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Abstract: Curved profiles/sections have been widely used for manufacturing lightweight structures
with high stiffness and strength due to aerodynamics, structural properties, and design reasons.
Structural components fabricated using curved aluminum profiles satisfy the increasing demands
for products used in many high-technology industries such as aerospace, shipbuilding, high-speed
rail train, and automobile, which possess the characteristics of lightweight, high strength/stiffness
relative to weight, superior aerodynamics performance, and aesthetics. In this paper, the advances
and trends in forming techniques of curved extrusion profiles of metal alloys have been reviewed.
The curved profile forming techniques are classified into three major categories: conventional cold
bending technique, stress/moment superposed cold bending technique, and extrusion-bending
integrated forming technique. Processes for innovative development in the field of forming curved
profiles are identified; the extrusion-bending integrated technique which can directly form the
billets into curved profiles by one single extrusion operation possesses the full potential for further
innovation. Due to the nature of the research to date, much of the work referred to relates to hollow
circular and rectangular tube cross-sections.

Keywords: profiles/sections; lightweight; curvature; bending defects; extrusion; differential mate-
rial flow

1. Introduction

Due to the world-wide demand for sustainable development, production of space and
land vehicles with less fuel/energy consumption and CO2 emissions is a key aspect that
needs to be solved in the Twenty-First century. Research has shown that, in general, for
a vehicle weight decrease of 10%, fuel efficiency can be improved by 6–8% when vehicle
performance characteristics are maintained [1]. Therefore, lightweight design strategies are
effective ways to contribute to environmentally friendly manufacturing of products with
low energy consumption, and the need to develop and manufacture lightweight structural
components is apparent.

Lightweight design refers to “the science and the art of making things—parts, prod-
ucts, structures—as light as possible, within constraints” [2]. The application of extrusion
profiles/sections for stiff and lightweight design has been widespread. Due to their high
strength/stiffness relative to weight, profiles have been used widely for structural ap-
plications in designs of all types of vehicles. Profiles used in structures of aircraft, ship,
high-speed rail train, and automobile contribute to decreasing the weight of structural
components and hence reducing fuel consumption and CO2 emissions. For example,
lightweight extrusion profiles of aluminum and magnesium alloys with wall thicknesses
from 0.25 mm produced by the company MIFA have been used to meet all the requirements
set by the aerospace industry [3]. To further achieve superior aerodynamic efficiency,
aesthetics and function requirements of structural components, curved profiles with com-
plex curved shapes are used, in contrast to straight profiles commonly used in static
structures [4–18]. Figure 1 shows typical applications of curved profiles in structural
components of industries [6–13].
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commonly used in static structures [4–18]. Figure 1 shows typical applications of curved 
profiles in structural components of industries [6–13]. 

Curved profiles can be used to meet a large number of structural requirements since 
they offer a greater freedom of design geometry [4], achievable without resort to the 
subsequent production steps like cutting, welding/joining [19–21], and assembly, 
necessary with straight profiles. As a result, greatly improved aerodynamic properties for 
vehicle bodies, increased manufacturing/production efficiency, and decreased production 
costs of the entire production chain can be achieved [5,22,23]. In addition, to improve 
aesthetics and expand the range of structural design concepts, curved profiles are 
extensively used as constructional elements for civil engineering and architectural 
structures, such as bridges, office furniture, doors, windows, building roof trusses, and 
building facades/fronts, including sunshades and light shelves [10,14–17]. Considering 
the increasing requirement for lightweight structures with decreased aerodynamic 
resistance and improved aesthetics in the industries such as aerospace, land vehicles, civil 
engineering, and architecture industry, ready availability of accurately curved profiles 
with well-defined properties is becoming a vital necessity [24–27]. 

  
(a) Aero-engine [6] (b) Fuselage panel of aircraft [7,8] 

 

 
(c) Seat frame [9] (d) Passenger car [10]  

  
(e) High-speed rail train frame [11] (f) BMW C1 motorcycle [12] and Tractor cabin [13] 

Figure 1. Typical applications of curved profiles in industries. 

In this paper, the advances and trends in forming methods of curved metal profiles 
are reviewed. The potential defects occurred in manufacturing curved profiles using 
traditional cold bending methods and the underlying reasons are presented first. To 
mitigate these defects, the major advances in refining these processes are briefly reviewed, 
followed by the recently developed stress/moment superposed cold bending technique. 
Then, the extrusion-bending integrated forming technique, which has been developed as 
an important way to fundamentally avoid bending defects and increase productivity, is 

Figure 1. Typical applications of curved profiles in industries.

Curved profiles can be used to meet a large number of structural requirements since
they offer a greater freedom of design geometry [4], achievable without resort to the sub-
sequent production steps like cutting, welding/joining [19–21], and assembly, necessary
with straight profiles. As a result, greatly improved aerodynamic properties for vehicle
bodies, increased manufacturing/production efficiency, and decreased production costs of
the entire production chain can be achieved [5,22,23]. In addition, to improve aesthetics
and expand the range of structural design concepts, curved profiles are extensively used as
constructional elements for civil engineering and architectural structures, such as bridges,
office furniture, doors, windows, building roof trusses, and building facades/fronts, in-
cluding sunshades and light shelves [10,14–17]. Considering the increasing requirement for
lightweight structures with decreased aerodynamic resistance and improved aesthetics in
the industries such as aerospace, land vehicles, civil engineering, and architecture industry,
ready availability of accurately curved profiles with well-defined properties is becoming a
vital necessity [24–27].

In this paper, the advances and trends in forming methods of curved metal profiles
are reviewed. The potential defects occurred in manufacturing curved profiles using
traditional cold bending methods and the underlying reasons are presented first. To
mitigate these defects, the major advances in refining these processes are briefly reviewed,
followed by the recently developed stress/moment superposed cold bending technique.
Then, the extrusion-bending integrated forming technique, which has been developed as
an important way to fundamentally avoid bending defects and increase productivity, is
reviewed. Finally, the advantages and disadvantages of curved profile forming methods
are discussed and summarized and outlook is given on future development trends.
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2. Potential Defects Arising in Manufacturing Curved Profiles

Curved profiles are mostly manufactured by a subsequent bending process of the
semi-finished straight profiles, which are favorably obtained from billets by conventional
extrusion. Similar to the bending of sheet metal, springback occurs in the profile bending
process due to the existence of residual stress, which results in geometrical deviation
and reduced curvature accuracy. Residual stresses are defined as those stresses that
remain in the material after the original cause of the stresses has been removed, which
are induced by a variety of mechanisms including inelastic (plastic) deformations in cold
forming processes or non-uniform/high temperature gradients/thermal mismatch in hot
forming/fabrication processes [28–30]. In addition, particular defects occur during the
profile bending process, such as cross-sectional deformation, twisting of asymmetric cross-
sections, or symmetric profiles along non-principle axes, instability of the profile walls
(wrinkling). Additionally, the large strains induced, particularly at the extrados, can
degrade metallurgical structure [5,24,25,27]. The mechanical defects are shown in Figure 2.
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correct design can be applied to a cross-section in order to reduce cross-sectional 
deformation and twisting [7], as shown in Figure 3. The most important aspect of these 
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3. Conventional Process Chain for Manufacturing Curved Profiles and Its 
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A conventional process chain for manufacturing curved profiles is shown in Figure 
4 [27]. In the first process, billets are extruded into straight profiles with certain cross-
sections. Then, stretching is normally needed to make sure the semi-finished profile is 

Figure 2. Specific problems for forming curved profiles [5,24,25,27].

The cross-sectional deformation of profiles is usually the main problem with profile
bending. It becomes increasingly critical with an increase of complexity of the cross-section
and tighter geometric specification. Twisting of the cross-section occurs during the bending
of asymmetrical profiles where the gravity center (GC) and the shearing center (SC) of
the cross-section are not coincident [27]. Modifications according to a production-correct
design can be applied to a cross-section in order to reduce cross-sectional deformation and
twisting [7], as shown in Figure 3. The most important aspect of these modifications is to
increase the profile stiffness and reduce the asymmetry (reduce the distance between GC
and SC), which can be realized by addition of webs as well as increase of thickness of walls.
Both these actions increase the cross-sectional area and add weight to a section.
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3. Conventional Process Chain for Manufacturing Curved Profiles and Its
Development

A conventional process chain for manufacturing curved profiles is shown in Figure 4 [27].
In the first process, billets are extruded into straight profiles with certain cross-sections.
Then, stretching is normally needed to make sure the semi-finished profile is straight. Lastly,
the semi-finished straight profiles are bent into curved shapes using an external bending
device. Various techniques for bending straight profiles have already been employed
since the beginning of the twentieth century, which are mostly done by conventional cold
bending methods [27]. The most commonly used for profiles are rotary draw bending,
stretch bending, press bending, and roll bending, as shown in Figure 4b–e.
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3.1. Rotary Draw Bending of Profiles

Rotary draw bending is a common method used for profile bending. Figure 4b shows
the principle of this process. A clamping die holds the profile onto the rotating bending
die, while a pressure die is used to support the profile behind the curve and to guide it
into the bending area. The pressure die is opposed by a wiper die to provide full lateral
constraint of the work-piece. The profile rotates with the die, and it is continuously bent
as the die turns. Because of the strict constraint on the profile, rotary draw bending is
especially suitable for bending profiles with tight radii. However, due to the high forces
needed, undesirable phenomena easily occur in hollow sections, as shown in Figure 5 [31].
Figure 5a shows the flattening distortion that arises on the cross-section when a mandrel is
not used. Figure 5b illustrates the wrinkling that occurs on the compression surface when
buckling stress is exceeded. Figure 5c shows folding arising when flattening or wrinkling
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reduces bending rigidity of the section. Figure 5d shows splitting due to high tensile stress
on the extrados surface.
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In order to avoid potential cross-sectional distortion, various solid fillers, such as
low melting point metals, sand, fluid fillers, and gaseous fillers, can be used prior to
bending [25]. These fillers are hard to remove and clean away, which ineluctably increases
production cost and environmental pollution. Mandrels which are laminated [31] or articu-
lated [32] have been used to overcome the above problems and decrease cross-sectional
deformation. Mandrels including those of thin sheet metal, polymer (Figure 6a) [31,33,34],
and flexible link mandrels (Figure 6b) such as articulated mandrel balls [32,35], are inserted
into the hollow profile before bending and removed afterwards. A laminated elastic man-
drel combined with axial tension was utilized during the rotary draw bending process of
aluminum alloy (A6063S-O) square tubes [31,33,34]. The deformation mode diagrams are
shown in Figure 7, where parameters H0, t0, and R0 are defined in Figure 5. Flattening
distortion can be restrained by the application of a mandrel, and wrinkling and folding can
be reduced by applying axial tension. By using a square tube with a center web (type B),
splitting can be restrained and the working limit (maximum bend degree) is improved.
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An analytical model of the flexible link mandrel balls (Figure 6b) has been developed to
preliminarily select the mandrel parameters (mandrel diameter, number of balls, thickness
of balls, space length between balls, and nose radius which plays the function of smooth
transition) [32]. The effect of mandrel balls has been numerically studied using the finite
element (FE) code ABAQUS/Explicit. It was found that increasing the ball number reduces
the cross-sectional distortion of the LF2 aluminum alloy tube, but when it exceeds the range
preliminarily analytically determined, the role for controlling the distortion is limited and
may make the outside tube over-thinning.
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Fillers and mandrels inevitably increase tooling costs and dramatically decrease the
productivity. Kuboki et al. [36] developed a schedule-free mandrel-less draw-bending
procedure, named side compression bending (S.C. bending), as shown in Figure 8a. When
the bending die rotates, the side compression dies (upper and lower dies) clamp the tube in
the vertical direction (BD) to shrink its vertical diameter and push it towards the rotating
bending die, the spacer between the dies regulates the side compression stroke which is the
total displacement of the upper and lower dies. For conventional rotary drawing bending
with mandrel, the bending process is conducted from the head to the tail in order. S.C.
bending is applicable for pre-shaped long tubes and is able to bend tubes in an arbitrary
order. The apparatus can be placed at arbitrary positions in a production line, thus offering
significant flexibility in manufacturing. Numerical analysis and experiments have been
conducted using 5056 aluminum alloys [36]. As shown in Figure 8b, the error index of
circularity was evaluated using flatness defined as DF = (dV − dh)/d0, where dV and dh
are the vertical and horizontal diameters, respectively. For circular tubes, when the proper
side compression δC (indicated as optimum) is adopted, the error index of circularity
becomes zero regardless of thickness t0 (bending radius ratio R0/d0 = 3.0).
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3.2. Stretch Bending of Profiles

Stretch bending is one of the most widely used cold forming method for bending
profiles. Figure 4c shows the principle of this process. Bending is achieved by clamping
the work-piece at each end and applying an axial tensile force to gradually stretch it over
a rounded, fixed bending die. Three basic procedures exist for stretch bending, namely,
pre-stretching, bending, and re-stretching [25,37]. The material is fully plastified before
or during bending due to a tensile force which stretches the profile in the longitudinal
direction, thus leading to a displacement of the neutral layer towards the compression zone
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and reduced springback [38,39]. However, similar to the rotary draw bending process,
mandrels and internal pressure are usually used during stretch bending to support the
cross-sectional profile and avoid deformation which occurs in hollow profiles. In addition,
both clamped ends of the profiles need to be removed, which can lead to a wastage rate of
more than 20%, significantly increasing product cost.

The magnitude of the tensile force has to be properly controlled. When the value
of the tensile force is sufficient to move the neutral layer towards the compression zone
of the cross-section, increasing the tensile force will not be beneficial for reduction of
springback, but it will lead to greater wall thinning and cross-sectional deformation.
Paulsen et al. [40–42] studied local wrinkling of a rectangular tube in stretch bending, and
a design method for prediction of dimensions was proposed. Clausen et al. [43] studied
the effects of various parameters on material response in stretch bending of rectangular
hollow profiles. They found that the primary parameters influencing local cross-sectional
deformation are tensile force level and geometry, and the springback during unloading
is mainly controlled by the pre-stretching force level and the strain hardening properties
of the material. The selection of the level of stretching or internal pressure for optimum
forming is mostly empirical. Miller et al. [44,45] developed a custom bend-stretch-pressure
forming facility to minimize springback and distortion of the cross-section. The facility is
operated by closed-loop systems, which allow feedback control of the process. A process
design strategy was suggested to establish the optimal loading history.

A systematic study on plane stretch-bending springback of profiles in the loading
method of pretension and moment was carried out [46]. The basic hypothesis that wrin-
kling is negligible for a relatively large bending radius was made, and springback can
be expressed as ρp = [ρ − (σT/E)ρε]/[1 − (M/EIv)ρε], where ρp is the residual radius
of centroidal layer, ρ is the bending radius of centroidal layer under loading, ρε is the
curvature radius of strain neutral layer under loading, E is Young’s modulus, Iv is the
inertia moment of the cross-section, σT is the pre-tensile stress, and M is the bending
moment. Stretch bending of ST12 steel profiles with different bending radii R is shown
in Figure 9 [46]. Springback decreases gradually as pretension stress increases, and when
the value of pretension stress reaches that of the yield stress, springback approaches zero
and decreases slightly with increase of the pretension stress. For a given pretension stress,
smaller bending radius results in lower springback.
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Elsevier Ltd.

3.3. Press Bending of Profiles

Press bending is used mainly for sheet metal bending and few publications are avail-
able describing its use for solid or tubular profiles. The basic principle is that a work-piece
is bent by a punch and die moving together along a common axis, as shown in Figure 4d.
The final curved contour of the profile depends on tool shape and springback of the profile.
Press bending can form curved profiles with complex shapes by one single operation,
which can greatly enhance the production efficiency. However, lateral deformation of the
profile often occurs, as the pressure acting on the profile is high. This may be alleviated to
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some degree by the use of supporting plates. In addition, to reduce deformation, mandrels,
fluid fillers, and gaseous fillers are usually adopted for press bending of hollow profiles.

To eliminate use of a mandrel and simplify the bending operation, a variable die
opening system and counterpressure have been utilized to effectively restrain localized
deformations [47]. Wing-type dies, which support the sides of a work-piece have been
developed [48]. As shown in Figure 10, successful press bending of A6063-T5 alloy shape
without collapse was achieved using high supported wing-type dies. This is because
the position of wing rotational center affects the sliding direction of the work-piece on
the dies. For high supported dies, friction acts to produce axial tension. The tests also
revealed that an inner web, parallel to the plane in which the profile is bent, is effective
for preventing wrinkling. Similar to other conventional cold bending methods, additional
axial tension is helpful to alleviate wrinkling of the compressive side of the profile. The
beneficial effect of axial tension in press bending was also studied using AZ31 magnesium
alloy square tubes [49]. It was found that under stretch press bending, a tube of AZ31 alloy
was successfully bent without wrinkling at room temperature, using axial tension.
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Multi-point forming (MPF), which was initially developed to form sheet metal parts,
has been used to bend hollow A6N01S-T5 profiles [50]. MPF is a flexible manufacturing
process with reduced time and costs for die design and fabrication. In MPF, as shown in
Figure 11a, a series of discrete punch elements are used to replace the conventional solid
dies. The contour shape of the punch matrix can be varied freely as the height of each
punch element is independently controlled. By adjusting the relative height of each punch
element, the shape contour of the punch matrices is formed to bend the profiles. Figure 11b
shows the cross-sectional distortion of an A6N01S-T5 profile (bending radius 2000 mm)
in MPF with different levels of inner pressure [51]. It indicates that the inner pressure can
effectively restrain the cross-sectional distortion, although the defect is not eliminated.
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3.4. Roll Bending of Profiles

Roll bending is a relatively economical method for profile bending, commonly using
three-, four-, or six rolls. A diagram typifying this process, using which, a minimum bent
radius two to three times greater than that achievable by other methods, may be achieved,
is shown in Figure 4e. Roll bending is best suited to large production volumes. In three-roll-
bending, a work-piece is supported on two level fixed drive rollers and bent by a vertically
moving pressure roller positioned above them. The work-piece is bent along its length
as it passes through the turning rollers. Therefore, it is possible to vary curvature over
the length of a profile by positional control of the pressure roller [52,53]. Compared with
three-roll bending, four-roll bending can be used to reduce cross-sectional deformation as
the fourth roller supports the lower wall of the profile [54]. S-shaped profiles are made
advantageously by six-roll bending, which is essentially mirrored four-roll bending [25].
The main characteristic of roll bending is that material in the deformation zone is mostly
elastic; therefore, springback is large. Surface roughening is also notable due to the contact
with the rollers. Both ends of rolled profiles cannot be bent and must be cut off, thus
leading to material wastage.

Double-stage forming using a critical pre-bending radius was proposed to reduce
cross-sectional distortion of roll bent hollow profiles [55], as shown in Figure 12. It was
assumed that by regulating the pre-bending radius at the pre-bending stage, cross-sectional
distortion can be minimized. For a hollow rectangular cross-section of thickness t and width
w, by assuming the initial yielding occurred at the top surface of the midsection, the critical
bending radius that represents the beginning of flattening was determined as R ≤ 1.5w2/t.
This expression indicates that the critical bending radius increases with decreasing thick-
ness, i.e., flattening occurs at a small curvature for thin wall thickness. Figure 12 shows the
bent STKR490 steel pipes with a cross-section of 40 mm × 40 mm × 2 mm. Compared with
single-stage bending, significant improvement on flattening is achieved in the double-stage
bending with analytically calculated pre-bending (radius R ≤ 1200 mm). The reduced de-
fect is essentially achieved with a compromise of time or cost, i.e., the deformation caused
by bending progresses incrementally and gradually due to smaller forming increments or
more forming stages.
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Three roll push bending (TRPB), shown diagrammatically in Figure 13, has been
widely used for manufacturing curved hollow profiles [56]. A push carriage which can
rotate around its longitudinal axis is used to grip and move the profile. The profile is
forced to pass through one or more pressure rollers, and is shaped incrementally between
a bending roller and a forming roller. The pressure rollers support the straight part of the
profile to avoid premature deflection and the forming roller, which can translate and rotate
with respect to the bending roller, controls the final profile curvature. The TRPB process can
be controlled to respond to springback, and an in-line approach for real-time evaluation
and correction of the springback of bent profiles during the TRPB process was developed
based on inertial measurement techniques [56]. As shown in Figure 13, a novel mandrel,
made of individual rings, was developed to monitor profile curvature after springback. The
actual bending angle is the actual rotation angle of the last mandrel ring since its orientation
is the same as the actual cross-section of the bent profile. A commercially available Inertial
Measurement Unit (IMU) is embedded at the last mandrel ring which allows real-time
recording of its angular speed around the axes of the profile during the bending process.
Being connected to the CNC machine, at each time increment, the springback is calculated
to enable a prompt roller adjustment for springback compensation or machine stop. IMU
has also been used to detect the onset of wrinkling during the TRPB process.
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3.5. Springback Prediction Models

Elastic recovery (springback) after unloading is an issue that directly affects the
dimensional accuracy of bent profiles. Significant springback of profiles occurs after the
above-mentioned cold bending processes, especially for materials with high strength and
low Young’s modulus, such as for Ti-alloy tubes. Many studies have been conducted on
springback analysis using experimental and modelling methods; here, the major models
showing differences in predicting springback of Ti-alloy tubes are compared in Table 1 and
Figure 14 [57–61].
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Table 1. Comparison of the springback prediction models.

Springback Model Material Model Principle of Springback Basic Assumptions

2002 Al-Qureshi et al. [57] Elastic-perfectly plastic Classical springback theory

Strain-hardening is neglected;
Plane strain condition;

Cross-section remains symmetrical;
Wall thinning is neglected;

Variation in neutral layer is neglected

2008 Megharbel et al. [58] Elastic-exponent hardening
plastic Classical springback theory

Plane strain condition;
Cross-section remains in a plane;

Wall thinning is neglected;
Variation in neutral layer is neglected;

Unloading moments equals to
bending moments

2012 Li et al. [59] Exponent hardening plastic Classical springback theory

Plane strain condition;
Cross-section remains in a plane;

Wall thinning is neglected;
Elastic deformation is neglected

2009 E et al. [60] Exponent hardening plastic
Similarity in unloading

triangle to elastic loading
triangle

Cross-section remains flat;
Stress neutral layer is unchanged;
Wall thinning is not considered;

Triangle similarity of the tangential
deformation during
bending/unloading

2016 Zhan et al. [61] Exponent hardening plastic Static equilibrium
springback theory

Cross-section remains in a plane;
Young’s modulus varies with

equivalent strain;
Stress neutral layer coincides with the

strain neutral layer (offset);
Flattening is neglected;

Inside radius of the tube is constant
Unloading moments equals to

residual moments
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As before, initial three-roll-bending creates local pre-plastification in the forming zone of 
the material, making further bending easier. 

  

Figure 14. Analytical springback values for Ti-alloy tubes of (a) Ø6 mm × 0.6 mm (b) Ø12 mm × 0.9 mm [57–61].
Reproduced with permission from ref. [61]. Copyright 2016 Elsevier B.V.

During the tube bending deformation, the wall thickness and neutral layer usually
vary. Zhan et al. [61] found that the Young’s modulus of Ti–3Al–2.5V tubes decreases
in the initial stage (after yielding) as function of equivalent strain before stabilizing in
the final stage. To examine effects of variations of tube thickness, neutral layer varia-
tion/offset and Young’s modulus on springback, an analytical model was established [61].
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The springback angle increases nearly linearly with the increase of bending angle. The
model of Zhan et al. [61] predicts springback closest to the experimental results. The
springback angles predicted by Al-Qureshi and Russo [57] are the lowest since their model
considers the tube material to be elastic-perfectly plastic and neglects the hardening ef-
fect. By considering tube material to be exponentially work hardening, the model of
Megharbel et al. [58] predicts the greatest springback angles. This is because unloading
moments are over-estimated by the assumption that they are equal to the bending moments
in classic springback theory. The static equilibrium springback theory by Zhan et al. [61]
considers the residual moment, thus eliminating over-springback. The similar triangular
unloading theory by E et al. [60] utilizes similarity between the unloading triangle and
elastic loading triangle to determine unloading stress and strain only through the outer
surface stress and strain. It is essentially a method of approximation.

4. Stress/Moment Superposed Cold Bending Methods
4.1. Compressive or Tensile Stress Superposed Rolling-Bending

An integrated rolling and bending process, rolling–bending with superposition of
compressive stresses, was firstly proposed by Finckenstein et al. [62]. Basic process princi-
ples are shown in Figure 15. The section is squeezed to beyond yield between two rolls
which have matching profiles and its thickness is reduced. A bending roller situated close
behind the squeezing rolls and offset from the roll gap causes the section to bend. Plasti-
fication due to squeezing decreases bending resistance and hence bending force. Profile
curvature is mainly attributed to superposition of compressive stress rather than bending
force. Compared with conventional cold bending, this process enables higher true strains
and improved material strength to be achieved. However, this process is restricted to
sections formed from sheet or strip and is not applicable to hollow or thick ones.
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Figure 15. Schematic of the integrated rolling–bending process [38,62]. Reproduced with permission
from ref. [38]. Copyright 2007 Springer-Verlag Berlin Heidelberg.

Both stretch bending and integrated rolling–bending incorporate superposition of
stress states within the deforming region, tension or compression, respectively, thus facilitat-
ing bending. Inspired by the concept of stress superposition, Chatti et al. [38,63] developed
a modification of the rolling–bending by superposing three-roll-bending with subsequent
profile deflection. The tool configuration for this process is shown in Figure 16a. The two
essential stages of this method are; a conventional CNC-three-roll-bending-machine to
bend normal to the rolls axes (xy plane), and a movable bending tool to deflect the section
normal to this plane (z-axis) immediately after the previous bending process. As before,
initial three-roll-bending creates local pre-plastification in the forming zone of the material,
making further bending easier.



Materials 2021, 14, 1603 13 of 29
Materials 2021, 14, 1603 13 of 29 
 

 

 

 

 

(a) Schematic illustration. Reproduced with permission from ref. [38]. 
Copyright 2007 Springer-Verlag Berlin Heidelberg. 

(b) Formed profiles and effect of d on curvature. 
Reproduced with permission from ref. [63]. 

Copyright 2008 Springer/ESAFORM. 

Figure 16. Superposed three-roll-bending with subsequent profile deflection [38,63]. 

A representative formed profile made of S235JR steel is shown in Figure 16b. By 
selecting different rolling adjustment values (d = 0 mm, 13 mm, and 16 mm) for the middle 
roller, while keeping the bending tool deflection the same (z = 40mm), it was found that 
an increase of the d-adjustment leads to an increase of the profile curvature in the third 
plane. The increase of the curvature is a result of the decrease of the profile springback 
due to the stress superposition. It was also found that to achieve the same profile 
curvature in the third plane, lower bending force is needed for greater d due to the 
increased pre-plastification. The reduced bending force will also decrease the cross-
sectional deformation of the profile. However, this method is only applicable for bending 
profiles with relatively large radii. The friction between the roller and the profile is 
insufficient for the transportation of the profile when bending profiles with smaller radii. 

4.2. Torque Superposed Spatial (TSS) Bending 
To enable 3D-bending of profiles with smaller radii, Hermes et al. [64,65] developed 
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to achieve the bending curve (bending axis x) in the horizontal plane. By using the 
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Figure 16. Superposed three-roll-bending with subsequent profile deflection [38,63].

A representative formed profile made of S235JR steel is shown in Figure 16b. By
selecting different rolling adjustment values (d = 0 mm, 13 mm, and 16 mm) for the middle
roller, while keeping the bending tool deflection the same (z = 40 mm), it was found that an
increase of the d-adjustment leads to an increase of the profile curvature in the third plane.
The increase of the curvature is a result of the decrease of the profile springback due to the
stress superposition. It was also found that to achieve the same profile curvature in the third
plane, lower bending force is needed for greater d due to the increased pre-plastification.
The reduced bending force will also decrease the cross-sectional deformation of the profile.
However, this method is only applicable for bending profiles with relatively large radii.
The friction between the roller and the profile is insufficient for the transportation of the
profile when bending profiles with smaller radii.

4.2. Torque Superposed Spatial (TSS) Bending

To enable 3D-bending of profiles with smaller radii, Hermes et al. [64,65] developed
a 3D profile bending method, torque superposed spatial (TSS) bending, which is shown
in Figure 17. It has a six-roll unit (three pairs) to transport and guide the profile over the
longitudinal axis, and a guiding system (bending head) composed of four smaller rollers to
achieve the bending curve (bending axis x) in the horizontal plane. By using the bending
head, including bending over axis x as well as twisting over its compensation axis, it is
possible to bend 2D contours and S-shapes. The 3D-bending is realized by a superposed
torque of the three roll pairs over the longitudinal axis.
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In the conventional cold bending processes discussed in Section 3, it occurs quite often
for asymmetrical profiles to twist over the longitudinal axis since the shearing center and
the center of gravity of the cross-section are different. In addition, collision of tool elements
occurs especially when profiles with smaller radii are bent. However, during the TSS
bending process, twisting of asymmetrical profiles can be compensated by superposition
of torque with the bending moment. In addition, the leverarm distance between six-roll
unit and bending head can be adjusted, and thus, profiles with a wide range of radii can
be bent without tool collision issues. The friction-based six-roll drive enables bending
relatively long profiles since no extra pushing system is required. Integration of TSS
bending with a continuous section forming process, such as roll-forming, constitutes
a facility for continuous production of 3D bent profiles. The prototype machine has
been further developed, an induction heating device and a subsequent cooling tool are
added, which can heat and then quench the deforming zone and enable the initial process
limits to be extended by reducing bending forces. In addition, graded structures over
the longitudinal axis can be achieved due to in situ heat treatment [66,67]. The reason is
that heat treatment can improve the formability of extruded profiles, thus enhancing the
forming limits in bending processes [68,69].

An analytical model with consideration of the elastic deformations of the machine
tool and profile during TSS has been developed for springback compensation of S235JR
steel profiles [65]. The springback was calculated by the analytical model to determine the
compensation value and get the target contour after unloading. Slight contour deviations
(less than 3.5 mm) were found in a compensated component, while greater variations
(5–50 mm) occurred for the case without considering the elastic deformation.

4.3. Incremental Tube Forming (ITF)

Load-adapted tubes, also called tailored tubes, in which the cross-section changes
along their length, are becoming widely used in the automobile industry. Current meth-
ods for forming them are very complicated. Hermes et al. [70] developed a method for
incrementally forming bent tailored tubes. The basic principle is a combination of a tube
spinning and a tube bending, as shown in Figure 18a [71]. A straight tube is drawn through
three spinning rollers mounted on a rotating housing which, by moving radially to it,
can alter the tube diameter. Subsequently the tube is bent. Additionally, the tube can be
rotated to achieve three-dimensionally bent structures. Thanks to the free movability of the
spinning rollers and the bending tool, tubes with arbitrary bending radii and diameters
along their length may be produced. The ITF process has been further developed by adding
a mandrel inside the tube, which significantly extends processing limits [72]. The formed
typical profiles are shown in Figure 18b [71,73]. The mandrel prevents folding or cracking
of the tube by supporting its inside. Additionally, the mandrel can be utilized to achieve
variation of wall thickness of the tube. Precise wall thickness can be achieved by adjusting
the gap between spinning rollers and mandrel, and as the tube moves in the axial direction,
a continuously variable wall thickness can be realized over the longitudinal axis of the tube.

The benefits of superposing spinning process with bending were studied using
AA6060 tubes with a cross-section of Ø40 × 2 mm [74]. With the adjustment of the spinning
roller as d = 0.5 mm, an unloaded bending radius of ~950 mm was achieved. Without super-
position of spinning, springback is greater (~1500 mm). The bending force reduction was
confirmed using tubes of the same dimension but different materials; the construction steel
S235JR, the heat treatable steel 25CrMo4, and the alloyed steel 15CrMoV6 [71]. All tubes
were bent to the same radius, 2500 mm. A significant reduction of the bending force was
achieved by the spinning process. This is due to the stress superposition of compressive
(spinning) and bending stresses. Local plastification of the material, which makes it easier
to deform, is generated during the spinning process, and thus, the subsequent superposed
bending force, which deflects the tube, is reduced.
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5. Extrusion-Bending Integrated Forming Methods

As discussed above, conventional cold bending methods and stress superposed cold
bending methods for forming curved profiles usually need more than one operation. That
is, the first is to form the billets into lengths with prescribed cross-sections (usually by
conventional extrusion or shape rolling) which are then cold bent. Two essentially different
integrated extrusion-bending methods have been proposed in which the billets are directly
extruded into curved profiles/sections; they are reviewed below.

5.1. Curved Profile Extrusion (CPE) Using External Bending Apparatus

Kleiner et al. [75,76] used an external guiding tool during the extrusion process to form
curved profiles, as shown in Figure 19. The contact surface of the guiding tool matches that
of the external cross-section of the profile. The predefined path of the tool is controlled
by a linear axes system and moves synchronously with the current speed of the extruded
profile. The curvature of the profile is generated due to the bending moment applied by
the guiding tool. The profile bending radius depends on the geometrical position of the
experimental setup, including the distance x between the guiding tool and the die, the
distance z between the position of the guiding tool and the press axis, and the changed
angle δ for the axis of the guiding tool. The curvature is generated at the die orifice where
the material has a high temperature (for hot extrusion) and a relatively low flow stress
so that small forces are needed to locate the guiding tool; therefore, this forming process
can reduce the cross-sectional distortion and residual stresses [77,78]. It should be noted
that press geometry determines minimum radius obtainable since curvature begins within
the die orifice, and the profile can collide with the backup plate when the bending radius
is small.

The basic process was improved by Müller et al. [79,80] who developed a segmented
guiding device using serially placed bending discs, as shown in Figure 20a. Two bending
discs are directly placed next to the extrusion die. The disc nearest to the extrusion die
defines the location of the start of bending. The second disc can move in two translational
directions and also rotate. A die holder is used to hold the bending discs, and a sidewise
cut was introduced to the die holder to prevent the outer end of the profile from colliding
with the die holder. Curved hollow rectangular aluminum profiles with flanges have
been formed using this method (Figure 20b), it was concluded that starting location of the
bending curvature should be as close to the bearing surface as possible in order to reduce
the remaining stress in the profile caused by the additional hot deformation work during
the bending process, and the bending device should also be installed as near as possible to
the extrusion die outlet to obtain a small bending radius.
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Figure 20. Curved profile extrusion (CPE) using a segmented guiding device [79,80].

Based on Kleiner’s previous research [75,76], since small external bending forces are
needed to deflect plastified extrudates, natural forces such as gravity could influence con-
tour accuracy and should be compensated. The effect of profile weight can be compensated
for by a run-out table which can provide support for planar bent profiles. Effects of friction
between the run-out table and profile can be minimized by using a table surface made of
graphite. However, for profiles bent in three dimensions a flat run-out table is ineffective.
Klaus et al. [81] developed a second guiding tool for flexible support of profiles. As shown
in Figure 21, at the beginning of the CPE process, the second guiding tool is placed at a
constant distance behind the first guiding tool, and moves with the profile to maintain
its curvature. The effects of this distance and the extrusion speed were studied, which
concluded that a long support distance with a slow extrusion velocity results in smaller
contour deviations. Becker et al. [12,82] refined the support strategy and introduced flying
(moving) guides, between which the distance could be changed (Figure 21). By using
the flying support tool, deviations for aluminum profiles could be reduced by 25%. A
component-specific scale was further developed by Munzinger et al. [83] to in-line measure
the contour, position, and orientation of the extruded curved profiles without having to
change the mechanical system.
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sion from ref. [82]. Copyright 2015 Springer-Verlag Berlin Heidelberg.

For heat treatable aluminum alloys, quenching is needed directly after extrusion, to
realize fine distribution of alloying elements needed to gain high mechanical properties
through subsequent ageing. Becker et al. [12,84] developed an in-line quenching device
composed of two cooling rings. The first ring, perforated to expel fine air blasts onto the
extrudate, is installed directly behind the die orifice. The second is positioned at the first
guiding tool to realize fast cooling such as by spraying a water mist for localized quenching
to minimize distortion. Using mist spray cooling in the CPE of aluminum alloy 6060, a
cooling rate up to 20 ◦C/s was achieved. Recently, a flying cutting tool attached to a robot
was developed to cut profiles [85–87].

5.2. Curved Profile Extrusion (CPE) Based on Internal Differential Material Flow

Extrudate curvature can be obtained by inducing non-uniform flow velocity across
the die orifice. This can be realized by four different approaches: (i) using an eccentrically
positioned mandrel to influence the material flow before the deformation zone, (ii) influ-
encing the material flow after the deformation zone by varying the length and inclination
angle of the die bearing/land, (iii) using the multi-orifice die or die with eccentric orifice,
and (iv) using an inclined die or a forming pocket before the die bearing/land surface.

Material flow velocity distribution along the profile cross-section before the defor-
mation zone can be modified by utilizing the friction between work-piece and extrusion
container. Dajda et al. [88] proposed an approach in a patent for the extrusion of pipe bends
and elbows by means of an eccentrically mounted mandrel which results in asymmetric
friction between container and billet and thus asymmetric distribution of the material flow
velocity before the deformation zone. Curved profiles are thus acquired as a result of this
asymmetric velocity distribution.

A single eccentric die orifice without eccentric mandrel can also result in a curved
extrudate, although the distribution of the material flow velocity before the deformation
zone remains symmetric. In addition, a multi-orifice die alone can be used to produce
curved profiles, even with the same land geometry for every orifice. Degree of curvature
depends on the location of an orifice relative to the central axis of the billet. Using multi-
orifices can reduce required extrusion force compared with that required for a single orifice.
Chen et al. [89] studied the effects of temperature and orifice eccentricity ratio on curvature
of aluminum alloy 7075 profiles for the two-hole extrusion process, as shown in Figure 22.
It was found that the eccentricity ratio of die orifices has the greatest influence on profile
curvature as flow velocity decreases the further is the extrudate from the billet central axis.
Lower extrusion temperature results in slightly greater curvature.
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Distribution of flow velocity along the profile cross-section after work-piece area
reduction, can be changed by changing die bearing/land friction through altering bear-
ing/land geometry. This is achieved by either (a) altering bearing/land surface length, or
(b) varying inclination angle of the bearing/land, or (c) using different gap widths and
inclination angles when bending hollow profiles. Tiekink et al. [90] proposed an apparatus
in a patent in which the extrusion gap is bounded by separate, mutually oppositely situated
running surfaces, as shown in Figure 23. By varying the shape and/or length of the running
surfaces and/or width of the extrusion gap, the material flowing through the extrusion
gap experiences a lower resistance at one side of the die than the other side, and a curved
profile whose longitudinal axis has a curvature with a certain radius is thus formed, due to
the difference in the amount of material at the two sides.
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die bearing lengths, (c) different inclination angles and gap widths of the die bearing [90].

Regulating metal flow by varying the die bearing/land, thus modifying friction, will
result in uneven heat being generated over the die bearing/land, which restricts usable
extrusion velocity and shortens die life. Additionally, modifying land friction can lead to
surface defects in the product and in addition, design of extrusion orifices, especially for
thin hollow sections, is challenging and subject to much trial and error modification.

Material flow velocity distribution over a cross-section in the deformation zone can
be influenced by exploiting an inclined die. Shiraishi et al. [91,92] proposed an extrusion-
bending integrated forming method where a billet is extruded through an inclined die
orifice, as illustrated in Figure 24. Curvature of the extruded profiles can be varied by
varying the inclination angle, an increase of which leads to increased curvature.
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The addition of a pocket (also named recess or pre-chamber or sink-in) in front of the
die bearing/land was initially used to produce the continuous long profiles, which can
be realized by welding the following billet to the previous billet left in the pocket. This
approach makes the extrusion process operate in a semi-continuous way, thus resulting
in decreased manufacturing time. It can also be effective approach to control the metal
flow during the extrusion process and acquire the required curved profiles [93–96]. The
pocket is used to pre-deform the extrusion billet and control its speed before it passes
through the die bearing/land. Die bearing/land length should be as short as possible when
designing a proper pocket for a given die. In addition, for the single-bearing die which
has one single-bearing length, controlling material flow becomes solely dependent on the
design of the pocket, and the variation of the die bearing/land length is neglected, which
is beneficial to the permissible extrusion velocity and surface quality of the extrudates.

The position, geometry, volume, and step number of the pocket can be designed to
achieve control of the velocity of extrusion material flow. Multi-step pocket may also be
utilized if the required extrusion pressure is in excess of the press capacity, since the increase
in the number of steps in the pocket reduces the peak extrusion pressure required. Jin [93]
proposed a device in a patent which is capable of easily and smoothly extruding curved
tubes and rods. As shown in Figure 25, four hot metal are inserted into the multi-hole
container with an eccentric mandrel. Due to the gradient of extrusion velocities controlled
by the eccentricity of the mandrel, or by the relative size of the conical die pocket, or by the
relative moving velocity of different punches, curved tubes are obtained.
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The pocket die can be used to regulate the material flow easily compared with varying
the bearing geometry of the flat die (without pocket), since it can be easily designed and
machined. Hence, pocket design is usually preferred, despite utilizing the pocket to control
the material flow sometimes having a weaker effect than that of die bearing variation.
Pocket die is particularly effective when it is used for manufacturing the multiple-strand
extrusions synchronously by a multi-hole die. It becomes more advantageous when it
is applied to manufacture a thin-walled profile. However, the pocket design may be
combined with bearing length variation to control the material flow when a thin-walled
profile has a complex geometry.

5.3. Differential Velocity Sideways Extrusion (DVSE) Method

It is apparent that profile curvature extruded using the methods described in Section 5.2
has essentially a pre-set constant value. A novel extrusion-bending process termed differen-
tial velocity sideways extrusion (DVSE), in which two punches are utilized, was proposed
by Zhou et al. [97–99], to extrude billets directly into curved sections with adjustable curva-
tures along the length within one single operation. Figure 26 shows a schematic of DVSE,
where the initial situation is shown in Figure 26a, and an intermediate forming stage in
Figure 26b. The profile is extruded sideways out of the container and its exiting direction
is perpendicular to the punch motion direction. The basic principle of this method is that
profiles are extruded and bent simultaneously, due to the gradient of the internal material
flow velocity over the die exit orifice caused by the different relative moving velocities
of the two extrusion punches. It has been proven by experiments that profile curvature
is dependent on the ratio of velocities of the two extrusion punches (0 ≤ v2/v1 ≤ 1) and
the extrusion ratio λ, as shown in Figure 26c–e. Lower velocity ratio (v2/v1) and greater
extrusion ratio result in greater curvature. For a given extrusion ratio, velocity ratio (v2/v1)
can be chosen to produce a particular curvature.
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The specific correlation between curvature and velocity ratio and extrusion ratio can
be obtained using the analytical upper-bound model and finite element analysis [100,101],
which have been widely used in analyzing the extrusion process [102]. As shown in
Figure 27a, the extent of the work-piece flow velocity gradient across the die exit orifice,
which causes curvature, has been identified. Based on the flow lines shown in Figure 27b,
DVSE can be reasonably regarded as two non-equal channel angular pressing (N-ECAP)
processes where the dividing line is BG. A corresponding two dimensional deformation
model considered on diametral planes of container and die is shown in Figure 27c. Above
the dividing line, the process of extruding the material in the upper region of the container
(diameter D1) into the part with the sectional width ξD2 can be regarded as one N-ECAP
process. Correspondingly, below the dividing line, another N-ECAP process exists. The
eccentricity ratio variable ξ = g(v2/v1, λ) represents the effects of v2/v1 and λ on the
position of line BG, which lies in the center of the die exit channel when v2/v1 = 1. As
v2/v1 decreases, it moves towards the side which has a lower extrusion velocity (v2).
The theoretically predicted curvature is slightly greater than that from FE modelling and
extrusion experiments [100,101]. This is because the effect of die land on flow velocity
gradient across the die orifice is not considered due to its small length (2 mm); however, it
could have an “unbending” or straightening effect on the extrudate [103], which still needs
to be further considered by establishing more sophisticated model.
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as can be clearly seen in the simulated effective strains shown in Figure 28b. Selected 
locations for characterization using electron backscatter diffraction (EBSD) are also shown 
in Figure 28b. Figure 28c,d show microstructures in the cross-sectional plane of the 
original billet and formed curved bar (at location CSm), respectively. The white line 
indicates the low angle boundaries (LABs, misorientation angle 2° ≤ θ < 15°) and the black 
line indicates the high angle boundaries (HABs, misorientation angle θ ≥ 15°). Grains of 
the billet material are large and most of them have HABs, while grains of the curved 
profile are more equiaxed and homogenous with significantly reduced sizes and 
increased LABs. The average grain size of the curved profile (~3 μm) is refined to less than 
1% of average grain size of the billet (~357 μm). The 0.2% proof stress (yield strength) and 
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Microstructures and mechanical properties of curved profiles formed by DVSE have
been examined [104]. The curved extruded profile used for examination is shown in
Figure 28a, with a velocity ratio of 1/2 and extrusion ratio of 1.61. When the material in the
container passes through the intersection planes, its flow direction changes 90 degree under
the action of strong shearing. As a result, severe plastic deformation (SPD) occurs, as can
be clearly seen in the simulated effective strains shown in Figure 28b. Selected locations for
characterization using electron backscatter diffraction (EBSD) are also shown in Figure 28b.
Figure 28c,d show microstructures in the cross-sectional plane of the original billet and
formed curved bar (at location CSm), respectively. The white line indicates the low angle
boundaries (LABs, misorientation angle 2◦ ≤ θ < 15◦) and the black line indicates the high
angle boundaries (HABs, misorientation angle θ ≥ 15◦). Grains of the billet material are
large and most of them have HABs, while grains of the curved profile are more equiaxed
and homogenous with significantly reduced sizes and increased LABs. The average grain
size of the curved profile (~3 µm) is refined to less than 1% of average grain size of the
billet (~357 µm). The 0.2% proof stress (yield strength) and ultimate tensile strength of the
DVSEed bar have been improved by 354.0% and 116.8%, respectively.
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6. Discussion

A comparison of the advantages and disadvantages of the profile bending methods is
given in Table 2.

Table 2. Comparison of the curved profile forming methods.

Methods Advantages Potential Problems

Rotary draw bending Small bending radii

Heavy-duty machines are required to exert
high bending force;

Cross-sectional deformation occurs easily;
Fillers are needed to bend hollow profiles

Stretch bending Reduced springback

Clamping ends of profiles need to be removed
(High wastage rate);

Pre-stretching and re-stretching forces need to
be properly controlled

Press bending Reduced operation;
Relatively low tooling costs

Lateral deformation occurs easily;
Fillers are needed to bend hollow profiles

Roll bending Relatively low tooling costs;
Varied curvatures over length

Restriction of small radii;
Large springback;

Profile ends need to be removed (High
wastage rate)

Stress superposed rolling-bending Reduced cross-sectional deformations and
springback Restriction of small radii;

Torque superposed spatial (TSS) bending
Wide range of bending radii and profile

cross-sections;
Reduced twisting of asymmetrical profiles

For small radii, an extra axis is needed to
enable adjustment of the leverarm distance
between the six-roll unit and bending head

and avoid the collision of tool elements

Incremental tube forming (ITF) Bending tailored tubes in one procedure;
Reduced springback

Can only handle circular tubes;
Mandrel is needed to avoid folding/cracking

Curved profile extrusion (CPE) based on
external bending apparatus

No springback for hot extrusion;
Adjustable curvatures in one
extrusion-bending procedure;

No extra heavy-duty machines are needed for
the bending process

Complex control of the guiding tool;
All kinematic systems have to be synchronized
with the current profile speed which may differ

slightly from the pre-defined profile speed;
Restriction of small radii

CPE based on internal differential material
flow

No cross-sectional deformations;
No springback;

No extra heavy-duty machines are needed for
the bending process

Complex design of the die tool;
Curvature is pre-set or hard to be adjusted

Differential velocity sideways extrusion
(DVSE)

No cross-sectional deformations;
No springback;

Improved mechanical properties due to severe
plastic deformation (SPD);

Adjustable curvatures in one
extrusion-bending procedure;

Enhanced production efficiency

Need specialized extrusion equipment
(double-action or multi-action);

If two or more individual extrusion machines
are used, speed control could be complex.
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Conventional cold bending methods including rotary draw bending, stretch bending,
press bending, and roll bending have been widely used for bending profiles with different
materials, sizes, and shapes. These bending methods have different characteristics with
regard to bending flexibility, profile quality and curvature accuracy. Among them, rotary
draw bending and three roll push bending are the most efficient for bending hollow profiles
thanks to the availability of advanced CNC machines. Of the two, the former enables
higher bending accuracy, since contact areas with forming dies are larger and more severe
plastic deformation can be applied, accurate and repeatable shapes with curvature radii
from 0.5 to 10 times the diameter of the tube can be obtained with rotary drawing bending.
The latter has more flexibility to achieve various shapes and curvature radii with the
same tool set, but springback is greater since shape control depends on rollers kinematics
and such bending is suitable for curvature radii greater than 10 times the tube diameter.
In most practice, work-pieces for forming curved profiles by conventional cold bending
methods are previously extruded or roll-formed straight profiles. Bending processes are
subject to several undesirable phenomena, such as cross-sectional deformation, wrinkling,
and springback, which are also the main scientific problems that the development and
optimization in these processes try to solve. Various tools have been developed to avoid
bending defects and improve the process capability, e.g., mandrels are employed to avoid
cross-sectional deformation and additional axial tension is used to alleviate wrinkling.
Additionally, extra compressive stress/moment has been superposed in these cold bending
methods, including compressive stress superposed rolling-bending, torque superposed
spatial (TSS) bending, and incremental tube forming (ITF). They can reduce the spring-
back, cross-sectional deformation, and wrinkling by reducing the bending force needed.
However, essentially these defects are hard to be completely eliminated. Moreover, they
inevitably decrease the manufacturing efficiency and increase the production costs.

Extrusion-bending integrated forming methods generally have improved process
efficiency, in which the billets are directly extruded into curved profiles/sections. For
curved profile extrusion (CPE) using an external bending apparatus, in order to obtain high
accuracy of curved profiles, besides the precise control of the guiding tool, all kinematic
systems, such as the guiding, supporting and cutting in the CPE process chain, need to be
synchronized with the profile extrusion speed. The synchronisation of the guiding tool
with the profile speed in the known experiments is realized by synchronizing it with the
punch speed considering the press ratio, which might differ from the actual profile speed
because of the force-dependent elongation of the press frame (mandrel) and the unsteady
temperature conditions. Since the accuracy of each segment depends on the former one,
deviations could accumulate towards the end of the complete profile. For CPE based
on internal differential material flow, it is quite challenging to achieve high accuracy of
curved profiles by controlling the internal metal flow with an eccentric positioned mandrel,
forming pocket and inclined die, or by varying the length of the bearing/land surface.
Most of them are still in the stage of theoretical design. A lot of trials of die tool design
have to be done to get the desired curvature. In addition, since the curvature is not easy
to be varied during the forming process, different tool design is needed for profiles with
variable curvatures.

The internal differential material flow which is caused by die design (eccentric man-
drel/hole, multi-hole die, die bearing/land length or inclination, die pocket, etc.) is fixed or
hard to be adjusted during the extrusion process. DVSE is a novel process based on internal
differential material flow caused by external differential extrusion velocity ratios rather
than die design. It can be used for forming complex-shaped profiles with adjustable curva-
tures along the length in one extrusion-bending procedure [105], which greatly increases
the manufacturing efficiency. It also has the following advantages: (i) forming curved
profiles without defects such as distortion or thinning of the cross-section, wrinkling, and
folding. Bending is intrinsic to the process, based on internal differential material flow,
rather than external bending force; (ii) forming profiles with fine grain size and therefore
improved mechanical properties due to severe plastic deformation (SPD) caused by shear
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stresses in the intersecting deformation zone of the container; and (iii) no fillers or extra
heavy machines are needed for the bending process. However, it also has disadvantages,
such as a high demand for the specialized extrusion device (double-action or multi-action),
and tool design especially for extruding hollow profiles where a mandrel is used, since the
mandrel needs to suffer a quite large lateral force due to the profile exiting direction being
perpendicular to the punch movement direction.

Diagnosis or prediction of bending defects is of vital importance, considering that
some of them are inevitable, e.g., springback for cold bending. Bending defects are influ-
enced by not only the formed profile, cross-sectional geometry, size, and alloy properties,
but also process boundary conditions which vary from case to case. Normally, potential
bending defects should be diagnosed or evaluated in process design or the first practical
trial, to properly tune process parameters for its compensation. The developed techniques
for bending defects diagnosis/evaluation include off-line optimization approaches and
in-line measurements. Off-line approaches including numerical (finite element) and an-
alytical models are utilized at the first stage of process design. They have the advantage
of optimizing process parameters for minimum cost, especially for complex cases using
numerical modelling. However, a disadvantage of numerical modelling is long simulation
times, making it impracticable to consider scatter of material properties that usually oc-
curs in batch production. Generalized FE software packages such as Abaqus and Ansys
are extensively used to model the defects during cold bending processes; however, they
require a relatively longer computation time, especially for large deformations. Specialized
software products such as Deform and QForm have been widely used for analyzing bulk
metal forming processes involving large deformations, they provide good convergence
by auto-remeshing and relatively lower computation time. In Deform, the rigid-plastic
object is usually assumed; however, to simulate the springback caused by elastic recovery,
an elasto-plastic object needs to be used which requires more solution time. QForm is a
more efficient software for bulk metal forming processes such as extrusion and forging and
needs relatively lower computation time than Deform. Analytical models are restricted to
profiles with simple cross-sections and assumptions about the profile, material behavior
and the neutral layer, have to be made to get the mathematical solutions.

Close-loop in-line approaches can be used to monitor and control the bending pro-
cesses. To in-line tune the process parameters, it is necessary to measure the profile
continuously and provide rapid feedback to the machine controllers. For example, a
feasible method is to use mandrels with embedded sensors. A sensor can be embedded
in the mandrel last ring to record its orientation during all the stages of the production
process. The sensor data can be analyzed to monitor in real time the actual bending radius
in a three roll push bending operation, the springback angle in a rotary draw bending
operation, and the onset of wrinkles in both processes. Alternatively, a set of sensors can
be positioned on most of the elements of the bending tooling, such as the bending die,
wiper die, and mandrel for the rotary draw bending, to dynamically diagnose the bending
defects [106]. To achieve this, the hardware and software acquisition system, the sensor
calibration procedure and the analysis procedure of both the machine and sensor data need
to be developed as well.

7. Conclusions and Future Trends in Research and Development

In this paper, the advances and trends on fabricating curved lightweight profiles have
been reviewed. Current state-of-the-art shows:

Although conventional cold bending techniques have been well developed and widely
applied, most of them cause defects in profiles such as cross-sectional deformation, wrin-
kling, and springback. Costly tooling is needed to control and mitigate the defects, which
decreases manufacturing efficiency and increases production cost. Some modified methods
have been proposed based on these conventional cold bending techniques for improv-
ing their capability. Since they are still the most developed and extensively used profile
bending techniques in industries, the effects of the processing parameters on the bend-
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ing defects and curvature accuracy should be investigated further to develop the cold
bending techniques.

Stress/moment superposed cold bending techniques can realize bending profiles
with less cross-sectional deformations, springback and other defects, thanks to the super-
position of stress or torsion with the external bending moment. The superposed stress
results in local pre-plastification of the material in the forming zone reduces the bending
moment/force needed in the subsequent bending process. Twisting of asymmetrical pro-
files can be compensated due to the superposition of torque with bending moment in the
subsequent bending process. However, similarly to conventional cold bending techniques,
they normally start with manufacturing straight profiles with predefined cross-sections by
shape rolling or extrusion of billets, then the semi-finished profiles are cold bent. Therefore,
their manufacturing productivity of profiles is largely reduced since more than one proce-
dure is needed. Nevertheless they still possess the potential to be widely industrialized
due to improved bending defects compared with conventional bending techniques, and
further research needs to be carried out, to generate sufficient data for process parameters
optimization and increase of production efficiency.

Extrusion-bending integrated forming techniques can directly form the metal billets
into curved profiles by only one extrusion operation, thus greatly improving the manufac-
turing productivity. There are basically two principles, either using an external kinematic
bending apparatus to influence material flow at the die exit orifice during the extrusion pro-
cess, or introducing internal asymmetry in the material flow through tool design. Since the
curvature is generated at the die orifice where the material is still in the fully plastic state,
this forming process produces profiles with reduced residual stresses, springback, and min-
imal cross-sectional deformations. Therefore, they are quite promising to be widely applied
in industries, although they need to be more thoroughly studied for further development.
For curved profile extrusion (CPE) using an external bending apparatus, developing more
appropriate precise control strategy as well as online measurement systems to improve
profile contour accuracy is necessary and yet to be developed. For CPE based on internal
differential material flow, new forming processes, with more flexibilities for curvature
control without changing the tool design, and abilities to improve mechanical properties of
formed curved profiles, are of significant importance.
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