corroded without obvious corrosion pits.

Mg degrades in physiological solutions according to the following reaction.

Mg(s) + 2H2O(aq) →Mg(OH)2(s)↓ + H2(g)↑

Mg(OH)2(s) + 2Cl−(aq) →MgCl2(s) + 2OH−

During the first 24 h, the volume of H2 in Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr samples
increased rapidly, and then leveled off. It is obvious that the H2 release of Mg-1Zn-1Sn was
much less than that of p-Mg, and when 0.2 wt.% Sr was added to the alloy, the amount of H2
evolution was further reduced. The total H2 released from Mg-1Zn-1Sn and Mg-1Zn-1Sn-
0.2Sr samples over 336 h were 0.42± 0.02 mL·cm−2 and 0.13 ± 0.01 mL·cm−2, respectively,
both of which were significantly lower than that of p-Mg samples (1.45 ± 0.41 mL·cm−2).
We infer that the main reasons contain the following aspects. First, the Sn addition will
decrease the H2 evolution of Mg alloys substantially for its high H2 evolution overpoten-
tial [16,28,29], which can effectively capture the H atom than the matrix and inhibit the



Materials 2021, 14, 1606 9 of 18

H2 evolution rate [30]. Secondly, Sr can further moderate the corrosion rate of Mg alloys
by refining the grains and decreasing the corrosion current density, thereby inhibiting H2
evolution [17,31].
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Figure 4. (A) Macroscopic images of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr at each prescribed
time point during 35 days of immersion degradation in SBF. All wafers had a starting dimension of
15 mm in diameter and 1 mm in thickness. The red arrow indicates the typical pitting characteristics
of p-Mg. (B) Mass loss, (C) corrosion rate calculated by mass loss, (D) pH value and (E) H2 release of
p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr at various immersion times in SBF. Scale bar = 5.

The pH values of Mg-1Zn-1Sn group are comparable to that of Mg-1Zn-1Sn-0.2Sr
group. In the first 24 h, the pH value of Mg-1Zn-1Sn group increased from 7.4 to 8.31, those
of Mg-1Zn-1Sn-0.2Sr group increased from 7.4 to 8.25, and then maintained a relatively
gentle upward trend throughout the inspection process. However, the pH value of Mg
group increased rapidly from 7.4 to 8.9, which indicated that Mg-1Zn-1Sn and Mg-1Zn-
1Sn-0.2Sr have better corrosion resistance than p-Mg.
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Next, the corrosion rate based on mass loss during the immersion process was cal-
culated, the mass loss of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr was 23.31 ± 3.91 mg,
18.78± 2.75 mg and 13.85± 1.93 mg after 35 days of immersion, and the corrosion rate was
0.44 ± 0.09, 0.31 ± 0.05 and 0.20 ± 0.03 mm/y, respectively. The average corrosion rate cal-
culated from H2 evolution, mass loss and Icorr of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr
alloys in SBF solution was shown in Table 4.

Table 4. The average corrosion rate calculated from H2 evolution, mass loss and Icorr of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-
1Sn-0.2Sr alloys in SBF solution.

Materials Corrosion Rate (mm/y)
Calculated by H2

Corrosion Rate (mm/y)
Calculated by Mass Loss

Corrosion Rate (mm/y)
Calculated by Icorr

Mg 0.72 ± 0.28 0.44 ± 0.09 0.61 ± 0.16

Mg-1Zn-1Sn 0.24 ± 0.09 0.31 ± 0.05 0.29 ± 0.08

Mg-1Zn-1Sn-0.2Sr 0.18 ± 0.02 0.20 ± 0.03 0.23 ± 0.05

Figure 5 shows the surface topographies, elemental compositions and morphologies
of a cross-section of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr after immersion in SBF for
7 days. The corrosion products on the p-Mg samples had an uneven thickness and were in
the form of crystal clusters, while those of that on the Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr
samples were uniform and dense with deposited white clusters/particles. The EDS results
demonstrate that the corrosion products mainly compose of oxygen (O), magnesium (Mg),
phosphorous (P) and calcium (Ca) on Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr samples, while
the corrosion products on p-Mg are mainly carbon (C), oxygen (O) and magnesium (Mg),
indicating that Ca and P are more likely to be deposited on the surface of Mg-1Zn-1Sn and
Mg-1Zn-1Sn-0.2Sr alloys, which are more conducive to the osteogenic differentiation of
cells [32]. The formation of a large number of corrosion products was observed from the
cross-sectional image of the p-Mg sample, indicating that the surface corrosion was serious,
while the Mg-1Zn-1Sn sample showed fewer corrosion products, and the cross-section was
clear and uniform. Remarkably, the cross-section of Mg-1Zn-1Sn-0.2Sr sample had the
shallowest corrosion beneath the surface; no obvious corrosion products were observed.
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Figure 5. (A) Surface topographies and EDS results of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys after 7 days of
immersion in SBF; scale bar = 50 µm. (B) The morphologies of the cross-section of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr
alloys after 7 days of immersion in SBF; scale bar = 50 µm. The black arrow indicates corrosion products. (C) SEM-EDS
composite image of the surface of Mg-1Zn-1Sn-0.2Sr sample immersed in SBF at 37 ◦C for 7 days, scale bar = 100 µm.

3.4. Cell Viability, Cytocompatibility and Cell Morphology

The viability of different extracts towards MC3T3-E1 is shown in Figure 6. The
cell viability of Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr reached the highest on the second
day, which were 108 ± 3%, 125 ± 8% and 139 ± 6%, respectively, of the control group.
This suggested that Mg-Zn-Sn-based alloys have excellent cell compatibility and can
significantly promote cell proliferation.
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Figure 6. Cell viability of MC3T3-E1 cells cocultured with extracts for 1, 2 and 3 days. Values are
mean ± SD, n = 3, * p < 0.05.

Figure 7A shows the live/dead staining images of MCET3-E1 co-cultured with each
extract for 3 days. Live cells with green fluorescence almost filled the entire field of view,
while dead cells with red fluorescence also existed. The number of dead cells in the p-Mg
group was obviously more than in other groups. However, no significant difference was
detected among the control, Mg-1Zn-1Sn, and Mg-1Zn-1Sn-0.2Sr groups. These results
also demonstrated the excellent cytocompatibility of the Mg-1Zn-1Sn and Mg-1Zn-1Sn-
0.2Sr alloys.

Fluorescence images of MC3T3-E1 cultured in different extracts for 3 days are summa-
rized in Figure 7B. Cells showed satisfactory adhesion state in multiple directions as well
as intercellular connections and visibly stained cytoskeleton filaments in Mg-1Zn-1Sn and
Mg-1Zn-1Sn-0.2Sr groups. Obviously, the F-actin area of cells adhered to the p-Mg samples
was significantly smaller compared with the control, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr
groups, which may be attributed to the rapid degradation of p-Mg in the early stage of
immersion, resulting in drastic changes in the metal ion concentration, pH value and
osmotic pressure, etc. [33].

Fluorescence and SEM images from a direct culture on the surfaces of the p-Mg, Mg-
1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr samples for one day are shown in Figure 7C,D. Attached
cells were observed on all samples. The number of MC3T3-E1 on the surface of p-Mg
was less and cannot spread well, which perform round or long fusiform morphologies.
In contrast, cells on the surface of Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr samples increased
significantly and expanded well, which perform spindle or polygonal morphologies and
have more pseudopods.
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Figure 7. (A) Live/dead staining of MC3T3-E1 cells coculture with p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloy extracts
and DMEM control for 3 days; scale bar = 200 µm. (B) Actin-nucleus co-staining of MC3T3-E1 morphologies coculture with
p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloy extracts and DMEM control for 3 days. Scale bar = 100 µm. Insets were
taken at 200 original magnification with scale bar = 20 µm. (C) Fluorescence images of MC3T3-E1 adhered to the surface
of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys after coculture for 3 days. Blue indicates nuclei, and red indicates
cytoskeleton. White triangle indicates corrosion pit on the sample surface. The scale bar = 100 µm. Insets were taken at
200× original magnification with scale bar = 20 µm. (D) Morphologies of MC3T3-E1 cells adhered to the surface of p-Mg,
Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys after coculture for 1 day. Scale bar = 20 µm.

In addition, corrosion holes were found on the surface of p-Mg and Mg-1Zn-1Sn
samples—yet were not found on Mg-1Zn-1Sn-0.2Sr sample—indicating that the corrosion
of the Mg-1Zn-1Sn-0.2Sr sample was more uniform and slower. Ion concentration in the
extracts is also determined by inductively coupled plasma optical emission spectrometry
(ICP-OES) (Figure 8). The Mg ions in the Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr groups were
lower than p-Mg group, implying their better corrosion resistance in vitro. Moreover, the
solubilized Mg, Zn, Sn and Sr ions in the media were all within the average daily intake
range of the human body [34,35], indicating their excellent biosafety.
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Figure 8. Mg, Zn, Sn and Sr ion concentrations in culture medium incubated with the samples during
a 72 h period. n = 3 for all groups and time points. Values are mean ± SD. * p < 0.05, ** p < 0.01,
*** p < 0.001.

Cell adhesion to the surface of the material is the most important step and is crucial
for subsequent cell proliferation, long-term functions and organization of tissues [36]. In
the present study, the adhesion of cells may be affected by many factors, such as ion con-
centration, pH value, material surface morphology and H2 evolution, etc. Romani A. et al.
reported that the active transport of Mg2+ ions across the cell membrane was strictly con-
trolled to keep the intracellular concentration within a normal range, regardless of the
extracellular concentration [37]. In addition, the bicarbonate buffer system in the DMEM
medium can effectively reduce the rapid increase in pH caused by the degradation of the
material [20]. This indicates that the Mg2+ concentration and pH value in the medium
are unlikely to be the main factors affecting cell adhesion. Therefore, we believe that
changes in surface morphology and H2 evolution caused by substrate degradation may
play important roles in regulating cell adhesion.

As shown in Figures 4 and 5, the faster the material corroded, the more severe the
surface morphology changed, the more the H2 produced. The CLSM results (Figure 7C)
indicated that cells on the surface of Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr samples showed
more adherence and better adhesion morphology (significantly larger F-actin area and
more pseudopods), which was consistent with the results observed by SEM (Figure 7D).
The above-mentioned results indicated that Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys
were more suitable for cell adhesion and spreading. We think that the reasons may be as
follows: As an element with high H2 evolution overpotential, Sn can effectively inhibit the
H2 evolution of Mg alloys [28], thereby minimizing the adverse effect of H2 release on cell
adhesion. Moreover, the incorporation of Sr further improves the corrosion resistance and
enhances cell viability and proliferation.

3.5. In Vitro Osteogenesis Ability

Figure 9A,B represents the images of ALP activity and ARS staining and corresponding
quantitative analysis results. The ALP activity in p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-
0.2Sr groups was significantly enhanced. Quantitative analysis also showed that the ALP
activities of p-Mg, Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr groups were 1.8, 2.0 and 2.7 times
that of the control group, respectively. Similarly, the ARS staining area of p-Mg, Mg-
1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr groups were significantly improved, and the absorbance
of the extracellular matrix mineralization was 0.42 ± 0.06, 0.45 ± 0.03 and 0.60 ± 0.03,
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respectively, which were all significantly higher than that of the control group (0.25 ± 0.01).
These results indicated that the Mg-1Zn-1Sn-0.2Sr group has the strongest osteoinductive
activity. Figure 9C shows the expression of COL-I protein in cells after being cultured in
various extracts for 14 days. Obviously, the Mg-1Zn-1Sn-0.2Sr group had the strongest
fluorescence intensity among all groups, the order of fluorescence intensity was Mg-1Zn-
1Sn-0.2Sr > Mg-1Zn-1Sn > p-Mg > Control. Our experimental results on COL-I expression
were consistent with previous studies, which demonstrated that strontium has the ability
to enhance the synthesis of COL-I [38,39].
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Figure 9. (A) Images of ALP activity and matrix mineralization, and (B) corresponding quantitative analysis. (C) Im-
munofluorescent staining of the expression of COL-I protein after osteogenic induction for 14 days. Osteogenesis-related
genes Runx2 (D), OPN (E) and Bglap (F) expression in MC3T3-E1 cells after osteogenic induction for 7 and 14 days. Values
are mean ± SD. * p < 0.05.
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We further explored the effect of various extracts on osteogenic differentiation of
MC3T3-E1 cells on the molecular level. Runx2 is identified as a key transcription factor
at the early stage of bone development [40]. OPN, a negatively charged non-collagenous
bone matrix glycoprotein, is closely related to the formation of the bone matrix. Bglap is
a vitamin K-dependent calcium-binding protein synthesized and secreted by osteoblasts,
which is associated with the maturation of osteoblasts and matrix mineralization [41]. As
shown in Figure 9D, the expression of these three genes in p-Mg, Mg-1Zn-1Sn and Mg-
1Zn-1Sn-0.2Sr groups was significantly higher than the control group. In accordance with
the previous results, the expression of the aforementioned genes related to osteogenesis
was much stronger in the Mg-1Zn-1Sn-0.2Sr group than the other groups, both at day
7 and day 14. Sr has received widespread attention because of its not only stimulating
osteoblast differentiation but also inhibiting osteoclast differentiation [42]. Specifically,
Sr has the function of promoting the proliferation of osteoblasts by regulating calcium-
sensing receptors and phosphorylation of extracellular regulated protein kinases1/2, as
well as inhibiting bone resorption by reducing receptor activator of NF-κB ligand (RANKL)
or enhancing the expression of osteoprotegerin [43]. In addition, Sr can also positively
affect the interaction between osteocytes and osteoblasts by regulating the paracrine signal
transduction [44].

Recently, Geoffroy et al. [45] have confirmed that Sr is related to the regulation of
selective osteoinductive genes/their induction products. In this study, though the con-
centration of Sr is lower than 1.75 µg/mL (the lower limit strontium ranelate stimulates
the proliferation and differentiation of osteoblasts) [46,47], the improvement of trace Sr
in osteogenic activity of Mg-1Zn-1Sn-based alloy cannot be ignored. Park et al. [48] also
reported that Sr ion concentrations as low as 103–135 ng/mL can still enhance osteogenic
differentiation. We infer that the co-release of various metal ions such as Mg, Zn, Sn and Sr
during the material degradation may have a synergistic effect, which greatly decreases the
limit value, but the specific mechanism needs further study.

4. Conclusions

In this work, the possibility of using Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys as
biomedical materials was explored for the first time; we systematically investigated their
microstructure, surface characteristics, mechanical properties, bio-corrosion behaviors,
biocompatibility and biological activity. The major conclusions are as follows:

(1) Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys have excellent corrosion resistance
(0.31 ± 0.05 and 0.20± 0.03 mm/y), low H2 evolution (0.42± 0.02 and 0.13 ± 0.01 mL·cm−2)
and suitable mechanical strength (229 ± 1 and 245 ± 8 MPa) as well as better biocompat-
ibility compared with p-Mg, showing their significant application potential for using as
orthopedic implants.

(2) Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys have osteoinductive activity comparable
to or even significantly better than p-Mg, which may benefit from the contribution of Sr.

(3) By incorporating 0.2 wt.% of Sr into the Mg-1Zn-1Sn-based alloy, the corrosion re-
sistance, mechanical properties, biocompatibility and biological activity of the material are
all enhanced, demonstrating that Sr is an ideal alloy element for Mg-1Zn-1Sn-based alloys.
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