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Abstract: Diffraction and phase contrast tomography techniques were successfully applied to an
austenitic–ferritic duplex stainless steel representing exemplarily a metallic material containing two
phases with different crystal structures. The reconstructed volumes of both phases were discretized
by finite elements. A crystal plasticity finite-element analysis was executed in order to simulate the
development of the experimentally determined first and second order residual stresses, which built
up due to the manufacturing process of the material. Cyclic deformation simulations showed the
single-grain-resolved evolution of initial residual stresses in both phases and were found to be in
good agreement with the experimental results. Solely in ferritic grains, residual stresses built up due
to cyclic deformation, which promoted crack nucleation in this phase. Furthermore, phase contrast
tomography was applied in order to analyze the mechanisms of fatigue crack nucleation and short
fatigue crack propagation three-dimensionally and nondestructively. The results clearly showed the
significance of microstructural barriers for short fatigue crack growth at the surface, as well as into
the material. The investigation presented aims for a better understanding of the three-dimensional
mechanisms governing short fatigue crack propagation and, in particular, the effect of residual
stresses on these mechanisms. The final goal was to generate tailored microstructures for improved
fatigue resistance and enhanced fatigue life.

Keywords: synchrotron tomography; short fatigue crack growth; residual stress; crystal plasticity;
very high cycle fatigue

1. Introduction

The failure of safety-relevant components by fatigue of materials in form of crack
initiation and propagation caused by periodic loading far below the static strength of
a material may cause unexpected damage events and, thereby, is a thread not just for
components and engineering structures but also for human life. It is known that the
phases of fatigue crack initiation and propagation can cover more than 90% of the total
fatigue life of a material at loading situations close to the conventional fatigue limit [1],
and therefore, this fatigue stage can be considered as determining time to failure of a
component. Recent investigations have shown the significance of microstructural aspects,
such as (i) anisotropic elasticity of grains, (ii) three-dimensional geometry of grain and
phase boundaries, and (iii) microscopic residual stresses, for fatigue crack initiation and
propagation [2,3].
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Three-dimensional characterization of dual phase materials has already been realized
by means of serial sectioning electron back scatter diffraction (EBSD) experiments [4–6].
However, being a destructive technique, serial sectioning does not provide the possibility
to follow the microstructure evolution quasi in situ by means of interrupted fatigue exper-
iments. The combined use of X-ray diffraction contrast tomography and multi-distance
phase contrast tomography [7] allows for the unique possibility to reconstruct the three-
dimensional microstructure of a two-phase material while simultaneously determining
the crystallographic orientation of each grain. Due to the very high resolution achieved
in holotomography experiments, a high certainty of the location of inter-phase grain
boundaries is achieved. The non-destructive nature of these techniques allows for cyclic
deformation with intermittent hold times or slow cycles for grain orientation and grain
shape determination.

In a previous study [8], the cyclic deformation-induced change of manufacturing-
caused residual stress in the investigated austenitic–ferritic duplex stainless steel was
experimentally characterized by means of high energy synchrotron radiation for up to
one hundred million load cycles. Due to a higher thermal expansion coefficient of the
austenite phase in comparison to the ferrite phase, tensile residual stress is generated in
austenite grains and compressive residual stress is generated in ferrite grains as a result of
prior quenching from 1050 ◦C to room temperature as the final part of the manufacturing
process of the material. The change of residual stress was investigated by measuring the
lattice spacing d by means of synchrotron radiation diffraction experiments after predefined
numbers of loading cycles (intermittent fatigue test) and determining the relative change of
the lattice spacing ∆d with respect to the initial lattice spacing before cyclic loading dN = 0.

Only small changes of the relative lattice spacing as a function of the number of
load cycles N were found in most of the austenite grains and also in some of the ferrite
grains (shown exemplarily for one grain in Figure 1), indicating that no change of residual
stress occurred in these grains. In about half of all ferrite grains, the lattice spacing was
found to increase continuously during the first 5·105 load cycles and, subsequently, to
decrease again slightly (Figure 2). Hence, initial compressive residual stress was reduced
in these ferrite grains during cyclic deformation. This is a comprehensible effect since it is
well-known that plastic deformation usually causes a reduction of initial residual stress.
This increase of lattice spacing was not observed in any austenite grain. A third trend
showed that the lattice spacing in a few austenite grains appeared to first stay unchanged
until 105 load cycles, but then, during subsequent load cycles, the lattice spacing in these
grains continuously became smaller (Figure 3), indicating that initial tensile residual stress
was reduced in these austenite grains during cyclic deformation, being a comprehensible
effect as already stated above. The most interesting observation in this study was that
an increase of lattice spacing was found for many ferrite grains, indicating a reduction
of the initial compressive residual stress This effect of partial annihilation of compressive
residual stress in some ferrite grains is remarkable and seems to promote the observed
predominant fatigue crack initiation process in the ferrite phase as described in detail
in [9,10]. It should be noted that the saturation or slight reduction of initial tensile residual
stress in the austenite grains is in accordance with the observed true fatigue limit found for
the material investigated.

The present study shows experimental techniques that enable the nondestructive
characterization of three-dimensional polycrystalline microstructures in order to obtain
information about the shape and crystallographic orientation of the single grains. Moreover,
these techniques enable the investigation of the three-dimensional interaction between
short fatigue cracks and grain and phase boundaries. It is shown how this experimental
data can be used in the framework of three-dimensional crystal plasticity finite-element
simulations to calculate realistically the development of residual stress as a function of
the number of load cycles. Such simulations may serve as a basis for a realistic fatigue life
assessment model, which may enable the development of tailored microstructures with
improved fatigue resistance and enhanced fatigue life in the future.
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Figure 1. Relative change of lattice spacing d in a single grain during cyclic loading at a stress
am-plitude of 380 MPa, using the example of an austenite [040] reflection according to [8].

Figure 2. Relative change of lattice spacing d in a single grain during cyclic loading at a stress
am-plitude of 380 MPa, using the example of a ferrite [031] reflection according to [8].

Figure 3. Relative change of lattice spacing d in a single grain during cyclic loading at a stress
am-plitude of 380 MPa, using the example of another ferrite [031] reflection according to [8].
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2. Experimental Details

Duplex stainless steels have a high corrosion resistance and relatively high strength,
which makes them very attractive for use, e.g., in offshore systems or systems for the
chemical and petrochemical industry. The investigated austenitic-ferritic duplex stainless
steel 318LN (German designation X2CrNiMoN22-5-3) was delivered as hot rolled and
solution annealed bars with a diameter of 25 mm. The material consisted of a fine lamellar
microstructure with about 50 vol% austenite and 50 vol% ferrite. The chemical composition
of the material is shown in Table 1. In order to ease the experimental investigations, a
grain coarsening was carried out by annealing the material at 1250 ◦C for 4 h followed by a
cooling down to 1050 ◦C within 3 h at constant cooling rate. Subsequently, the material
was quenched in water. By means of this heat treatment, the initial volume fraction of both
phases was maintained, and the mean grain diameter of the austenite phase and the ferrite
phase was increased to 33 µm and 46 µm, respectively. Figure 4 shows the microstructure
of the material studied after the heat treatment in a plane parallel to the rolling direction
(vertical). The austenite phase is presented in Figure 4a, while the ferrite phase is depicted
in Figure 4b. The colors represent the crystallographic orientation of the grains according
to the color code inserts, which show the [001] standard triangle. The images were obtained
by means of an automated electron backscatter diffraction (EBSD) analysis. In order to
execute the EBSD analysis, a material sample was prepared by grinding and electrolytic
etching. Mechanical properties of the heat-treated condition (HTC) and the as-received
condition (ARC) of the duplex stainless steel were investigated by means of tensile tests in
rolling direction. The mechanical properties are presented in Table 2.

Table 1. Chemical composition of the investigated duplex stainless steel (mass concentration in %) [11].

C Cr Ni Mo N Fe

0.03 21.0–23.0 4.5–6.5 2.5–3.5 0.1–0.22 rest

Table 2. Mechanical properties of the heat-treated condition (HTC) and the as-received condition
(ARC) of the investigated duplex stainless steel in rolling direction [11].

Condition Young’s
Modulus [GPa]

0.2% Yield
Strength [MPa]

Tensile
Strength [MPa]

Elongation at
Fracture [%]

HTC 197 535 770 59
ARC 197 720 870 33

For the application of the diffraction contrast tomography (DCT) technique, a poly-
crystalline sample was mounted on a rotating sample holder and irradiated by means of a
monochromatic X-ray beam (Figure 5). The energy of the X-ray beam had to be sufficiently
high or the irradiated sample had to be sufficiently thin that enough X-ray radiation could
transmit and that multiple diffraction was prohibited. Crystal planes of single grains
diffracted the X-ray beam when fulfilling the Bragg condition. Hereby, single diffraction
spots were generated on a semiconductor plate detector, which was positioned behind
the sample in the direction of the incident beam. Because the diffracted X-ray beams
did not reach the detector in the direction of the incident beam, an extinction spot was
generated at the projected area of the diffracting grain in the direction of the incident beam
at the detector. Furthermore, a diffraction spot was generated at the position where the
diffracted beam reached the detector. The sample was rotated in small angle increments
(0.1◦) by, in total, 360◦ around the cylinder axis, and after each rotation step, a diffrac-
tion pattern was recorded by the detector. By means of the positions of the diffraction
spots in the diffraction patterns and the corresponding rotation angles of the diffraction
pattern images, the three-dimensional geometry and crystallographic orientation of each
grain could be reconstructed. For this purpose, a sophisticated mathematical algorithm
applied. Unfortunately, positioning all reconstructed grains at their correct position inside
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the sample volume could lead to a grain arrangement that does not represent the irradiated
volume perfectly. Rather, occasionally, the reconstruction process gave rise to overlapping
of several grains, or voids might be generated, affecting the accuracy of the determination
of the local grain boundary orientation [12]. This drawback was partially mitigated by
using the 3D phase reconstructions resulting from holotomography, a technique explained
in detail in [7]. Due to different absorption coefficients of different phases (here: austenite
and ferrite), contrast differences were generated on the semiconductor plate detector.

Figure 4. Inverse pole figure maps of (a) the austenite phase and (b) the ferrite phase of the investigated duplex stainless
steel, taken parallel to the rolling direction (vertical) according to [3].

In principle, the setup for the phase contrast tomography (PCT) technique was very
similar to that of DCT. The sample was rotated in small angle increments by, in total, 360◦

with respect to its axis, and at each angle, a contrast image was recorded. By overlapping the
single contrast images according to the corresponding rotation angles, a three-dimensional
volume reconstruction of the individual phases could be generated. In contrast to the
microstructure reconstruction, which was generated by means of the DCT technique, as
has been described before, the information of the crystallographic orientation of grains
and the information about intra-phase grain boundaries were missing in the data, which
was obtained by means of the PCT technique. However, the reconstructions that were
generated by PCT were more precise regarding the positions of phase boundaries. For a
more detailed description of the PCT technique the reader is referred to [14].

The cyclic deformation experiments were executed by means of ultrasonic fatigue
testing [15] at a testing frequency of about 20 kHz (Figure 6). The tests were carried out at
room temperature and in laboratory atmosphere. A sinusoidal mechanical stress wave was
generated by means of a piezoelectric crystal, amplified by means of a horn in its amplitude,
and introduced into a fatigue sample holder, on which a miniature fatigue sample was
mounted. Resonance occurred if the eigenfrequency of the assembly of miniature fatigue
sample and sample holder was identical to the excitation frequency of the piezoelectric
crystal. Then, the required stress amplitude in the area of minimum cross section of the
miniature fatigue sample was generated. A control system kept this amplitude constant.
Due to heat generation during the fatigue tests, a pulse-pause mode (100 ms/1200 ms) and
an air-cooling system were required. Hereby, the temperature rise in the fatigue sample
was restricted to maximum 5 ◦C. The chosen pulse-pause mode led to an effective testing
frequency of about 1.5 kHz. Hereby, a testing of very high numbers of load cycles was
possible in a reasonable testing time (e.g., one billion load cycles in about 7.5 days).
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Figure 5. Principle of diffraction contrast tomography [13].

Figure 6. Ultrasonic fatigue testing equipment according to [16], in combination with a newly
developed sample holder for miniature fatigue samples suitable for DCT and PCT.

3. Some Numerical Details

The user-defined material subroutine UMAT, which was developed by Huang [17]
for the commercial finite-element program ABAQUS, was applied in this study. This
subroutine assumed that the plastic shear on single slip systems was determined by the
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elastic shear stress acting on the corresponding slip system. The plastic shear rates
.
γpl on a

single slip system were calculated by means of the following rate dependent flow law [18]:

.
γpl =

.
a

(
τ

τf

)m

(1)

where
.
a is the reference value of the plastic shear rate, which is reached when the shear

stress τ equals the frictional shear stress τf. By means of the power law exponent m, the
course of the function

.
γpl = f (τ) is determined. An exponent value m→∞ corresponds to

rate-independent material behavior [18]. The plastic shear was determined by means of
numerical integration of the plastic shear rate over the time increment ∆t as follows:

∆γpl = ∆t
(
(1− θ)

.
γpl,t + θ

.
γpl,t+∆t

)
(2)

The implicit integration parameter θ determines which fraction of the plastic shear rate
at the end of a time increment is considered. The parameter can have a value between 0 and
1, whereas a value between 0.5 and 1 is recommended [19]. The plastic shear is iteratively
calculated during a time increment. The iteration ends when the calculated plastic shear
for a time increment is lower than a user-defined value ∆γpl,error. In the framework of the
simulations, which led to the results presented in the next section, the parameter values
shown in Table 3 were used. For a more detailed description of the UMAT subroutine the
reader is kindly referred to [17,20].

Table 3. Parameters used in this work for the UMAT subroutine [11,17].

Parameter Symbol Value Dimension

reference shear rate
.
a 10−3 [17] 1/s

power law exponent m 20 [17] –
frictional shear stress of austenite phase τfγ 68 [11] MPa

frictional shear stress of ferrite phase τfα 99 [11] MPa
implicit integration parameter Θ 0.5 [17] –

iteration stop criterion ∆γpl,error 10−5 [17] –

4. Results and Discussion

In order to reconstruct the microstructure of the investigated duplex stainless steel, the
advantages of both X-ray tomography techniques described in Section 2 were combined.
The reconstructed 3D-microstructure of the austenite phase (Figure 7a) and of the ferrite
phase (Figure 7b) were generated by combining the DCT volume data with the PCT volume
data. Before doing this, the overlapping grain volume of the DCT reconstruction data
was deleted.

A fatigue crack at the surface of a miniature sample, to which ultrasonic fatigue testing
at 20 kHz was applied, is shown in Figure 8a. The fatigue sample was fatigued at a stress
amplitude of 400 MPa. The test was stepwise interrupted in order to monitor the short
fatigue crack propagation by means of optical microscope images, which were taken after
different loading cycles. The fatigue crack presented in Figure 8 initiated at two nucleation
sites, i.e., (i) at the phase boundary between the austenite grain γ3 and the ferrite grain α2
and (ii) at the phase boundary between the austenite grain γ4 and the ferrite grain α3. The
transcrystalline crack nuclei grew together and subsequently propagated in both directions
as a consequence of further cyclic deformation. The crack growth was decelerated, when a
crack tip approached a phase boundary, such as in the case of the phase boundary between
the austenite grain γ7 and the ferrite grain α4. An acceleration of crack propagation was
always detected when the crack overcame the boundary. At the phase boundary between
the austenite grain γ1 and the ferrite grain α1, the crack was even temporarily stopped.
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Figure 7. Reconstruction of (a) the austenite and (b) the ferrite grain microstructure.

By means of the phase contrast tomography technique and the commercial 3D data
visualization software AVIZO FIRE, the crack shown in Figure 8a was examined nonde-
structively and represented three-dimensionally after different numbers of load cycles. In
order to execute the tomography investigations, the miniature sample had to be removed
intermittently from the ultrasonic test rig and precisely placed and mounted into the
synchrotron beam. Following each tomography experiment, the miniature sample was
installed back again in the ultrasonic fatigue testing device in order to continue the cyclic
loading, and so forth. The loading parameter values of the ultrasonic fatigue equipment
were thoroughly kept constant during the whole experiment.

The crack front after a predefined numbers of loading cycles is displayed in the view
direction parallel to the sample axis in Figure 8b. Clearly, the crack propagates roughly in a
half-elliptical shape. However, the crack propagation rate obviously shows significant local
differences. The crack is presented in Figure 8c after 3.75·105 loading cycles in the view
direction perpendicular to the sample surface. Furthermore, Figure 8d shows the crack
profile along the dashed white line delineated in Figure 8b. Both images (Figure 8c,d) clearly
show the characteristic zigzag path that is typical of propagation of microstructurally short
fatigue cracks, which propagate along single slip planes under predominant local single-
slip conditions. The changes of the propagation direction at grain or phase boundaries are
caused by changes in the crystallographic orientation (not shown here).

A three-dimensional microstructure of the investigated duplex stainless steel is pre-
sented in Figure 9. The ferrite phase is shown at the left side and the corresponding
austenite phase is depicted at the right side. The geometry of the grains and the phase
distribution was determined by means of the combination of DCT and PCT (see Section 2).
The geometry information was discretized by tetrahedral finite elements by means of
the commercial image processing software AVIZO FIRE. The experimentally determined
phase affiliation of each grain and the individual crystallographic grain orientation were
considered. Moreover, anisotropic elasticity and lattice-type-specific crystal plasticity were
taken into account in the stress distribution calculations (Section 3). The volume fraction of
both phases was confirmed to be about 50% each. In order to consider the behavior of the
surrounding of the depicted volume of the microstructure in a reasonable approach, this
section was embedded in a frame consisting of finite elements with isotropic-elastic mate-
rial behavior (Young’s modulus E = 197 MPa and Poisson’s ratio ν = 0.3). This surrounding
frame is not shown in Figure 9 for the sake of clarity.
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Figure 8. (a) Short fatigue crack propagation at sample surface. (b) Fracture surface of the fatigue
crack shown in a) as a function of the number of load cycles (view in loading direction). (c) 3D
geometry of the fatigue crack (view perpendicular to sample surface). (d) Profile of the fatigue crack
along the dashed line in (b).
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Figure 9. Development of residual stress in the ferrite phase (left) and the austenite phase (right) after
different simulated numbers of load cycles.

The nodes at the left face of the model were fixed in x-direction. One node at the
upper left corner of the model was fixed in z-direction and one node at the lower left corner
was additionally fixed in z- and y-direction to avoid rigid body motions. To define the
starting condition, the residual stress distribution resulting from the cooling at the end of
the initial annealing process was calculated. For this purpose, the quenching process from
1050 ◦C to room temperature was numerically simulated applying temperature-dependent
elastic constants E11, E12 and E44; a temperature-dependent thermal expansion coefficient
α; temperature-dependent microstructural frictional shear stresses of both phases; and
the temperature-dependent Young’s modulus E for the isotropic-elastic frame (details are
provided in [2]). Furthermore, the first order residual stresses, which were experimentally
determined by conventional X-ray diffraction measurements, were considered in the
microstructure section of Figure 9 by applying a load of 50.2 MPa in tension at the nodes
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at the right face of the model and 21 MPa in compression at the upper and lower face of
the model. The simulation of the quenching process was followed by a simulation of the
effect of load cycles. For this, a cyclic normal stress amplitude of 350 MPa was applied at
the nodes at the right face of the model.

Because of the higher coefficient of thermal expansion of the austenite phase as
compared to the ferrite phase, the starting condition after quenching was characterized by
dominating compressive internal stresses in the ferrite and tensile stresses in the austenite.
The distribution of the simulated residual normal stress in load direction σx in the ferrite
phase after different numbers of load cycles N is presented at the left side of Figure 9. Some
grains showed no change of the initial residual stresses with increasing numbers of load
cycles (e.g., position 1). However, initial compressive residual stresses in some other grains
were significantly reduced during the first loading cycles, but less during further cycles
(e.g., position 2). Furthermore, significant tensional residual stresses built up during the
first loading cycles in some grains, which reached a saturation state during the following
load cycles—for example position 3.

At the right side of Figure 9, the simulated residual normal stress in load direction σx
is presented for the austenite phase after different numbers of load cycles N. Some grains
showed no significant change of residual stress with increasing numbers of loading cycles
(e.g., position 4). However, a decrease of initial tensile residual stress was observed in the
other grains (e.g., position 5).

Basically, the expected equalization of the residual stresses by means of cyclic plastic
loading could be confirmed. However, in some ferritic grains, a localized stress increase
took place that seemed to promote crack initiation. It should be emphasized that this
type of calculations were found to explain the location of crack initiation [3]. In this
respect, 3D-calculations on the basis of an extruded microstructure, which do not take the
third-dimension correctly into account, are much less unerring.

5. Conclusions

Advanced diffraction contrast tomography (DCT) and phase contrast tomography
(PCT) were combined and successfully applied to an austenitic–ferritic duplex stainless
steel. It was shown that a three-dimensional microstructure of a metallic material that
contained two phases with different crystal structures could be reconstructed nondestruc-
tively. Besides the information on the phase distribution and grain microstructure of the
material, this sophisticated technique additionally provided crystallographic orientation
data of the grains.

The obtained data were used to create realistic three-dimensional finite-element mod-
els of the microstructure. By means of a crystal plasticity finite-element analysis, experi-
mentally determined first and second order residual stresses caused by the manufacturing
process of the material were simulated. The results of subsequent cyclic deformation
simulations were found to be in good agreement with experimental results on the evolution
of initial residual stress on the microstructural level and strongly support the identification
of the critical fatigue crack nucleation sites. In the duplex stainless steel investigated, solely
in ferrite grains, residual stresses built up locally due to cyclic deformation promoting
crack nucleation in this phase in accordance to the experimental observations.

By applying a suitable fatigue damage parameter (e.g., the one proposed in ref. [2]),
crystal plasticity finite-element simulations based on three-dimensional microstructures,
which were obtained nondestructively by means of DCT and PCT, provide a powerful
instrument to analyze and quantitatively judge separately the effect of microstructural
parameters regarding their influence on the fatigue behavior of a material. Furthermore,
cyclic loading experiments intermitted by DCT and PCT analyses enable a 3D visualization
and re-modeling of crack propagation behavior, being, in particular, useful for an improved
understanding of the mechanisms which control the propagation of microstructural short
fatigue cracks. The results of the present work clearly demonstrate the significance of phase
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and grain boundaries as microstructural barriers for short fatigue crack growth, both at the
surface and in the interior of multi-phase alloys.
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