
materials

Article

Comparison of Different Cermet Coatings Sprayed on
Magnesium Alloy by HVOF

Ewa Jonda 1,*, Leszek Łatka 2 and Wojciech Pakieła 1

����������
�������

Citation: Jonda, E.; Łatka, L.; Pakieła,

W. Comparison of Different Cermet

Coatings Sprayed on Magnesium

Alloy by HVOF. Materials 2021, 14,

1594. https://doi.org/10.3390/

ma14071594

Academic Editors: Frank Czerwinski

and Guillermo Requena

Received: 1 February 2021

Accepted: 20 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Engineering Materials and Biomaterials, Silesian University of Technology,
Konarskiego St. 18a, 44-100 Gliwice, Poland; wojciech.pakiela@polsl.pl

2 Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza St. 5,
50-371 Wroclaw, Poland; leszek.latka@pwr.edu.pl

* Correspondence: ewa.jonda@polsl.pl

Abstract: In the present study, two different cermet coatings, WC–CrC–Ni and Cr3C2–NiCr, manu-
factured by the high-velocity oxy-fuel (HVOF) method were studied. They are labeled as follows:
WC–CrC–Ni coating—WC and Cr3C2–NiCr coating—CrC. These coatings were deposited onto
a magnesium alloy (AZ31) substrate. The goal of the study was to compare these two types of
cermet coating, which were investigated in terms of microstructure features and selected mechanical
properties, such as hardness, instrumented indentation, fracture toughness, and wear resistance.
The results reveal that the WC content influenced the hardness and Young’s modulus. The most
noticeable effect of WC addition was observed for the wear resistance. WC coatings had a wear
intensity value that was almost two times lower, equal to 6.5·10−6 mm3/N·m, whereas for CrC ones
it was equal to 12.6·10−6 mm3/N·m. On the other hand, the WC coating exhibited a lower value of
fracture toughness.

Keywords: HVOF spraying; magnesium AZ31 alloy; microstructure; hardness; instrumented inden-
tation; fracture toughness; wear resistance

1. Introduction

The development of modern technology forces a permanent search for structural
solutions tending to the improvement of a product’s efficiency and quality, i.e., to the
minimization of dimensions, an increase in reliability, and the maintenance of dimensional
stability during its exploitation. Low density and relatively high strength represent ma-
terial selection criteria for specific applications in industry. The materials that meet the
abovementioned requirements include alloys of magnesium, titanium, and aluminum.
The magnesium alloys, in addition to the combination of low density (1.7 g/cm3) [1] and
high dimensional density, are also characterized by a good damping capacity, low casting
shrinkage, good castability, and the possibility to apply them to the manufacturing of
machinery and equipment that operate in temperatures reaching 300 ◦C. The application
of magnesium alloys is not restricted to the automotive industry only, but also to the manu-
facturing of airplanes, computers, helicopters, home appliances, and office equipment as
well as the chemical industry, aeronautics, radio engineering, and the power industry. A
disadvantage of these materials is their low resistance to abrasive wear and corrosion. Al-
ternative solutions to this issue include the application of surface engineering technologies
to improve the applicative properties of the materials discussed herein [2–5].

The prospective solutions aimed at increasing the usable properties of magnesium
alloys and, in consequence, the improvement of their applicative attractiveness include
the methods of thermal spraying of coatings. The benefits resulting from the application
of coatings include, without limitation, the possibility of regeneration and restoring the
usable properties of machines and equipment that operate under conditions of abrasive,
erosive, and corrosive wear as well as the combination of the beneficial properties of the
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core with resistance to wear, hardness, and heat. Depending on the source of heat used
to melt the coating material, the following types of spraying can be differentiated: wire
flame and powder flame spraying, crucible spraying, arc spraying, plasma spraying, and
supersonic spraying [6–8]. The high-velocity oxygen fuel (HVOF) spraying method is one
of the most commonly used methods. The high velocity of the powder particles and their
moderate temperature cause them to “nest” on the surface of the sprayed substrate surface
with immense adhesive force, enabling in effect the production of a very dense coating.
The commercial powders for thermal spraying of hard metal coatings that are available
on the market are based on hard materials (WC and Cr3C2). The most important binding
metals are cobalt (Co) and nickel (Ni), which are frequently combined with chromium (Cr).
Thus, in the case of an alloy binding agent, chromium is divided between the hard phase
and the binder phase [9–12]. At present, the literature contains only a few papers related to
the deposition of hard coatings on magnesium alloy substrates [12–14].

In this manuscript, the results of preliminary research are presented. Currently, there
are several methods for producing coatings with the use of thermal spraying with the
HVOF method with the use of commercial powders available on the market, including on
structural alloyed and unalloyed quality steels for thermal improvement, stainless steels,
and nickel alloys, while the use of light construction materials as the substrate in the form
of magnesium alloys with low resistance to tribological factors has not been thoroughly
researched and discussed to date.

2. Materials and Methods
2.1. Coating Deposition

Investigations were carried out on AZ31 magnesium alloy substrate samples. The
diameter of the substrate was 100 mm and the thickness was 5 mm. The chemical com-
position of the alloy is shown in Figure 1. The particle size of the commercially available
powders Cr3C2 25% wt. NiCr (Amperit 588.059) and WC–CrC–Ni (Amperit 543.074),
supplied by Höganäs, was in the range of 30 + 5 µm and 45 + 15 µm, respectively.
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Figure 1. Cross-section image of the substrate (a) and the EDS analysis of the substrate (b).

The chemical composition of the feedstock powders that were used in the coating
manufacturing process is given in Table 1 [15].
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Table 1. The chemical composition of the WC–CrC–Ni (WC) and and Cr3C2–NiCr (CrC) cermet
powders [15].

Sample Code
Element, wt.%

Cr C Fe Ni O2 W

CrC balance 9–11 max. 0.5 18–22 max. 0.6 –

WC 34–39 7.5–8.5 max. 0.3 14.5–17.5 max. 0.2 balance

Figure 2 shows the scheme of the manufacturing process and investigation plan for
the deposited WC–CrC–Ni (WC) and Cr3C2–NiCr (CrC) coatings. The surface of the
magnesium alloy substrate was pre-processed by ultrasonic sandblasting with corundum.
The corundum grit was F40, according to the FEPA (Federation of European Producers of
Abrasives) standard. The C-CJS spray system Thermico (CERTECH Company, Wilamowice,
Poland) was used to manufacture coatings. Kerosene and oxygen were used as the fuel
media, whereas nitrogen was used as the carrier gas. During spraying, the maximum
temperature of the flame was about 3250 K. The maximum temperature on the substrate’s
surface was about 600 K. Some additional details can be found in [16].
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Figure 2. Schematic diagram of the manufacturing process and analysis method for WC and CrC coatings.

2.2. Coating Characterization
2.2.1. The Microstructure

The thermally sprayed coatings were analyzed using a scanning electron microscope
(SEM, Supra 35, Zeiss, Oberkochen, Germany) with secondary electron and backscat-
tered detectors. The observations were carried out on the coatings’ surfaces and their
cross sections. The chemical composition was analyzed by energy dispersive X-ray spec-
troscopy (EDS).

2.2.2. Surface Topography, Roughness, and Porosity

The surface roughness of sprayed coatings was measured by a stylus profilometer
(MarSurf PS 10, Mahr, Germany), according to the ISO 4288 standard, with Gaussian
filters according to the ISO 16610-21 standard [17]. Ten measurements on each sample
were carried out. Afterwards, the average values, as well as standard deviations, were
calculated for the Ra and Rz linear roughness parameters. Measurements of surface
topography were carried out under ambient conditions and with the use of a commercial
scanning probe. Coatings’ cross sections were observed by a Keyence VHX6000 (Keyence



Materials 2021, 14, 1594 4 of 14

International, Mechelen, Belgium) microscope. Based on these images, carried out at 500×
magnification, the porosity of sprayed coatings was estimated according to the ASTM
E2109-01 standard [18]. Image J open-source software was used to calculate the porosity.
Details of the porosity determination are given in [19].

2.2.3. Mechanical Properties

The hardness of the coatings was tested on the ground and polished section by the
Vickers hardness test method (HV0.5). The tests were performed along lines perpendicular
to the specimen’s surfaces, along the run face axis. Hardness by instrumented indenta-
tion tests (HITs) were carried out on an NHT3 nanoindenter (Anton Paar, Graz, Austria)
equipped with a Berkovich indenter and were performed at room temperature on the cross
sections in accordance with the ISO 14577-4:2016 standard [20]. With this method, the in-
strumented Young’s modulus of the sprayed coatings was determined based on Oliver and
Pharr’s methodology [21]. The details of the measurement procedure can be found in [22].
For hardness measurements, the value of the maximum load was equal to 500 mN, whereas
for the elastic modulus (EIT) the range of maximum load was from 50 mN to 500 mN. In
both cases, the dwell time was equal to 15 s. The fracture toughness of HVOF-sprayed
coatings on magnesium alloy substrates was determined by a Vickers indentation test and
cracks that occurred were measured according to the Palmqvist observation [23]. We next
identified cracks according to the classification proposed and detailed by Chicot et al. [24].
There are two types of cracks, namely: (i) radial median ones; and (ii) Palmqvist ones. More
information about these types can be found in [25]. In order to select the proper model
for the indentation fracture toughness (IFT) determination, the ratio between total crack
length (c) and half of the imprint diagonal (a) should be determined. When the c/a ratio is
below 2.5 [26], the Palmqvist type of crack has formed. According to Chicot et al. [24] the
formula for fracture toughness (KC) determination is as follows:

KC(P) = 0.0089·
(

E
H

)2/5
· P
a·l1/2 (1)

where:
E—Young modulus, MPa (obtained in the instrumented indentation test);
H—Vickers hardness, MPa;
P—maximum load in the indentation fracture toughness, N;
a—half of the imprint diagonal, m; and
l—average crack length, m.
The indentation toughness (IFT) was estimated with the Vickers indenter under the

maximum load equal to 9.81 N (1 kG). Ten imprints in random locations on the coating
cross sections were indented. In the literature, more than 30 different models of the IFT
can be found [27]. For comparison with the results of the IFT values, some additional
models were used in the current study: Niihara, Morena, Hasselman (NMH) [28] and
Shetty, Wright, Mincer, and Clauer (SWMC) [29].

2.2.4. The Wear Resistance

The wear resistance tests were carried out using the “pin-on-disc” method in accor-
dance with the ASTM G99 [30] standard with linear mode tribometer version 6.1.19 (Anton
Paar, Peseux, Switzerland). The test parameters are given in Table 2. To determine the
mechanism of the wear, the topography was analyzed using an SEM and the wear rate (KV)
was calculated from the wear formula of Lancaster [31]:

KV =
Vwear

FN ·S
(2)

where:
Vwear—volume lost, mm3;
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FN—normal load, N; and
S—sliding distance, m;

Table 2. The wear test parameters of the “pin-on-disc” method [30].

Linear Speed,
cm/s

Temperature,
◦C

Test
Frequency, Hz

Normal Load,
N Distance, m Counter Body

Al2O3, mm

5 20 2.65 10 50 6

3. Results and Discussion
3.1. The Microstructure

The observations of the WC and CrC microstructures of the coatings on the magnesium
alloy substrate AZ31 using a scanning electron microscope were carried out in the BSD
(backscatter electron detector) and SE (secondary electron) modes at an EHT (electron
high tension) voltage from 5 to 20 kV. The EDS X-ray microanalysis revealed the presence
of Mn (AlMn) and Al (Mg17Al12) phases in the substrate material in the entire volume.
The microscopic observations did not reveal the surface treatment’s influence on the size
and distribution of the intermetallic phases or changes in the AZ31 substrate’s structure
(Figures 3b and 4b).
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The microstructures shown in Figures 3a and 4a indicate uniform, compact, and
layered coatings [32,33]. The average thickness of the coatings obtained as a result of
HVOF spraying was about 162 ± 18 µm for WC and 344 ± 12 µm for CrC. The thickness of
the WC coating was reduced when compared with CrC. Despite the fact that the spraying
process was the same, the obtained thickness of the coatings was different. This may
be because the tungsten carbide powder is heavier (2.5–3.5 g/cm3) than the Cr3C2–NiCr
powder (2.3–3.0 g/cm3) according to the standard ASTM B212 [15]. Nevertheless, the
lower deposition efficiency for the WC coating is related to the process parameters, which
should be adjusted to the specific powder. We did not observe any discontinuity in the
structure of the WC coating. In the case of the CrC coating, the pore size measured along
the longest diagonal did not exceed 2 µm. The calculated porosity value for both samples
was typical for HVOF coatings. For WC, it was equal to 3.7 ± 0.7 vol. % and for CrC
it was equal to 2.4 ± 0.5 vol. %. The higher porosity of the WC coating may be due to
the fact that its tungsten carbide (WC) powder has a high melting point (about 3143 K).
Another factor that influenced the porosity value (which was higher for the WC sample
than for the CrC one) is particle size. Similar values have been published by [34,35]. The
occurrence of cracks and voids could result in a reduction in the durability of the coating
as well as crack propagation and ultimately delamination. Moreover, the discontinuities
in the structure reduce the resistance to hardness, erosion, and corrosion [36]. The linear
chemical analysis of the coatings (Figures 3c and 4c) and substrate (Figures 3d and 4d),
respectively, confirmed that there was no diffusion process between the coating and the
substrate in both cases.

SEM micrographs and point element analysis as well as the area distribution showed
spherical unmelted and semi-melted carbide particles (dark grey (Cr3C2) and white (WC)
areas in Figure 5) in a metallic nickel matrix. A similar phenomenon was observed by
Dent et al. [37].
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An analogous phenomenon was observed for the CrC layer. Here, one can observe
spherical, dark grey chromium carbides in the matrix of the bright nickel and chromium
region. Black areas of irregular shape constitute porosity. The results of the chemical
composition measurement are presented in Tables 3 and 4. Both carbides were evenly
distributed in the corresponding metal matrix. Evenly distributed structural elements,
including carbides, significantly affect the strength of the coating. Sidhu et al. [34] came to
similar conclusions. They combined the increase in the hardness of the obtained coatings
with a high content of well-dispersed carbides in the matrix.

Table 3. Results of the chemical composition analysis of the WC coating.

Point 1 from
Figure 5a

Point 2 from
Figure 5a

Point 3 from
Figure 5a

4—Area from
Figure 5a

At % Wt % At % Wt % At % Wt % At % Wt %

Cr 71 ± 0.1 51 ± 0.2 04 ± 0.2 11 ± 0.1 32 ± 0.6 43 ± 0.7 33 ± 0.2 32 ± 0.3

W 14 ± 0.4 02 ± 0.1 94 ± 0.1 70 ± 0.1 29 ± 0.4 11 ± 0.1 42 ± 0.4 11 ± 0.7

Ni – – – – 38 ± 0.1 45 ± 0.2 14 ± 0.1 12 ± 0.1

C 14 ± 0.1 45 ± 0.1 01 ± 0.7 18 ± 0.8 – – 10 ± 0.4 43 ± 0.9

Table 4. Results of the chemical composition analysis of the CrC coating.

Point 1 from Figure 5b Point 2 from Figure 5b 3—Area from Figure 5b

At % Wt % At % Wt % At % Wt %

Cr 34 ± 4.3 37 ± 2.1 84 ± 5.8 56 ± 1.2 59 ± 2.2 42 ± 0.6

Ni 65 ± 2.7 62 ± 3.9 – – 28 ± 4.1 17 ± 0.9

C – – 15 ± 2.2 43 ± 0.8 12 ± 0.7 39 ± 3.5

3.2. The Topography and Roughness of Coatings

The average surface roughness of the coatings in the as-sprayed condition is given in
Table 5. The results are expressed as the average values from five measurements. The Ra
(the arithmetic mean of ordinates of the roughness profile) and Rz (the maximum height
of the roughness profile) roughness parameters were determined. It can be seen that all
surface topography parameters of the WC coating are greater when comparing them to
those of the CrC coating. We observed an increase of the roughness of about 33% between
the two coatings. The higher surface roughness of the WC sample is connected to the bigger
particles of the feedstock powder than for the CrC one. They are in the range of results
reported in other papers for coatings with a similar chemical composition [38]. Figure 6a,b
shows a topography of the manufactured coatings. In both cases, irregularly shaped grains
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of WC or Cr3C2 can be observed. This may be connected to the phenomenon that, in the
flame, only the nickel matrix was melted, whereas the relatively big and hard grains were
not dissolved [39].

Table 5. The average surface roughness of the coatings in the as-sprayed condition.

Sample Code
Roughness Parameter

Ra, µm Rz, µm

WC 3.8 ± 0.3 22.1 ± 1.3

CrC 2.9 ± 0.2 13.3 ± 0.9
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3.3. The Hardness, Instrumented Indentation, and Fracture Toughness of the Coatings

The hardness of the sprayed coatings increased significantly in comparison with the
substrate. The average value of the WC coating is about 150 HV 0.5 higher than that of the
CrC one. The average hardness of AZ31 alloy is 75 ± 4 HV 0.5 (Figure 7). It was reported
in [40] that the hardness of the deposited CrC coating was the lower one and the main
reason for the finding of hardness differences is the difference in their chemical composition.
Additionally, [41] in their work indicate that coatings obtained by the HVOF method show
higher hardness values comparatively with the substrate (about 74 ± 3 HV) [42]. The
hardness of HVOF coatings increased due to the presence of Cr and W carbide phases in
the structure. Similar values can be found in the literature [43].
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The hardness instrumented indentation (HIT) tests were carried out in order to deter-
mine the microhardness and elastic modulus (EIT). An average of 10 measurements were
taken. In the case of the WC coating, the estimated value of microhardness was higher and
may be result of indentation in an area with more hard phases, while lower microhardness
values will be found in areas with more binder phases or defects. Similar values can be
observed in [44]. The obtained values of the hardness instrumented indentation and instru-
mented elastic modulus for the WC and CrC coatings are given in Table 6. When compared
with other results in the literature, the obtained values of EIT are similar [45,46]. Slight
differences could result in a different structure (mainly the porosity level) and different
details of the phase composition, which are derivatives of the process parameters.

Table 6. The mechanical properties of the coatings in the as-sprayed condition.

Sample Code HIT, GPa EIT, GPa

WC 11.8 ± 1.7 314

CrC 8.7 ± 0.5 224

The obtained results confirm that the harder coating (WC) exhibited lower values of
fracture toughness than the CrC coating. The average values as well as standard deviations
of the fracture toughness of the manufactured composite coatings obtained from different
models are shown in Table 7. As reported by [47], the CrC coating demonstrated a similar
fracture toughness (4 ± 1 MPa m1/2). Similar results are also presented in [48].

Table 7. Indentation fracture toughness of composite coatings sprayed by the high-velocity oxygen
fuel (HVOF) method.

Sample Code Indentation Fracture Toughness, MPa·m1/2

Palmqvist NMH SWMC

WC 3.8 ± 0.5 3.6 ± 0.6 3.6 ± 0.6

CrC 4.5 ± 0.8 4.4 ± 0.7 4.6 ± 0.7

3.4. Wear Resistance

Based on the sliding wear investigations, the manufactured coatings have good wear
resistance. The values of wear rate were equal to 6.5 ± 1.4·10−6 mm3/(N·m) for the WC
coating and 12.6 ± 3·10−6 mm3/(N·m) for the CrC coating.

The typical wear trace is given in Figure 8a,b. It indicates that the wear rate of the WC
coating is lower than that of the CrC coating by about 50%. W. Fang et al. [49] reported
that WC coatings are very protective for the substrate and have excellent wear resistance.

The abrasive wear resistance of thermally sprayed coatings depends on many factors,
including microstructure, microhardness, and fracture toughness as well as cohesion in
the coating [50]. A high abrasion resistance may depend on the coating having high
hardness, which has also been reported in [51]. The wear resistance is also affected by the
powder composition, so the WC coating displays better resistance. The mechanism that
occurred is similar to the one observed and described by [52]. Additionally, [53] noticed
that the thermally sprayed WC coating is a hard and wear-resistant material. The dominant
mechanism of wear is a classic adhesive one. The increasing temperature during tests can
cause oxidation wear to occur (bright areas in Figure 9). Much more oxidized areas were
observed in the WC coating (Figure 9a,b). Analysis of the wear track on the WC coating
revealed numerous cracks and evidence of the occurrence of fatigue and decohesion wear.
In craters were observed small particles of wear debris. The occurrence of fatigue wear
was also revealed during the observation of the wear debris (large flakes) (Figure 10a).
In the wear track on the CrC coating, significantly fewer craters and signs of fatigue
wear were observed. We also observed traces of low-cycle fatigue and cracks between
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individual hard Cr3C2 grains. The abrasion surface was much smoother than the that of
the WC coating (Figure 9c). However, numerous places with plastic deformation of the
surface were observed (Figure 9d), which is consistent with the values generally reported
in the literature for such coatings tested under similar conditions [54]. Additionally, we
also observed small traces of abrasive grooving in the matrix material. The wear debris
observed at the edges of the wear track was finer than that of the WC coating (Figure 10b).
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In the case of the CrC coating, we observed some delamination and “wavy” regions,
which are linked to the low-cycle fatigue. Probably, this is an effect of the microscale plastic
deformation of the coating. This phenomenon was developed by Kato and Adachi [55].
For the WC coating, there were no low-cycle fatigue areas, but a crack net was clearly
observed. This is connected to the higher hardness of the WC material than the CrC
material and, consequently, there were higher stresses between the two abrasive bodies,
which finally caused many cracks. It is a brittle cracking mode, as observed in [56]. The
surface of the Al2O3 counter body after the wear resistance tests was quite clean and
relatively smooth [57]; however, we also observed some shallow groves as an effect of the
abrasive wear mode. There were interactions between the alumina, hard particles, and
sometimes third-body oxidized debris particles (Figure 11a,b). A similar mechanism was
observed in [56]. Additionally, the friction coefficient values were equal to 0.29 ± 0.02 and
0.65 ± 0.04 for the WC and CrC coatings, respectively. The obtained results are quite close
to the values reported in the literature [58,59].
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4. Conclusions

Based on the tests carried out on the WC and CrC coatings deposited on an AZ31
magnesium alloy substrate with HVOF spraying, the following conclusions were drawn:

1. The microstructures indicate uniform, compact, and layered coatings. The coating
does not disclose cracks or voids. Despite the fact that the thermal spraying process
of both coatings was performed with the same parameters, the coating thickness of
the CrC is much greater than the coating thickness of the WC. This is the effect of the
higher deposition efficiency and the lower powder density. The increased porosity of
the WC coating is due to the higher melting point of the WC powder.
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2. The increased roughness of the WC coating (Ra = 3.8 ± 0.3 µm) may be related to the
poorer wettability of the substrate material AZ31 compared with the same relationship
for the CrC coating (2.9 ± 0.2 µm).

3. The hardness of the sprayed coatings was equal to 1096 ± 87 and 949 ± 105 HV 0.5
for the WC and CrC coatings, respectively. In the case of hardness instrumented
indentation (HIT), the estimated microhardness value of the WC coating was higher
than that of the CrC coating, which may be due to an indentation in the area with
hard phases, and the lower hardness of the coating may result from measurements
taken in an area with more binder phases or defects.

4. The most noticeable effect of WC addition was observed for wear resistance. The
WC coating showed a wear intensity value equal to 6.5·10−6 mm3/N·m, whereas for
the CrC coating this value was equal to 12.6·10−6 mm3/N·m. As a result, it can be
concluded that the WC coating has better wear resistance compared with the CrC
coating. The better wear resistance of the WC coating results from the lower value of
the friction coefficient (0.29 vs. 0.65) as well as the higher hardness (1096 HV0.5 vs.
949 HV0.5). On the other hand, the WC coating exhibited a slightly lower value of
fracture toughness.
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2. Tański, T. Shaping the structure and surface of Mg-Al-Zn alloys. Sci. Int. J. World Acad. Mater. Manuf. Eng. 2012, 2, 1–158, (In

Polish or In English).
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16. Jonda, E.; Łatka, L.; Więcław, G. Preliminary Studies on HVOF Sprayed Coatings on Magnesium Alloys. Mater. Process. 2020, 2,
23. [CrossRef]

17. ISO16610-21: 2011 Geometrical Product Specification (GPS)–Filtration–Part 21: Linear Profile Filteres: Gaussian Filteres. Available
online: https://www.iso.org/standard/50176.html (accessed on 15 January 2021).

18. ASTM E2109-01. Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings; ASTM: West Con-
shohocken, PA, USA, 2014.

19. Michalak, M.; Łatka, L.; Szymczyk, P.; Sokołowski, P. Computational image analysis of Suspension Plasma Sprayed YSZ coatings.
In Proceedings of the ITM Web of Conferences, II International Conference of Computational Methods in Engineering Science
(CMES’17), Lublin, Poland, 23–25 November 2017; EDP Sciences: Les Ulis, France, 2017; Volume 15, p. 06004. [CrossRef]

20. ISO 14577-4. Metallic Materials–Instrumented Indentation Test for Hardness and Materials Parameters–Part 4: Test Method for Metallic
and Non-Metallic Coatings; ASTM: West Conshohocken, PA, USA, 2016.

21. Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement
sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [CrossRef]

22. Łatka, L.; Chicot, D.; Cattini, A.; Pawłowski, L.; Ambroziak, A. Modeling of elastic modulus and hardness determination by
indentation of porous yttria stabilized zirconia coatings. Surf. Coat. Technol. 2013, 220, 131–139. [CrossRef]

23. Palmqvist, S. Occurrence of crack formation during Vickers indentation as a measure of the toughness of hard materials. Arch.
Eisenhuettenwes 1962, 33, 629–634.

24. Chicot, D.; Duarte, G.; Tricoteaux, A.; Jorgowski, B.; Leriche, A.; Lasage, J. Vickers indentation fracture (VIF) modeling to analyze
multi-cracking toughness of titania, alumina and zirconia plasma sprayed coatings. Mater. Sci. Eng. A 2009, 527, 65–76. [CrossRef]

25. Lube, T. Indentation crack profiles in silicon nitride. J. Eur. Ceram. Soc. 2001, 21, 211–218. [CrossRef]
26. Roy, M.; Pauschitz, A.; Bernardi, J.; Koch, T.; Franek, F. Microstructure and mechanical properties of HVOF sprayed nanocrystalline

Cr3C2-25(Ni20Cr) coating. J. Spray 2006, 15, 372–381. [CrossRef]
27. Ponton, C.B.; Rawlings, R.D. Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standard-

ised indentation toughness equations. Mater. Sci. Technol. 1989, 5, 865–872. [CrossRef]
28. Niihara, K.; Morena, R.; Hassleman, D.P.H. Evaluation of KIC of brittle solids by the indentation method with low crack to indent

ratio. J. Mater. Sci. Lett. 1982, 1, 13–16. [CrossRef]
29. Shetty, D.K.; Wright, I.G.; Mincer, P.N.; Clauer, A.H. Indentation fracture of WC-Co cermets. J. Mater. Sci. 1985, 20, 1873–1882.

[CrossRef]
30. ASTM G99-17. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus; ASTM: West Conshohocken, PA, USA, 2005.
31. Lancaster, J.K. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear 1967,

10, 103–117. [CrossRef]
32. Lima, R.S.; Karthikeyan, J.; Kay, C.M.; Lindemann, J.; Berndt, C.C. Microstructural characteristics of cold-sprayed nanostructured

WC. Co coatings. Thin Solid Film. 2002, 416, 129–135. [CrossRef]
33. Guilemany, J.M.; Fernández, J.; Delgado, J.; Benedetti, A.V.; Climent, F. Effects of thickness coating on the electrochemical behavior

of thermal spray Cr3C2-NiCr coatings. Surf. Coat. Technol. 2002, 153, 107–113. [CrossRef]
34. Sidhu, H.S.; Sidhu, B.S.; Prakash, S. Mechanical and microstructural properties of HVOF sprayed WC-Co and Cr3C2-NiCr

coatings on the boiler tube steels using LPG as the fuel gas. J. Mater. Process. Technol. 2006, 171, 77–82. [CrossRef]
35. Zhan, S.-H.; Cho, T.-Y.; Yoon, J.-H.; Li, M.-X.; Shum, P.W.; Kwon, S.-C. Investigation on microstructure, surface properties and

anti-wear performance of HVOF sprayed WC-Cr-Ni coatings modified by laser heat treatment. Mater. Sci. Eng. B 2009, 162,
127–134. [CrossRef]

36. Espalllargas, N.; Berget, J.; Guilemany, J.M.; Suegama, A.V. Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to
hard chromium for erosion-corrosion resistance. Surf. Coat. Technol. 2008, 202, 1405–1417. [CrossRef]

37. Dent, A.H.; Horlock, A.J.; Mc Cartney, D.G.; Harris, S.J. Microstructure formation in high velocity oxy–fuel thermally sprayed
Ni-Cr-Mo-B alloys. Mater. Sci. Eng. 2000, 283, 242–250. [CrossRef]
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