



## **Supplementary Information**

## Quantification Approaches of Fatigue Crack Resistance of Thermoplastic Tape Layered Composites with Multiple Delaminations

Anastasiia Khudiakova <sup>1</sup>, Andreas J. Brunner <sup>2</sup>, Markus Wolfahrt <sup>1</sup>, Gerald Pinter <sup>3</sup>, \*

- <sup>1</sup> Polymer Competence Center Leoben GmbH, Roseggerstraße 12, 8700 Leoben, Austria; anastasiia.khudiakova@pccl.at (A.K.); markus.wolfahrt@pccl.at (M.W.)
- <sup>2</sup> Retired from Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanical Systems Engineering, Überlandstrasse 129, 8600 Dübendorf, Switzerland; andreas.brunner@empa.ch
- <sup>3</sup> Institute of Materials Science and Testing of Polymers, Montanuniversität Leoben, Otto Glöckel-Straße 2/II, 8700 Leoben, Austria;
- \* Correspondence: gerald.pinter@unileoben.ac.at

## Calculations of the transverse and shear moduli

The transverse and shear moduli were estimated according to Reuss model using Equation S1 and Equation S2.

$$E_2 = \frac{E_{2f}E_m}{E_m f_v + E_{2f}(1 - f_v)}$$
(S1)

$$G_{12} = \frac{G_{12f}G_m}{G_m f_v + G_{12f}(1 - f_v)}$$

$$G_m = \frac{E_m}{2(1 + \vartheta_m)}$$
(S2)

The following values of Young's modulus and Poisson's ratio of PPS, transverse, and shear moduli of the carbon fiber were used:  $E_m = 3.45$  GPa [1],  $\vartheta_m = 0.38$  [2],  $E_{2f} = 13$  GPa [3],  $G_{12f} = 11.3$  GPa [3].

**Table 1.** The transverse and shear moduli calculated for the laminates.

| Laminate | E <sub>2</sub> , GPa | <i>G</i> <sub>12</sub> , GPa |
|----------|----------------------|------------------------------|
| c-5-330  | 6.01                 | 2.58                         |
| c-10-350 | 5.69                 | 2.39                         |
| f-5-330  | 5.56                 | 2.31                         |
| f-10-350 | 6.20                 | 2.70                         |

Citation: Khudiakova, A.; Brunner, A.J.; Wolfahrt, M.; Pinter, G. Quantification Approaches of Fatigue Crack Resistance of Thermoplastic Tape Layered Composites with Multiple Delaminations. *Materials* **2021**, *14*, 1476. https://doi.org/10.3390/ ma14061476

Academic Editor: Andrea Spagnoli

Received: 27 January 2021 Accepted: 2 March 2021 Published: 17 March 2021

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The fiber volume fraction  $f_v$  was found according to Equation S3 [4].

$$f_{v} = \frac{\frac{w_{f}}{\rho_{f}}}{\frac{w_{f}}{\rho_{f}} + \frac{1 - w_{f}}{\rho_{m}}}$$
(S3)

where  $\rho_f$ ,  $\rho_m$  are the densities of the fiber and matrix, respectively, and  $w_f$  is the fiber weight fraction determined using thermogravimetric analysis (TGA).

TGA was performed using the thermogravimetric analyzer TGA/DSC1 Star System (Mettler Toledo, USA). The CF-PPS samples were cut out of the laminates at three equally spaced positions (start, middle, and end of lamination) and had a mass of about 20 mg. Firstly, the specimens were heated from 30 °C to 600 °C at 5 K/min under nitrogen atmosphere in order to perform pyrolysis of the PPS matrix. After that, the samples were cooled down to 200 °C at –20 K/min under the nitrogen atmosphere, and then heated up to 800 °C at 5 K/min under oxygen atmosphere to fully combust the carbon fibers.

The results of  $w_f$  values are summarized in Table S2. The corresponding fiber volume fractions  $f_v$  were calculated using Equation 11 with fiber density  $\rho_f$  of 1.8 g/cm<sup>3</sup> and PPS density  $\rho_m$  of 1.35 g/cm<sup>3</sup> [5].

**Table 2.** Fiber weight and volume fractions of the laminates obtained using thermogravimetric analysis (TGA).

| Laminate | <i>m,</i> mg | <i>w<sub>f</sub></i> , % | f <sub>v</sub> , % |
|----------|--------------|--------------------------|--------------------|
| c-5-330  | 20.8±0.1     | 64.7±2.0                 | 57.9±0.2           |
| c-10-350 | 20.0±0.6     | 60.6±1.7                 | 53.6±1.7           |
| f-5-330  | 20.3±0.6     | 58.7±0.9                 | 51.6±1.0           |
| f-10-350 | 20.0±0.4     | 67.1±0.8                 | 60.4±0.9           |

**Table 3.**  $\Delta$  calculated at the first and last 2.5 mm of the crack length ( $\Delta_{start}$  and  $\Delta_{end}$ ) and at the entire range of the crack length  $a_{calc}$  ( $\Delta_{all points}$ ) for clamping- and flipping-specimens tested under fatigue mode I DCB loading.

| Clamping           |                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5-330              |                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                          | 10-350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $\Delta_{start}$   | $\Delta_{end}$ ,                                                                                                                 | $\Delta_{all \ points}$ ,                                                                                                                                                                                                                                                           | Specime                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta_{start}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta_{end}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta_{all \ points}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| mm                 | mm                                                                                                                               | mm                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                        | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 2.95 **            | 3.47 **                                                                                                                          | 3.19 **                                                                                                                                                                                                                                                                             | 01                                                                                                                                                                                                                                                                                                                                                                                                                       | -9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -11.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| -26.48             | -30.24                                                                                                                           | -28.41                                                                                                                                                                                                                                                                              | 02*                                                                                                                                                                                                                                                                                                                                                                                                                      | -14.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -16.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -15.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| -18.47             | -22.22                                                                                                                           | -20.32                                                                                                                                                                                                                                                                              | 03                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.34 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.87 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                    |                                                                                                                                  | Flipp                                                                                                                                                                                                                                                                               | oing                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 5-330              |                                                                                                                                  |                                                                                                                                                                                                                                                                                     | 10-350                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $\Delta_{start}$ , | $\Delta_{end}$ ,                                                                                                                 | $\Delta_{all \ points}$ ,                                                                                                                                                                                                                                                           | Specime                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta_{start}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta_{end}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta_{all \ points}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| mm                 | mm                                                                                                                               | mm                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                        | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| -7.26              | -8.00                                                                                                                            | -7.62                                                                                                                                                                                                                                                                               | 01 *                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| -11.47             | -13.74                                                                                                                           | -12.56                                                                                                                                                                                                                                                                              | 02                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.27 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.27 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.72 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| -14.01             | -16.67                                                                                                                           | -15.28                                                                                                                                                                                                                                                                              | 03                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.37 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.25 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.82 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                    | 5-<br>Δ <sub>start</sub> ,<br>mm<br>2.95 **<br>-26.48<br>-18.47<br>5-<br>Δ <sub>start</sub> ,<br>mm<br>-7.26<br>-11.47<br>-14.01 | 5-330 $\Delta_{start}$ $\Delta_{end}$ mm       mm         2.95 **       3.47 **         -26.48       -30.24         -18.47       -22.22         5-330 $\Delta_{start}$ $\Delta_{end}$ mm       mm         -7.26       -8.00         -11.47       -13.74         -14.01       -16.67 | Clamy         Clamy $5-330$ $\Delta_{all points'}$ $\Delta_{start'}$ $\Delta_{end'}$ $\Delta_{all points'}$ mm       mm       mm         2.95 ** $3.47$ ** $3.19$ **         -26.48 $-30.24$ $-28.41$ -18.47 $-22.22$ $-20.32$ Flipp         5-330         T $\Delta_{start'}$ $\Delta_{end'}$ $\Delta_{all points'}$ mm       mm       mm $-7.26$ $-8.00$ $-7.62$ $-11.47$ $-13.74$ $-12.56$ $-14.01$ $-16.67$ $-15.28$ | Clamping         Clamping         5-30       Call points,       Specime $\Delta_{start}$ , $\Delta_{end}$ , $\Delta_{all points}$ ,       Specime         mm       mm       n       n         2.95 **       3.47 **       3.19 **       01         -26.48       -30.24       -28.41       02*         -18.47       -22.22       -20.32       03         Flipping         5-330 $\Delta_{start}$ , $\Delta_{end}$ , $\Delta_{all points}$ ,       Specime         mm       mm       n       n         -7.26       -8.00       -7.62       01*         -71.47       -13.74       -12.56       02         -14.01       -16.67       -15.28       03 | Clamping         Clamping         5-30 $\Delta_{all points}$ Specime $\Delta_{start}$ $\Delta_{start}$ $\Delta_{end}$ $\Delta_{all points}$ Specime $\Delta_{start}$ mm       mm       mm       n       mm         2.95 **       3.47 **       3.19 **       01       -9.95         -26.48       -30.24       -28.41       02*       -14.16         -18.47       -22.22       -20.32       03       0.34 **         Flipping         m         Mail points, Specime $\Delta_{start}$ $\Delta_{start}$ $\Delta_{end}$ $\Delta_{all points}$ Specime $\Delta_{start}$ $\Delta_{start}$ $\Delta_{end}$ $\Delta_{all points}$ Specime $\Delta_{start}$ $-7.26$ $-8.00$ $-7.62$ $01^*$ $-6.02$ $-11.47$ $-13.74$ $-12.56$ $02$ $6.27^{**}$ $-14.01$ $-16.67$ $-15.28$ $03$ $5.37^{**}$ | Clamping         IOI IO-350 $\Delta_{start}$ $\Delta_{end}$ $\Delta_{all points}$ Specime $\Delta_{start}$ $\Delta_{end}$ $\Delta_{start}$ $\Delta_{end}$ $mm$ n $\Delta_{end}$ 2.95 ** $3.47$ ** $3.19$ ** $01$ $-9.95$ $-11.17$ $-26.48$ $-30.24$ $-28.41$ $02^{*}$ $-14.16$ $-16.39$ $-18.47$ $-22.22$ $-20.32$ $03$ $0.34$ ** $0.87$ **         Flipting $-22.22$ $-20.32$ $03$ $0.34$ ** $0.87$ ** $-52.22$ $-20.32$ $03$ $0.34$ ** $0.87$ ** $-52.22$ $-20.32$ $03$ $0.34$ ** $0.87$ ** $-52.22$ $-20.32$ $03$ $0.34$ ** $0.87$ ** $-52.22$ $-20.32$ $03$ $0.34$ ** $0.87$ ** $-52.22$ $-20.32$ $03$ $0.34$ ** $0.87$ ** $-18.47$ $\Delta_{end}$ $\Delta_{start}$ $\Delta_{end}$ $\Delta_{end}$ $\Delta$ |  |

\* A single mid-plane delamination was observed visually on the specimen surface during testing of these specimens.

\*\* Positive  $\Delta$ , further  $\Delta$ =0 was used for the calculations of  $E_1$ .

| Clamping |                  |                |                         |          |                  |                |                        |
|----------|------------------|----------------|-------------------------|----------|------------------|----------------|------------------------|
| 5-330    |                  |                |                         | 10-350   |                  |                |                        |
| Specimen | $\chi^2_{start}$ | $\chi^2_{end}$ | $\chi^2_{all \ points}$ | Specimen | $\chi^2_{start}$ | $\chi^2_{end}$ | $\chi^2_{all  points}$ |
| 01       | 0 **             | 0 **           | 0 **                    | 01       | 39.5             | 49.8           | 45.4                   |
| 02 *     | 244.1            | 318.291        | 280.9                   | 02 *     | 83.2             | 111.5          | 96.6                   |
| 03       | 118.4            | 171.344        | 143.3                   | 03       | 0 **             | 0 **           | 0 **                   |
| Flipping |                  |                |                         |          |                  |                |                        |
| 5-330    |                  |                | 10-350                  |          |                  |                |                        |
| Specimen | $\chi^2_{start}$ | $\chi^2_{end}$ | $\chi^2_{all \ points}$ | Specimen | $\chi^2_{start}$ | $\chi^2_{end}$ | $\chi^2_{all  points}$ |
| 01       | 26.0             | 31.5           | 28.6                    | 01 *     | 13.3             | 18.3           | 15.8                   |
| 02 *     | 59.7             | 85.6           | 71.5                    | 02       | 0 **             | 0 **           | 0 **                   |
| 03       | 87.2             | 123.5          | 103.8                   | 03       | 0 **             | 0 **           | 0 **                   |

**Table 4.**  $\chi^2$  calculated using  $\Delta_{start}$ ,  $\Delta_{end}$ , and  $\Delta_{all \ points}$  for clamping- and flipping-specimens tested under fatigue mode I DCB loading.

\* A single mid-plane delamination was observed visually on the specimen surface during testing of these specimens.

\*\* Since a zero value was used instead of positive  $\Delta$ ,  $\chi^2$  that is  $(\Delta/h)^2$  was equivalent to zero.

## References

- 1. https://www.bearingworks.com/uploaded-assets/pdfs/retainers/pps-datasheet (accessed on 6 January 2021).
- https://www.celanese.com/-/media/Engineered%20Materials/Files/Product%20Technical%20Guides/PPS-050\_Fortron\_DesignManualTG\_AM\_0913.pdf (accessed on 6 January 2021).
- 3. Herráez, M.; Mora, D.; Naya, F.; Lopes, C.S.; González, C.; LLorca, J. Transverse cracking of cross-ply laminates: A computational micromechanics perspective. *Compos. Sci. Technol.* **2015**, *110*, 196–204, doi:10.1016/j.compscitech.2015.02.008.
- 4. Yee, R.Y.; Stephens, T.S. A TGA technique for determining graphite fiber content in epoxy composites. *Thermochimica Acta* **1996**, *272*, 191–199.
- Liu, D.; Zhu, Y.; Ding, J.; Lin, X.; Fan, X. Experimental investigation of carbon fiber reinforced poly(phenylene sulfide) composites prepared using a double-belt press. *Compos. B Eng.* 2015, 77, 363–370, doi:10.1016/j.compositesb.2015.03.062.