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Abstract: In this study, the response of Pu2Zr2O7 and La2Zr2O7 to electronic radiation is simulated,
employing an ab initio molecular dynamics method. It is shown that Pu2Zr2O7 undergoes a crystalline-
to-amorphous structural transition with 0.3% electronic excitation, while for La2Zr2O7, the structural
amorphization occurs with 1.2% electronic excitation. During the microstructural evolution, the
anion disorder further drives cation disorder and eventually results in the structural amorphization
of Pu2Zr2O7 and La2Zr2O7. The difference in responses to electron radiation between Pu2Zr2O7

and La2Zr2O7 mainly results from the strong correlation effects between Pu 5f electrons and the
smaller band gap of Pu2Zr2O7. These results suggest that Pu2Zr2O7 is less resistant to amorphization
under local ionization rates that produce a low level of electronic excitation, since the level of the
concentration of excited electrons is relatively low in Pu2Zr2O7. The presented results will advance
the understanding of the radiation damage effects of zirconate pyrochlores.

Keywords: pyrochlores; electron radiation; structural amorphization; ab initio molecular dynam-
ics simulations

1. Introduction

With the growing demand for nuclear power, the problem of how to treat nuclear
waste safely, especially long-lived transuranic (TRU) elements such as plutonium (Pu) and
minor actinides (Np, Am) that are generated through spent fuel, has become extremely
important [1–3]. Pyrochlore-structured oxides with the general formula A2B2O7 (A = Y
or another rare earth element; B = Ti, Zr, Sn, or Hf) [4] exhibit a wide range of physical,
chemical, and electrical properties, including high ionic conductivity, superconductivity,
luminescence, and ferromagnetism [3]. A2B2O7 pyrochlores, thus, are taken as attractive
candidates for a variety of applications, including hosts for oxidation catalysts, solid elec-
trolytes, oxygen gas sensors, as well as ceramic thermal barrier coatings [5–7]. Particularly
great efforts have been devoted to evaluating the potential of pyrochlores as host matrices
for immobilization of TRU elements [4,8,9].

Zirconate pyrochlores possess high thermal stability, high chemical durability, and
remarkable resistance to radiation-induced amorphization, therefore being of special inter-
est [10–13]. Wang et al. reported that Gd2(ZrxTi1−x)2O7 systems (x = 0, 0.25, 0.5, 0.75, 1)
become increasingly radiation resistant with increasing zirconium content under 1 MeV
Kr+ irradiation [14]. Lian et al. found that among a series of A2Zr2O7 pyrochlores (A =
La, Nd, Sm, and Gd), only La2Zr2O7 can be amorphized under ion-beam irradiation [15].
Sickafus and coworkers studied the irradiation response of Er2Zr2O7 at a dose as high as
140 dpa by 350 KeV Xe+ at room temperature and found that Er2Zr2O7 cannot be amor-
phized [16]. Therefore, zirconate pyrochlores would be excellent candidate host matrices
for the immobilization of plutonium (Pu) and minor actinides.
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In the literature [17–22], atomic collision, electronic excitation, and ionization arising
from the electronic energy loss of energetic ions have been used to explain the mechanisms
of irradiation-induced amorphization. Sattonnay et al. investigated how the composition
affects the behavior of pyrochlores under swift heavy ions irradiation and proposed that
the susceptibility to amorphization by high electronic excitation is proportional to the
cation radii ratio rA/rB [23]. Theoretically, the influence of low electronic excitation on
microstructural evolution in titanate pyrochlores was explored by Xiao et al., who, using
an ab initio molecular dynamics (AIMD) method, predicted that structural amorphization
occurs under 2% electronic excitation at room temperature [24]. Sassi et al. investigated
the interplay between electronic excitation, structure, and composition in lanthanum-
based ceramics employing a similar method. They found that when monoclinic-layered
perovskite La2Ti2O7 is exposed to a lower degree of electronic excitation, the amorphous
transition occurs, whereas a similar phenomenon does not occur in cubic pyrochlore
La2Zr2O7 [25]. Furthermore, their results show that La2Zr2O7 can be amorphized at 200 K
under 1.6% electronic excitation. These studies demonstrate that electronic excitation
may have substantial effects on the microstructural evolution and physical properties
of materials.

Thus far, it is not clear how Pu2Zr2O7 pyrochlore, which is a product for immobiliza-
tion of Pu in zirconate pyrochlores [26–29], responds to electronic excitation. In this study,
a comparative study of the responses of Pu2Zr2O7 and La2Zr2O7 to electronic excitation is
made to explore the behaviors of Pu2Zr2O7 under electronic radiation. It is noted that dis-
crepancies exist in microstructural evolution under electronic excitation between Pu2Zr2O7
and La2Zr2O7. The possible reasons have also been explored. The presented results thus
gain fundamental insights into the radiation damage effects of Pu2Zr2O7 and may promote
related experimental investigations.

2. Computational Details

Our calculations are carried out by the ab initio molecular dynamics (AIMD) method,
as implemented in the Vienna Ab Initio Simulation Package (It was developed by the
University of Vienna) (VASP) code [30,31]. In order to describe the exchange-correlation
effects between electrons, the generalized gradient approximation (GGA) as parametrized
by Perdew and Wang is used [32]. Because AIMD simulation is computationally very
expensive, a 1 × 1 × 1 Monkhorst-Pack grid was generally employed in the AIMD simu-
lation [24,33,34]. Hence, a 1 × 1 × 1 Monkhorst-Pack grid is employed in this study as a
compromise between computational efficiency and computational accuracy. Computations
are performed with a cutoff energy of 300 eV for the plane wave basis set. In our calcula-
tions, we employ a 2 × 2 × 2 supercell containing 88 atoms. The Hubbard U correction [35]
is considered to modify the strongly correlated Pu 5f electrons, and a Ueff value of 4 eV is
employed [36].

To study the effect of electronic excitation, we remove several electrons from high-lying
valence band states. A jellium background is used to compensate for the loss of charge due
to electron removal. Within this approximation, one assumes that electrons move in the
presence of a neutralizing background consisting of uniformly spread positive charge [37].
After the system reaches equilibrium states, the removed electrons are placed back to mimic
the recombination of electrons and holes. This method has made it possible to simulate the
role of electronic excitation and has been applied to simulate the structural amorphization of
Ge–Sb–Te alloys [38] and pyrochlores [24,25]. For La2Zr2O7 and Pu2Zr2O7, the considered
electronic excitation concentrations are 0.3%, 0.6%, and 1.2%. Here, the percentage of
electronic excitation concentration corresponds to the number of excited valence electrons
to the number of total electrons. The intensity of the e–h pairs that are generated can

be estimated by Ne-h =
(1−R) × αe f f × F

}ω0
[39], where F and ω0 are the laser fluence and

frequency, and R and αe f f are the reflectivity and effective absorption coefficient for the
sample [40–43]. Under laser beam irradiation, the laser fluence at 400 nm for 1% excitation
in La2Zr2O7 is about 8.6 × 102–4.9 × 103 mJ/cm2. The AIMD simulation is conducted
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employing an isothermal–isochoric ensemble, and the temperature is controlled by the
Nosé–Hoover thermostat. The simulation time is 6 ps, and the time step is 3 fs.

3. Results and Discussions
3.1. Ground State Properties of Pu2Zr2O7 and La2Zr2O7

Structural optimization is first performed on Pu2Zr2O7 and La2Zr2O7. The Schematic
view of the geometrical structures of La2Zr2O7 is shown in Figure 1. The calculated lattice
constants, oxygen positional parameter xO8f, as well as bonding distances for Pu2Zr2O7
and La2Zr2O7, are summarized in Table 1, along with the available theoretical and experi-
mental results for comparison. For Pu2Zr2O7, the obtained lattice constant of 10.802 Å is
slightly larger than the experimental value of 10.70 Å [44], whereas it is consistent with
the theoretical result of 10.802 Å [36]. The lattice constant of La2Zr2O7 is determined to be
10.879 Å, which is in reasonable agreement with the experimental value of 10.805 Å [45]
and comparable to the calculated value of 10.696 Å [2]. The relatively larger lattice constant
for La2Zr2O7 is mainly due to its larger ionic radius, i.e., ~1.16 Å for La3+ and ~1.1 Å
for Pu3+ [46]. With regard to oxygen positional parameter xO48f, the calculated value of
0.335 for Pu2Zr2O7 is the same as other calculations of 0.335 [36]. For La2Zr2O7, the calcu-
lated value of 0.333 agrees well with the experimental and other calculated values [2,45].
Generally, the pyrochlores with the xO48f value being closer to 0.375 are more resistant to
structural amorphization under ion irradiation [26,47]. It is noted that the xO48f value for
Pu2Zr2O7 is slightly larger than that of La2Zr2O7, suggesting that Pu2Zr2O7 and La2Zr2O7
may have different responses to ion irradiation.
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Figure 1. Schematic view of the geometrical structures of La2Zr2O7. The dark green, yellow-green,
and red spheres represent La, Zr, and O atoms, respectively.

Table 1. The calculated lattice constants a0 (Å), O48f position parameter x (xO48f), and bonding distances (Å) for La2Zr2O7

and Pu2Zr2O7. Eg represents the band gap; d<A-B>: bonding distances between A and B atoms (A = La, Pu, or Zr; B = O48f

or O8b).

Compounds a0 xO48f Eg (eV) d<La-O48f > d<La-O8b > d<Pu-O48f> d<Pu-O8b> d<Zr-O48f>

La2Zr2O7 10.879 0.333 3.58 2.635 2.339 – – 2.106
Cal. [2] 10.696 0.3346 3.52 2.589 2.316 – – 2.096

Exp. [45] 10.805 0.332 – 2.635 2.339 – – 2.105
Pu2Zr2O7 10.802 0.335 2.12 – – 2.587 2.317 2.099
Cal. [36] 10.802 0.335 2.37 – – 2.615 2.339 2.117
Exp. [44] 10.70 – – – – – – –
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3.2. Microstructural Evolution in La2Zr2O7 under Electronic Excitation

In order to explore the response of La2Zr2O7 to electronic radiation, AIMD simulations
are first carried out with an electronic excitation concentration of 0.3%. Figure 2 shows
a variation of temperature and total energy with time for La2Zr2O7 with 0.3% electronic
excitation at 300 K. It is obvious that the simulation time of 6 ps is long enough so that the
system can reach equilibrium states.
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Figure 2. Variation of (a) temperature and (b) total energy with time for La2Zr2O7 with 0.3% electron excitation.

To investigate how the electronic excitation concentration affects microstructural
evolution in La2Zr2O7 at 300 K, electronic excitation concentration of 0.3%, 0.6%, 1.2%,
and 1.6% are considered. Based on each equilibrium state, the radial distribution function
(RDF) analysis is then carried out. Figure 3 shows the RDF for La2Zr2O7 with 0.3%, 0.6%,
1.2%, and 1.6% electronic excitations. For electronic excitations of 0.3%, 0.6%, and 1.2%, it is
noted that the structure is ordered at both short-range and long-range distances, meaning
that La2Zr2O7 still remains a pyrochlore structure. Here, the short-range correlation means
the bonding interaction, and the long-range correlation corresponds to a nonbonding
interaction. In the case of 1.6% electronic excitation, the structure retains a short-range
order but has lost its long-range order, suggesting that 1.6% electronic excitation can induce
a crystalline-to-amorphous transition in La2Zr2O7 at room temperature. In the literature,
a similar phenomenon was observed by Sassi et al. [25]. Variation of RDF with time for
La2Zr2O7 with 1.6% electronic excitation is displayed in Figure 4a. It is shown that the
structural amorphization starts at t = 0.075 ps and the structure is completely amorphized
at t = 0.3 ps, i.e., under 1.6% electronic excitation the crystalline-to-amorphous transition
occurs very fast.

Figure 4b shows a schematic view of the geometrical structure for La2Zr2O7 with 1.6%
electronic excitation. Compared with the pyrochlore structure presented in Figure 1, it can
be seen that the structure is disordered after 1.6% electronic excitation. Furthermore, the
degree of anion disorder is much larger than that of cation disorder. We also explore the
variation of mean square displacement (MSD) with time for La2Zr2O7 with 1.6% electronic
excitation, and the results are presented in Figure 4c. It is found that the mean square
displacement of oxygen is considerably larger than that of La and Zr. These results indicate
that the displacement of oxygen drives the pyrochlore of La2Zr2O7 to undergo a crystalline-
to-amorphous transition under 1.6% electronic excitation. Theoretically, Xiao et al. also
suggested that the amorphization of titanate pyrochlores is mainly contributed by the
displacement of oxygens [24]. Experimentally, Lian et al. found that under ion irradiation,
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anion disorder precedes cation disorder in Gd2Ti2O7, Er2Ti2O7, and La2Ti2O7 [48]. In this
study, it is noted that the MSD increases with the increasing time rather than vibrates
slightly after the system reaches equilibrium states. A similar phenomenon has been found
in the literature [49], where the La/Zr/O atoms in the amorphous structure also diffuse
rather than vibrate at their equilibrium sites.
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3.3. Microstructural Evolution in Pu2Zr2O7 under Electronic Excitation

To explore how the Pu2Zr2O7 pyrochlore responds to electronic excitation, AIMD
simulation is also carried out on Pu2Zr2O7, in which 0.3% electrons are excited at 300 K.
The corresponding variation of RDF with time for Pu2Zr2O7 with 0.3% electronic excitation
is illustrated in Figure 5a. We found that at t = 0.3 ps the structure becomes disordered
at a long-range distance, and with time evolution, the structure is eventually completely
amorphized. Compared with the case of La2Zr2O7, the crystalline-to-amorphous transition
occurs more easily in Pu2Zr2O7, since the threshold electronic concentration of 0.3% is
much lower than that of 1.6% for La2Zr2O7. These results suggest that the Pu2Zr2O7 should
be readily amorphized under local ionization rates that produce a low level of electronic
excitation. Theoretically, Shen et al. suggested that the influences of different types of point
defects on the thermomechanical properties of Pu2Zr2O7 and Gd2Zr2O7 show somewhat
different character, and Pu2Zr2O7 has been suggested to be more susceptible to radiation-
induced amorphization than other zirconate pyrochlores like Gd2Zr2O7 [50].
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To explore the origin of the structural amorphization induced by electronic excitation
in Pu2Zr2O7, we plot the variation of mean square displacement with time for Pu2Zr2O7
with 0.3% electron excitation in Figure 5c. It is shown that the mean square displacement
of anions is considerably larger than that of cations. Figure 5b also shows that the disorder
of anions is more significant than that of cations. These results suggest that the structural
amorphization is also driven by anion disordering, similar to the case of La2Zr2O7 discussed
above and the cases of titanate pyrochlores reported by Xiao et al. [24].
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3.4. Origin of the Different Electronic Radiation Responses between La2Zr2O7 and Pu2Zr2O7

In order to explain the different electronic radiation responses between Pu2Zr2O7
and La2Zr2O7, we further analyze their geometrical and electronic structures. Comparing
the bonding distances in Pu2Zr2O7 and La2Zr2O7 (see Table 1), we find that the values of
~2.587 Å for <Pu-O48f>, ~2.317 Å for <Pu-O8b>m and ~2.099 Å for <Zr-O48f> are slightly
smaller than the values of ~2.635 Å for <La-O48f>, ~2.339 Å for <La-O8b>, and 2.106 Å
for <Zr-O48f>, respectively. These results mean that stronger bonding interactions exist in
Pu2Zr2O7 than in La2Zr2O7. However, the band gap of 2.12 eV for Pu2Zr2O7 is smaller
than the value of 3.52 eV for La2Zr2O7, i.e., the valence electrons in Pu2Zr2O7 are more
easily to be excited to the conduction bands if enough energy is provided.

Figure 6 presents the total and projected density of state (DOS) distributions for
idealLa2Zr2O7 and Pu2Zr2O7. For La2Zr2O7 (see Figure 6a), O 2p orbital dominates and
hybridizes with very few La 5d and Zr 4d orbitals at the valence band maximum (VBM),
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and few Zr 4d and O 2p orbitals contribute to the conduction band minimum (CBM). For
Pu2Zr2O7 (see Figure 6b), it is shown that the Pu 5f orbital dominates and hybridizes with
very few O 2p and Zr 4d orbitals at the VBM, and the CBM are contributed by Pu 5f orbital
and very few Zr 4d and O 2p orbitals. On the one hand, because of the strong correlation
effects between Pu 5f electrons, the O 2p electrons in Pu2Zr2O7 are more readily to be
excited than Pu 5f electrons. On the other hand, in spite of the stronger <Pu-O> bonding
interaction in Pu2Zr2O7 than the <Zr-O> bonding interaction in La2Zr2O7 at valence bands,
the O 2p electrons in Pu2Zr2O7 are more easily to be excited to the conduction bands due
to the much smaller band gap. Consequently, anion disorder drives cation disorder and
eventually results in structural amorphization.
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4. Conclusions

In summary, the microstructural evolution in Pu2Zr2O7 and La2Zr2O7 under electron
radiation has been investigated by ab initio molecular dynamics simulations. It is shown that
Pu2Zr2O7 is more susceptible to electron radiation than La2Zr2O7, since the crystalline-to-
amorphous structural transition at 300 K occurs at 0.3% electronic excitation for Pu2Zr2O7
and 1.6% for La2Zr2O7. In both compounds, the degree of anion disorder is much larger
than the degree of cation, i.e., the structural amorphization is driven by anion disorder.
In Pu2Zr2O7, there are strong correlation effects between Pu 5f electrons, resulting in O
2p electrons being more readily excited. Furthermore, the band gap of Pu2Zr2O7 is much
smaller than that of La2Zr2O7. Consequently, the O 2p electrons in Pu2Zr2O7 are more
easily to be excited to the conduction bands, and Pu2Zr2O7 is less resistant to electron
radiation than La2Zr2O7.
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