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Abstract

:

The synthesized understanding of the mechanical properties of negative Poisson’s ratio (NPR) convex–concave honeycomb tubes (CCHTs) under quasi-static and dynamic compression loads is of great significance for their multifunctional applications in mechanical, aerospace, aircraft, and biomedical fields. In this paper, the quasi-static and dynamic compression tests of three kinds of 3D-printed NPR convex–concave honeycomb tubes are carried out. The sinusoidal honeycomb wall with equal mass is used to replace the cell wall structure of the conventional square honeycomb tube (CSHT). The influence of geometric morphology on the elastic modulus, peak force, energy absorption, and damage mode of the tube was discussed. The experimental results show that the NPR, peak force, failure mode, and energy absorption of CCHTs can be adjusted by changing the geometric topology of the sinusoidal element. Through the reasonable design of NPR, compared with the equal mass CSHTs, CCHTs could have the comprehensive advantages of relatively high stiffness and strength, enhanced energy absorption, and damage resistance. The results of this paper are expected to be meaningful for the optimization design of tubular structures widely used in mechanical, aerospace, vehicle, biomedical engineering, etc.
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1. Introduction


With the development of science and technology, high-performance structural materials have become more and more desired in the engineering fields. In this regard, mechanical metamaterials are increasingly popular in the research community [1,2,3,4,5,6,7]. The negative Poisson’s ratio (NPR) tube is a typical mechanical metamaterial, which expands (shrinks) transversely under axial compression (tension). NPR tube has many advantages that the conventional tube with positive Poisson’s ratio (PPR) does not have, such as enhanced circumferential stiffness [8,9], the ability to undergo synclastic curvature [10,11], higher flexibility [12], increased resistance to kinking [13], etc.



The unique mechanical properties of the NPR tube make its application in mechanical, medical, aerospace, and other fields very attractive [14,15]. Regarding the applications of the NPR convex–concave honeycomb tubes (CCHTs), as in the vascular stent, for example [8,16,17,18], it is found that under axial compressive loadings, the stent will shrink inward, thus reducing the risk of vascular walls becoming overstretched and further injured. On the contrary, for the conventional vascular stent with a PPR, under axial compressive stresses, it will expand outward and thus exert extra forces to the vascular walls. This may bring more damage to the diseased region.



In order to explore its mechanical properties and promote its practical application in engineering, researchers have proposed various NPR tubes in recent decades. The fabrication of NPR tubes using soft lithography was first described by Bing Xu et al. [19]. The NPR tube used as angioplasty stents was first proposed by W.J.S. Dolla because it exhibits high circumferential strength in its expanded configuration and low flexural rigidity in its crimped configuration [8,9]. The characteristics of wave propagation, synclastic property, buckling behavior, and an analytical method for predicting the length–diameter relationship in re-entrant hexagonal NPR tubes are analyzed in literature [12,13,20,21]. Grima et al. systematically studied the mechanical properties of the NPR stent from rotating-square and found that the mechanical properties of the stent can be improved by designing the negative Poisson’s ratio [16,17,18,22,23]. Recently, more NPR stent structures have been proposed, such as folding tubular structures [24,25], V-type and X-type [26,27], tetrachiral and anti-tetrachiral hybrid [28], and chiral–anti-tetrachiral stents [29,30]. In addition to being used as a medical stent, the NPR tube can also be used as a jounce bumper in vehicle suspension due to its excellent energy absorption performances [31,32,33]. In recent years, there is more and more research on NPR tubes with their widespread use. The cylindrical auxetic double arrowed honeycomb was proposed, and its mechanical properties were studied theoretically [34] and experimentally [33,35]. The spatial tubular structure with NPR composed of square circular aperture arrays has been studied [36,37,38,39]. The impact performances under the axial force of the auxetic honeycomb cylindrical tube have been investigated [40,41,42]. Liu introduced deterministic routes to soft materials with isotropic tunable NPR over large strains [43]. A series of chiral-type auxetic cylindrical shells were proposed and the mechanical performances under axial compression have been evaluated [44,45,46,47,48,49]. However, there is no research on 3D CCHT as an energy absorber to enhance crash performance. Therefore, it is necessary to evaluate the 3D CCHTs in terms of the specific energy absorption under the axial crushing force from the perspective of energy absorption.



Compared with the various NPR tubes reported in the open literature, NPR CCHTs have the advantages of a simpler geometrical structure and the subsequent higher convenience of fabrication and application. However, the NPR effect of CCHTs is usually briefly mentioned in the reported literature, the detailed mechanical behavior of the NPR CCHTs under quasi-static and dynamic loading is still unclear. In fact, a systematic and deep understanding of quasi-static and dynamic loading behaviors of the NPR CCHTs is crucial to their practical applications. In addition, it is well known that geometric topology, i.e., the geometric parameters, could have a great influence on the mechanical behavior of metamaterials’ structures [50,51,52,53,54,55]. Nevertheless, reports on how will the geometrical parameters affect the mechanical properties of NPR CCHTs are still limited.



Taking into account the advantages of the NPR CCHTs mentioned above and the rapid development of the 3D-printed technology, this paper aims to explore systematically the mechanical behaviors of NPR CCHTs under quasi-static and dynamic loading conditions through experimental methods. Based on the nylon materials, one 3D-printed conventional square honeycomb tube (CSHT) and three kinds of CCHTs with equal mass have been chosen as examples for illustration. Two axial compressive loading speeds, 1 mm/min and 5 m/s, are selected to demonstrate mechanical behaviors of the PPR CSHT and NPR CCHT under static and dynamic loading conditions, respectively. In this paper, the mechanical properties of CCHTs are studied, including elastic modulus, peak force, energy absorption, and damage mode.



The research in this study is expected to provide a theoretical basis for the optimal design of CCHT, so as to promote this engineering application in the fields of mechanical, medical, aviation, and aerospace industries.




2. Samples, Quasi-Static, and Dynamic Loading Tests of the 3D-Printed CCHT


2.1. Geometric Topology and 3D-Printed Samples of the CCHT


The conventional square honeycomb tubes (CSHTs), shown in Figure 1b, are constructed by rolling the square honeycomb lattices (Figure 1a). NPR CCHTs (Figure 1d) are constructed by rolling the convex–concave honeycomb lattices (Figure 1c), which are generated by replacing the straight cell walls (Figure 1e) of the square honeycomb lattices (Figure 1a) with the equal-mass curved sinusoidal beams (Figure 1f).



t0 and l0 (Figure 1e) are defined as the cell wall thickness and length of the square honeycomb lattices (Figure 1a). B is the out-of-plane thickness of the square honeycomb lattices. W and H are the width and height of the square honeycomb lattices. t and h (Figure 1f) are the cell wall thickness and chord height of the curved sinusoidal beams. The shape of the curved sinusoidal beam shown in Figure 1f could be mathematically expressed by


  z = h sin    π   l 0    y   y ∈ [ 0 ,    l 0  ]  



(1)







Defining the curve length of the curved sinusoidal beam as s, s is expressed as


  s =    ∫ 0   l 0       1 +      z ′     2       d x =    ∫ 0   l 0       1 +    h 2   π 2   /   l 0 2      cos  2     π /   l 0    x        d x .  



(2)







According to the equal-mass principle, we have l0t0B = stB, which yields the cell wall thickness t of the curved sinusoidal beams as follows:


  t =    t 0   l 0   /     ∫ 0   l 0       1 +    h 2   π 2   /   l 0 2      cos  2     π /   l 0    x        d x   .  



(3)







To show the static and dynamic loading behaviors of CCHTs, four kinds of samples, including one CSHT (Figure 2a), named CSHT0, and three kinds of equal-mass CCHTs corresponding to the CSHT, named as CCHT1, CCHT2, and CCHT3 (Figure 2b–d), are chosen as the examples for illustration. The four kinds of samples are tested under axial quasi-static (1 mm/min) and dynamic (5 m/s) compressive experiments. They are 3D-printed using nylon material with a density of 880 kg/m3 and an elastic modulus of 1.25 GPa. The samples were additively manufactured using an EOS P 500 system (Frankfurt, Germany), which uses a laser as the power source to sinter powdered nylon to build up the tubes. The laser selectively fuses powdered nylon by scanning cross sections generated from a 3D digital model, which is modeled by SolidWorks (2019). After each cross section is scanned, the powder bed is lowered by one layer thickness, a new layer of material is applied on top, and the process is repeated until the tube is completed. The masses of the four kinds of samples are all 10.5 g.



The parameters for CSHT0 are t0 = 2 mm, l0 = 10 mm, B = 2 mm, W = 160 mm, and H = 100 mm. The parameters for CCHT1, CCHT2, CCHT3 are l0 = 10 mm, B = 2 mm, H = 100 mm, and h = 1, 2, and 3 mm, respectively. Evidently, substituting t0 = 2 mm, l0 = 10 mm, h = 1, 2, and 3 mm into Equation (3) yields the curved cell wall thicknesses t of CCHT1, CCHT2, and CCHT3. They are 1.95 mm, 1.83 mm, and 1.67 mm, respectively. Here, the parameter h/l0, i.e., the ratio of the curved sinusoidal beams (Figure 1f) in convex–concave honeycomb lattices (Figure 1c), is utilized for describing the curved degree of the curved cell wall of CCHT. Evidently, the parameters h/l0 corresponding to CSHT, CCHT1, CCHT2 and CCHT3 are 0, 0.1, 0.2 and 0.3, respectively. These geometric parameters are shown in Table 1.




2.2. Quasi-Static and Dynamic Compressive Experiments Devices


Quasi-static compressive tests of CSHT0, CCHT1, CCHT2, and CCHT3 are conducted on the MTS 810 testing machine (MTS Systems Corporation, Eden Prairie, MN, USA) at Tianjin University (Figure 3a). Specimens are put on the lower platen. In the loading process, the lower platen moves upward to crush the specimens. The compressive loading velocity is 1 mm/min (1.67 × 10−5 m/s). For each sample, the quasi-static compressive tests are repeated three times.



Dynamic compressive tests of CSHT0, CCHT1, CCHT2, and CCHT3 are conducted on the Instron VHS (Video Home System) high-rate testing system (Instron Corporation, Norwood, MA, USA) at Tianjin University (Figure 3b). The specimens are placed on a fixed lower plate. The upper plate moves down to impact the specimens. Some glue is applied between the specimens and the lower fixed platen to avoid the slip of the specimens during the compressive crushing process. The compressive loading velocity is 5 m/s. For each sample, the dynamic compressive tests are also repeated three times.




2.3. Repeatability of the Experimental Force–Displacement Curve


In this part, the repeatability of the static and dynamic compressive experiments is shown. The three times repeated force–displacement curves are presented in Figure 4. From Figure 4, we can derive that although the measured data of peak forces have slight dispersity, the forces in the plateau region are of good repeatability in general, which indicates that experimental results of the quasi-static and dynamic compression are reliable.





3. Mechanical Properties of the NPR CCHT under Static Loading Conditions


This section investigates the mechanical properties of the NPR CCHT under static loading conditions and systematically studies the effects of geometrical morphology on elastic modulus, damage modes, and energy absorption properties.



3.1. Effect of Geometrical Morphology on Elastic Moduli of the CCHT


The effects of the CSHT0 (h/l0 = 0), CCHT1 (h/l0 = 0.1), CCHT2 (h/l0 = 0.2) and CCHT3 (h/l0 = 0.3) are investigated in this part.



The auxetic structure micromechanically behaves as a planar orthotropic lamina even though its microscopic mechanical behavior is highly anisotropic [9]. Axial stiffnesses    E z    of PPR CSHT and NPR CCHT can be approximated as follows [56,57]:


   E z  =        t 0     l 0     E s     for   the   PPR   CSHT         2  L cos θ       5   sin  2  θ   8  K f    +     sin  2  θ    K h    +     cos  2  θ    K s         for   the   NPR   CCHT       



(4)




where    K f  =    E s  B  t 3     L 3         K h  =   γ  G s  B t  L         K s  =    E s  B t  L     



ES and GS are Young’s modulus and shear modulus of the solid of which the CCHT is made (Es = 1250 MPa). For the square cross section of struts, the geometrical factor is γ = 5/6. The parameter L is 10.3 mm, 10.9 mm, 11.9 mm, respectively, for CCHT1, CCHT2, and CCHT3. The parameter θ for CCHT1, CCHT2 and CCHT3 is 11.3°, 21.9° and 31°.



The Poisson’s ratio could be calculated as [56,57]


   ν  x z   =  ν  z x   =        t 0     l 0     ν s     for   the   PPR   CSHT      −     3   sin  2   θ i    8  K f        5   sin  2   θ i    8  K f    +     sin  2   θ i     K h    +     cos  2   θ i     K s         for   the   NPR   CCHT       



(5)




where νs is the Poisson’s ratio of the solid of which the CCHT is made (νS = 0.28).



The relative Young’s modulus      E z   /   E s      and Poisson’s ratio data obtained from Equations (4) and (5) are plotted as shown in Figure 5.



Figure 5a shows the ratio Ez/Es of the four samples studied by theoretical and experimental methods. Ez values of the four samples by the theoretical method are calculated through Equation (4). From Figure 5a, it can be observed that on the whole, the ratio Ez/Es calculated by the experimental method is in good agreement with the theoretical results. Moreover, the relative Young’s modulus Ez/Es increase with the decreases of the ratio h/l0 of the unit cell.



It can be clearly derived from Figure 5b that νzx of CSHT0, CCHT1, CCHT2, and CCHT3 are 0.057, −0.22, −0.42, and −0.5, respectively. Obviously, CSHT0 with straight cell edges has PPR, while the CCHT with sinusoidal cell edges has NPR, and with the increase of the CCHT ratio h/l0, the NPR effect accelerates. That is to say, as the cell edge changes from straight (CSHT0) to curved sinusoidal (CCHT), Poisson’s ratios change from positive to negative. Moreover, the larger the CCHT cell’s curvature is, the more obvious its NPR effect. This indicates that the CCHT’s NPR can be adjusted by changing the ratio h/l0.




3.2. Damage Patterns and Energy Absorption Properties


For quasit-static compression, all specimens experienced a rapidly increasing elastic zone, a relatively smooth platform collapse zone, and a rapidly increasing densification zone of force with displacement. During the elastic region, the load value increases rapidly to an initial peak, indicating the localization of the first plastic folding. Then, continuous plastic folding mechanisms characterize the average crushing force (platform). The energy absorption performance is expressed as


  W =    ∫ 0 L   F ( x ) d x     



(6)




where L is the effective total length, and F is the crushing force.



The deformation in the elastic region is uniform and not uniform in the plateau collapse zone. The progressive buckling starts from the middle region of the specimen. Figure 6, Figure 7, Figure 8 and Figure 9 display the detailed deformation process of the tubes under quasi-static compression.



From Figure 6, Figure 7, Figure 8 and Figure 9, it is observed that there is a long collapse platform in the loading process for all the tubes due to the cellular structure properties. However, depending on the ratio h/l0, the damage pattern is quite different. Because of the good elasticity of nylon material, the elastic deformation recovered after unloading. The shapes of the four types of tubes after unloading are shown in Figure 10. It could be observed from Figure 10 that CSHT0 with the PPR is the most destructive, while the damage degree of the NPR CCHT is lighter and decreases with the increase of the ratio h/l0. In other words, the NPR CCHT is softer and has more deformation ability in contrast with the CSHT0 of the same mass.



The deformation energy curves of four kinds of tubes are plotted in Figure 11. The energy increases with the increase of displacement. When quasi-static compression produces the same displacement, the energy absorbed by the four types of samples is different. For the cases in which the displacement is 5 mm, 15 mm, 40 mm, and 65 mm, respectively, the energy absorbed by the four types of samples is shown in Table 2.



Figure 11 shows that the absorption energy of NPR CCHT1 is larger than that of the PPR CSHT0 before the displacement of about 65 mm. The CSHT0 absorbed more energy than CCHT1 after displacement 65mm because it broke and stacked together as a solid tube. Although CCHT1 is also compacted, due to its curved contact with the indenter, when its displacement exceeds 65mm, the contact between the tube and the indenter deviates somewhat, resulting in buckling of both the whole tube and the local tube, which may be the reason for the decrease of its energy absorption effect. (see Figure 12). With the increase of the NPR, the tube is more prone to deformation. However, it can be seen from Table 2 that with the increase of h/l0 of the CCHT, the energy absorption gradually decreases.



From the above analysis, it can be concluded that the energy absorption capacity of the CCHT can be adjusted and enhanced by reasonably designing the ratio h/l0, i.e., the geometrical shape of the CCHT. That is to say, by slightly introducing the NPR effect, the CCHT’s energy absorption capacity is enhanced with only slightly reducing the stiffness and strength.





4. Mechanical Properties of the NPR CCHT under Dynamic Loading Conditions


In this part, dynamic properties of the NPR CCHTs under dynamic loading conditions are systematically analyzed in terms of dynamic enhancement, damage patterns, and energy absorption properties.



4.1. Dynamic Enhancement Analysis


The force–displacement curves of CSHT0, CCHT1, CCHT2, and CCHT3 under dynamic compression tests are shown in Figure 13. To analyze the dynamic enhancement, the responses under quasi-static compression loading are also plotted in Figure 13.



For all the dynamic tests, it could be observed from Figure 13 that when the force exceeds the peak, the force of all curves drops to a smaller value and then begins to fluctuate with the displacement increasing. Unlike quasi-static tests, no plateau collapse region could be detected. One possible reason is that the nylon tubes fracture layer by layer under impact compression and do not exhibit yielding characteristics. Section 4.2 describes the deformation process in detail.



The initial peak force of the tube is used to evaluate the strengthening effect of the NPR tubes. The four kinds of samples’ initial peak force under quasi-static and dynamic compression loading are shown in Figure 14. It can be seen that the strength of the four samples all increases with the decrease of the ratio h/l0 under compressive loading.



To study and quantify the dynamic enhancement, introduce a dynamic enhancement rate γ [58]


  γ =    F  D y n   −  F  Q s      F  Q s     ,  



(7)




where FDyn and FQs are the initial peak force in the dynamic case and quasi-static case, respectively.



Based on the experimental data, the dynamic enhancement rate γ is listed in Table 3.



As shown in Table 1 and Figure 14, the velocity has a great influence on the out-of-plane peak force. The dynamic enhancement rate is 276%, 118%, 76.2% and 63.6% for tubes CSHT0, CCHT1, CCHT2 and CCHT3, respectively. The increase of conventional tubes CSHT0 is the largest, up to 276%. This shows that the conventional tubes are more sensitive to velocity. It is worth noting that CCHT2 and CCHT3 have almost the same peak force in the quasi-static test. However, with the increase of velocity, the difference between them is increasing.




4.2. Damage Patterns and Energy Absorption Properties


In order to understand the damage patterns of tubes under dynamic loading, a digital camera (Instron Corporation, Norwood, MA, USA) and a high-speed camera (Instron Corporation, Norwood, MA, USA) were used. Figure 15, Figure 16, Figure 17 and Figure 18 display the detailed deformation process of the tubes under dynamic loading.



For dynamic compression, the failure mode of these tests exhibits brittle crushing. In compression, the cells suffer progressive crushing. Figure 15 shows the deformation process of tube CSHT0 under velocity 5 m/s. It can be observed from Figure 15 that the loading deformation first occurs at the proximal end and then extends downward. The deformation process involves a sequence of fracture events. First, the weakest rod bends and then breaks. The broken fragment falls off. The specimen is broken layer by layer until the impact ends. The magnitude of local deformation in the top contact region is greater than that in the bottom region, which shows that the inertia force in the accelerating process causes obvious deformation of the specimen.



Figure 16, Figure 17 and Figure 18 show the deformation process of CCHT1, CCHT2, and CCHT3 under a compressive velocity of 5 m/s. It can be observed that the deformation of NPR tubes is slightly different from the conventional tube. From Figure 18 we can clearly derive that the elastic deformation occurred first, then the first layer contact with the impact platen broke, the lower part rebounded, and the contact area continued to fracture, the lower part restored, then repeated the deformation process elastic deformation–fracture–rebound–fracture–restore, until the last layer was broken. In Figure 15 and Figure 16, the deformation process can also be observed, even though less obvious than in Figure 18.



In Figure 15, Figure 16, Figure 17 and Figure 18, we can detect a negative value of the force after the peak force. This may be due to the first row of cracks in the structure as a result of the tensile damage mechanism caused by the rebound effect of the upper plate. The main reason for this situation is the local defects such as micro cracks or pores in the samples.



The deformation energy curves of four kinds of tubes under quasi-static and dynamic tests are plotted in Figure 19. It can be observed that the deformation energy value under the dynamic test is obviously higher than the quasi-static test results. The CSHT0 specimens show a high deformation rate sensitivity, while the NPR CCHT2 and CCHT3 specimens are almost insensitive to deformation rate effects.



For the cases in which the displacement is 5 mm, 15 mm, 40 mm, and 60 mm, respectively, the energy absorbed by the four types of samples under dynamic test is shown in Table 4.



From Figure 19 and Table 4, we can derive that CCHT1 did not show better energy absorption than CSHT0 as in the quasi-static test. This may be because CCHT1 is more prone to tilt during the impact process due to its sinusoidal contact surface (Figure 20). This effect can be eliminated by adding a plane at the upper and lower edges of the tube, which will be analyzed further in the follow-up study.





5. Conclusions


NPR tube is a typical metamaterial, which has great potential in the mechanical, vehicle, and biomedical engineering. A comprehensive understanding of its mechanical properties plays a very important role in its diversified applications. In this paper, the quasi-static and dynamic crushing behaviors focusing on the initial peak force and energy absorption of four kinds of open-cell tubes with equal mass and different h/l0 ratios are investigated experimentally based on the polymer materials nylon. The dynamic enhancement rate and energy absorption are depending on the ratio h/l0. The ratio h/l0 ratio is a key parameter for designing the NPR tube to express its inherent properties. The NPR could be rational design by adjusting the h/l0 ratio and could have relatively high stiffness, strength, and damage resistance. In medicine, a small NPR tube is expected to be used for angioplasty stents, which contract radially as well as axially, thus passing through the arteries smoothly and reducing the risk of surgery. In the construction industry, it can be imagined that the NPR tube can be used as the expansion pipe of the expansion screw. As long as the expansion pipe is designed as an NPR pipe, it can make use of its own mechanical properties to promote the expansion of the pipe. The research of this paper fills a gap in existing research, provides the foundations for the practical applications of NPR tubes in the engineering fields. However, for the sake of gaining a systematic understanding, a further FE numerical study on mechanical properties of the NPR CCHT with different topologies and materials is required.



Noteworthy is that the study only focuses on static and dynamic loading behaviors of the 3D-printed nylon NPR CCHT. Static and dynamic loading behaviors of metal NPR CCHTs with higher stiffness and strength will be studied in future research.







Author Contributions


Conceptualization, C.G., Y.S. and D.Z.; methodology, C.G., Q.D. and Z.L.; formal analysis, C.G., Y.S. and F.R.; investigation, C.G. and H.G.; resources, Q.Y. and Z.L.; writing—Review and Editing, C.G., Y.S. and Z.L. All authors have read and agreed to the published version of the manuscript.




Funding


This research was supported by funds from Shaanxi Provincial Education Department (Grant No. 18JK0437), the National Natural Science of China (Grant No. 12072222, 12021002, 11991032), the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (Grant No. SKLTESKF1901), and the Aeronautical Science Foundation of China (Grant No. ASFC-201915048001).




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Data is contained within the article.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Lee, J.-H.; Singer, J.P.; Thomas, E.L. Micro-/Nanostructured Mechanical Metamaterials. Adv. Mater. 2012, 24, 4782–4810. [Google Scholar] [CrossRef]

	



Shen, J.; Zhou, S.; Huang, X.; Xie, Y.M. Simple cubic three-dimensional auxetic metamaterials. Phys. Status Solidi B 2014, 251, 1515–1522. [Google Scholar] [CrossRef]

	



Cui, S.; Gong, B.; Ding, Q.; Sun, Y.; Ren, F.; Liu, X.; Yan, Q.; Yang, H.; Wang, X.; Song, B. Mechanical Metamaterials Foams with Tunable Negative Poisson’s Ratio for Enhanced Energy Absorption and Damage Resistance. Materials 2018, 11, 1869. [Google Scholar] [CrossRef]

	



Mizzi, L.; Mahdi, E.M.; Titov, K.; Gatt, R.; Attard, D.; Evans, K.E.; Grima, J.N. Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson’s ratio. Mater. Des. 2018, 146, 28–37. [Google Scholar] [CrossRef]

	



Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]

	



Ning, S.; Yang, F.; Luo, C.; Liu, Z.; Zhuang, Z. Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation. Extrem. Mech. Lett. 2020, 35, 100623. [Google Scholar] [CrossRef]

	



Li, X.; Ning, S.; Liu, Z.; Yan, Z.; Luo, C.; Zhuang, Z. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput. Methods Appl. Mech. Eng. 2020, 361, 112737. [Google Scholar] [CrossRef]

	



Dolla, W.J.S. Drug Diffusion and Structural Design Criteria for Conventional and Auxetic Stents; University of Missouri: Kansas City, MO, USA, 2006. [Google Scholar]

	



Dolla, W.J.S.; Fricke, B.A.; Becker, B.R. Structural and drug diffusion models of conventional and auxetic drug-eluting stents. J. Med. Devices 2007, 1, 47–55. [Google Scholar] [CrossRef]

	



Panico, M.; Langella, C.; Santulli, C. Development of a Biomedical Neckbrace through Tailored Auxetic Shapes. Ital. J. Sci. Eng. 2017, 1, 105–117. [Google Scholar] [CrossRef]

	



Wang, Z.; Hu, H. Auxetic materials and their potential applications in textiles. Text. Res. J. 2014, 84, 1600–1611. [Google Scholar] [CrossRef]

	



Hengelmolen, R. Auxetic Tubular Liners. U.S. Patent Application 10/522,889, 15 June 2006. [Google Scholar]

	



Karnessis, N.; Burriesci, G. Uniaxial and buckling mechanical response of auxetic cellular tubes. Smart Mater. Struct. 2013, 22, 1–9. [Google Scholar] [CrossRef]

	



Liu, Y.; Hu, H. A review on auxetic structures and polymeric materials. Sci. Res. Essays 2010, 5, 1052–1063. [Google Scholar]

	



Pasternak, E.; Dyskin, A. Materials and structures with macroscopic negative Poisson’s ratio. Int. J. Eng. Sci. 2012, 52, 103–114. [Google Scholar] [CrossRef]

	



Ali, M.N.; Rehman, I.U. An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis. J. Mater. Sci. Mater. Med. 2011, 22, 2573–2581. [Google Scholar] [CrossRef]

	



Bhullar, S.K.; Hewage, A.T.M.; Alderson, A.; Alderson, K.; Jun, M.B.G. Influence of negative Poisson’s ratio on stent applications. Adv. Mater. 2013, 2, 42–47. [Google Scholar] [CrossRef]

	



Ali, M.N.; Busfield, J.J.C.; Rehman, I.U. Auxetic oesophageal stents: Structure and mechanical properties. J. Mater. Sci. Mater. Med. 2014, 25, 527–553. [Google Scholar] [CrossRef]

	



Xu, B.; Arias, F.; Brittain, S.T.; Zhao, X.-M.; Grzybowski, B.; Torquato, S.; Whitesides, G.M. Making Negative Poisson’s Ratio Microstructures by Soft Lithography. Adv. Mater. 1999, 11, 1186–1189. [Google Scholar] [CrossRef]

	



Scarpa, F.; Smith, C.W.; Ruzzene, M.; Wadee, M.K. Mechanical properties of auxetic tubular truss-like. Phys. Status Solidi B 2008, 245, 584–590. [Google Scholar] [CrossRef]

	



Douglas, G.R.; Phani, A.S.; Gagnon, J. Analyses and design of expansion mechanisms of balloon expandable vascular stents. J. Biomech. 2014, 47, 1438–1446. [Google Scholar] [CrossRef]

	



Bhullar, S.K.; Ko, J.; Ahmed, F.; Jun, M.B.G. Design and Fabrication of Stent with Negative Poisson’s Ratio. Int. J. Mech. Mechatron. Eng. 2014, 8, 448–454. [Google Scholar]

	



Gatt, R.; Caruana-Gauci, R.; Attard, D.; Casha, A.R.; Wolak, W.; Dudek, K.; Mizzi, L.; Grima, J.N. On the properties of real finite-sized planar and tubular stent-like auxetic structures. Phys. Status Solidi B 2014, 251, 321–327. [Google Scholar] [CrossRef]

	



Kuribayashi, K.; Tsuchiya, K.; You, Z.; Tomus, D.; Umemoto, M.; Ito, T.; Sasaki, M. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 2006, 419, 131–137. [Google Scholar] [CrossRef]

	



Kuribayashi, K.; You, Z. Deployable Stent. US Patent 7060092 B2, 13 June 2006. [Google Scholar]

	



Ma, Z.D.; Liu, Y.Y. Auxetc Stents. US Patent 2011/0029063A1, 3 February 2011. [Google Scholar]

	



Lee, J.W.; Soman, P.; Park, J.H.; Chen, S.; Cho, D.W. A Tubular Biomaterial Construct Exhibiting a Negative Poisson’s Ratio. PLoS ONE 2016, 11, e0155681. [Google Scholar] [CrossRef]

	



Li, H.; Ma, Y.; Wen, W.; Wu, W.; Lei, H.; Fang, D. In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures. J. Appl. Mech. 2017, 84, 081006. [Google Scholar] [CrossRef]

	



Wu, W.; Song, X.; Liang, J.; Xia, R.; Qian, G.; Fang, D. Mechanical properties of anti-tetrachiral auxetic stents. Compos. Struct. 2018, 185, 381–392. [Google Scholar] [CrossRef]

	



Wu, W.; Tao, Y.; Xia, Y.; Chen, J.; Lei, H.; Sun, L.; Fang, D. Mechanical properties of hierarchical anti-tetrachiral metastructures. Extrem. Mech. Lett. 2017, 16, 18–32. [Google Scholar] [CrossRef]

	



YuanLong, W.; WanZhong, Z.; Guan, Z.; ChunYan, W.; Qiang, G. Parametric design strategy of a novel cylindrical negative Poisson’s ratio jounce bumper for ideal uniaxial compression. Sci. China Technol. Sci. 2018, 61, 1–10. [Google Scholar]

	



Yuanlong, W.; Wanzhong, Z.; Guan, Z.; Qiang, G.; Chunyan, W. Suspension mechanical performance and vehicle ride comfort applying a novel jounce bumper based on negative Poisson’s ratio structure. Adv. Eng. Softw. 2018, 122, 1–12. [Google Scholar]

	



Gao, Q.; Zhao, X.; Wang, C.; Wang, L.; Ma, Z. Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading. Mater. Des. 2018, 143, 120–130. [Google Scholar] [CrossRef]

	



Gao, Q.; Liao, W.; Wang, L. An analytical model of cylindrical double-arrowed honeycomb with negative Poisson’s ratio. Int. J. Mech. Sci. 2020, 173, 105400. [Google Scholar] [CrossRef]

	



Gao, Q.; Zhao, X.; Wang, C.; Wang, L.; Ma, Z. Crashworthiness analysis of a cylindrical auxetic structure under axial impact loading. Sci. China Technol. Sci. 2020, 63, 140–154. [Google Scholar] [CrossRef]

	



Ren, X.; Shen, J.; Ghaedizadeh, A.; Tian, H.; Xie, Y.M. A simple auxetic tubular structure with tuneable mechanical properties. Smart Mater. Struct. 2016, 25, 065012. [Google Scholar] [CrossRef]

	



Lazarus, A.; Reis, P.M. Soft Actuation of Structured Cylinders through Auxetic Behavior. Adv. Eng. Mater. 2015, 17, 815–820. [Google Scholar] [CrossRef]

	



Javid, F.; Liu, J.; Shim, J.; Weaver, J.C.; Shanian, A.; Bertoldi, K. Mechanics of instability-induced pattern transformations in elastomeric porous cylinders. J. Mech. Phys. Solids 2016, 96, 1–17. [Google Scholar] [CrossRef]

	



Broeren, F.G.J.; van der Wijk, V.; Herder, J.L. Spatial pseudo-rigid body model for the analysis of a tubular mechanical metamaterial. Math. Mech. Solids 2019, 25, 305–316. [Google Scholar] [CrossRef]

	



Lee, W.; Jeong, Y.; Yoo, J.; Huh, H.; Park, S.-J.; Park, S.H.; Yoon, J. Effect of auxetic structures on crash behavior of cylindrical tube. Compos. Struct. 2019, 208, 836–846. [Google Scholar] [CrossRef]

	



Usta, F.; Ertaş, O.F.; Ataalp, A.; Türkmen, H.S.; Kazancı, Z.; Scarpa, F. Impact behavior of triggered and non-triggered crash tubes with auxetic lattices. Multiscale Multidiscip. Model. Exp. Des. 2019, 2, 119–127. [Google Scholar] [CrossRef]

	



Guo, Y.; Zhang, J.; Chen, L.; Du, B.; Liu, H.; Chen, L.; Li, W.; Liu, Y. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp. Sci. Technol. 2020, 98, 105662. [Google Scholar] [CrossRef]

	



Liu, J.; Zhang, Y. Soft network materials with isotropic negative Poisson’s ratios over large strains. Soft Matter 2018, 14, 693–703. [Google Scholar] [CrossRef]

	



Ma, C.; Lei, H.; Liang, J.; Wu, W.; Wang, T.; Fang, D. Macroscopic mechanical response of chiral-type cylindrical metastructures under axial compression loading. Mater. Des. 2018, 158, 198–212. [Google Scholar] [CrossRef]

	



Ma, C.; Lei, H.; Liang, J.; Bai, Y.; Liang, J.; Fang, D. Experimental and simulation investigation of the reversible bi-directional twisting response of tetra-chiral cylindrical shells. Compos. Struct. 2018, 203, 142–152. [Google Scholar] [CrossRef]

	



Yu, H.; Wu, W.; Zhang, J.; Chen, J.; Liao, H.; Fang, D. Drastic tailorable thermal expansion chi-ral planar and cylindrical shell structures explored with finite element simulation. Compos. Struct. 2019, 210, 327–338. [Google Scholar] [CrossRef]

	



Wang, Y.; Ren, X.; Chen, Z.; Jiang, Y.; Cao, X.; Fang, S.; Zhao, T.; Li, Y.; Fang, D. Numerical and experimental studies on compressive behavior of Gyroid lattice cylindrical shells. Mater. Des. 2019, 186, 108340. [Google Scholar] [CrossRef]

	



Ling, B.; Wei, K.; Qu, Z.; Fang, D. Design and analysis for large magnitudes of programmable Poisson’s ratio in a series of lightweight cylindrical metastructures. Int. J. Mech. Sci. 2021, 195, 106220. [Google Scholar] [CrossRef]

	



Farrell, D.T.; McGinn, C.; Bennett, G.J. Extension twist deformation response of an auxetic cylindrical structure inspired by deformed cell ligaments. Compos. Struct. 2020, 238, 111901. [Google Scholar] [CrossRef]

	



Zhang, K.; Zhao, P.; Zhao, C.; Hong, F.; Deng, Z. Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices. Compos. Struct. 2020, 238, 111952. [Google Scholar] [CrossRef]

	



Zhang, K.; Zhao, C.; Luo, J.; Ma, Y.; Deng, Z. Analysis of temperature-dependent wave propagation for programmable lattices. Int. J. Mech. Sci. 2020, 171, 105372. [Google Scholar] [CrossRef]

	



Wu, Q.; Vaziri, A.; Asl, M.E.; Ghosh, R.; Gao, Y.; Wei, X.; Ma, L.; Xiong, J.; Wu, L. Lattice Materials with Pyramidal Hierarchy: Systematic Analysis and Three Dimensional Failure Mechanism Maps. J. Mech. Phys. Solids 2019, 125, 112–144. [Google Scholar] [CrossRef]

	



Sun, R.; Li, Q.; Yao, J.; Scarpa, F.; Rossiter, J. Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures. Appl. Energy 2020, 264, 114615. [Google Scholar] [CrossRef]

	



Injeti, S.S.; Daraio, C.; Bhattacharya, K. Metamaterials with engineered failure load and stiffness. Proc. Natl. Acad. Sci. USA 2019, 116, 23960–23965. [Google Scholar] [CrossRef]

	



Xia, W.; Ruiz, L.; Pugno, N.; Keten, S. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. Nanoscale 2016, 8, 6456–6462. [Google Scholar] [CrossRef] [PubMed]

	



Wang, A.; Mcdowell, D.L. In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs. J. Eng. Mater. Technol. 2004, 126, 137–156. [Google Scholar] [CrossRef]

	



Lu, Z.; Wang, Q.; Li, X.; Yang, Z. Elastic properties of two novel auxetic 3D cellular structures. Int. J. Solids Struct. 2017, 124, 46–56. [Google Scholar] [CrossRef]

	



Tounsi, R.; Markiewicz, E.; Haugou, G.; Chaari, F.; Zouari, B. Combined effects of the in-plane orientation angle and the loading angle on the dynamic enhancement of honeycombs under mixed shear-compression loading. Eur. Phys. J. Spec. Top. 2016, 225, 243–252. [Google Scholar] [CrossRef]








[image: Materials 14 01353 g001 550] 





Figure 1. Schematic of (a) the square honeycomb lattices, (b) the square honeycomb tubes (CSHTs), (c) the convex–concave lattices, (d) the negative Poisson’s ratio (NPR) convex–concave honeycomb tubes (CCHTs), (e) the straight cell walls of (a), (f) the sinusoidal beams of (c), and (g) the unit cell of (d). 
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Figure 2. The 3D-printed experimental samples using the nylon materials: (a) CSHT0, (b) CCHT1, (c) CCHT2, and (d) CCHT3. 
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Figure 3. The quasi-static and dynamic compressive test machine: (a) MTS 810 testing machine; (b) Instron VHS high rate testing system machine. 
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Figure 4. Three-times repeated force–displacement curves of the samples under quasi-static and dynamic compressive loading conditions: (a) CCHT2 under a quasi-static loading speed of 1 mm/min and (b) CCHT1 under a dynamic loading speed of 5 m/s−1. 
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Figure 5. (a) Relative Young’s modulus Ez/Es of the CSHT0, CCHT1, CCHT2, and CCHT3 and (b) Poisson’s ratio νzx (νzx = νxz). 
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Figure 6. Deformation process of CSHT0 (1–4 stages of deformation during quasi-static compression test). 
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Figure 7. Deformation process of CCHT1 (1–4 stages of deformation during quasi-static compression test). 
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Figure 8. Deformation process of CCHT2 (1–4 stages of deformation during quasi-static compression test). 
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Figure 9. Deformation process of CCHT3 (1–4 stages of deformation during quasi-static compression test). 
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Figure 10. The tubes after unloading. 
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Figure 11. Comparison of deformation energy curves of the CCHT0, CCHT1, CCHT2, and CCHT3 under quasi-static loading conditions. 
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Figure 12. (a) CCHT0 at the displacement of 65 mm under quasi-static test. (b) CCHT1 at the displacement of 65 mm under quasi-static test. 
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Figure 13. Comparison of the force–displacement curves under quasi static and dynamic conditions: (a) CSHT0, (b) CCHT1, (c) CCHT2, and (d) CCHT3. 
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Figure 14. The initial peak force under quasi-static and dynamic compressive loading. 
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Figure 15. The results of dynamic tests of CSHT0 (1–5 stages of deformation during the dynamic compressive test). 
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Figure 16. The results of dynamic tests of CCHT1 (1–4 stages of deformation during the dynamic compressive test). 
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Figure 17. The results of dynamic tests of CCHT2 (1–4 stages of deformation during the dynamic compressive test). 
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Figure 18. The results of dynamic tests of CCHT3 (1–5 stages of deformation during the dynamic compressive test). 
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Figure 19. The comparison of deformation energy between dynamic and quasi-static compressive tests for CSHT0, CCHT1, CCHT2, and CCHT3. 
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Figure 20. (a) CCHT0 at the displacement of 60 mm under dynamic test. (b) CCHT1 at the displacement of 60 mm under dynamic test. 






Figure 20. (a) CCHT0 at the displacement of 60 mm under dynamic test. (b) CCHT1 at the displacement of 60 mm under dynamic test.



[image: Materials 14 01353 g020]







[image: Table] 





Table 1. The geometric parameters of the specimens.
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	Specimen
	t (mm)
	h (mm)
	l0 (mm)
	B (mm)
	h/l0





	CSHT0
	2
	0
	10
	2
	0



	CCHT1
	1.95
	1
	10
	2
	0.1



	CCHT2
	1.83
	2
	10
	2
	0.2



	CCHT3
	1.67
	3
	10
	2
	0.3
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Table 2. The energy absorbed by the specimen when the displacement is 5 mm, 15 mm, 40 mm, and 65 mm.
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	Specimen
	h/l0
	W (5 mm)
	W (15 mm)
	W (40 mm)
	W (65 mm)





	CSHT0
	0
	2.9J
	6.1 J
	8.5 J
	15.9 J



	CCHT1
	0.1
	2.4 J
	6.1 J
	10.7 J
	15.9 J



	CCHT2
	0.2
	1.1 J
	3.4 J
	6.5 J
	10.2 J



	CCHT3
	0.3
	0.6 J
	2.9 J
	5.4 J
	7.6 J
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Table 3. Comparison between quasi-static and dynamic initial peak force.
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	Specimen
	FQs (kN)
	FDyn (kN)
	γ





	CSHT0
	0.864
	3.248
	276%



	CCHT1
	0.698
	1.524
	118%



	CCHT2
	0.362
	0.638
	76.2%



	CCHT3
	0.349
	0.571
	63.6%
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Table 4. The energy absorbed by the specimen when the displacement is 5 mm, 15 mm, 40 mm, and 60 mm under dynamic test.
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	Specimen
	h/l0
	W (5 mm)
	W (15 mm)
	W (40 mm)
	W (60 mm)





	CSHT0
	0
	5.2 J
	8.2 J
	12.7 J
	14.5 J



	CCHT1
	0.1
	3.3 J
	8.0 J
	11.2 J
	14.5 J



	CCHT2
	0.2
	1.4 J
	5.2 J
	7.2 J
	8.4 J



	CCHT3
	0.3
	0.9 J
	4.2 J
	5.4 J
	5.9 J
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