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Abstract: The simple, convenient, and efficient methods for the preparation of unsymmetrical vinyl
disulfides with additional functional groups under mild conditions with moderate to high yields
were designed. The developed methods include the reaction of S-vinyl phosphorodithioate with
thiotosylates or S-vinyl thiotosylate with thiols. The designed methods allow for the synthesis of
unsymmetrical vinyl disulfides with additional functionalities such as hydroxy, carboxy, protected
amino, or ester groups. Vinyl disulfides reacted with the generated transient o-iminothioquinones in
an inverse electron-demand [4+2] cycloaddition to produce benzo[b][1,4]thiazine derivatives.

Keywords: alkenes; cycloaddition; hetero-Diels-Alder; thiosulfonates; vinyl disulfides

1. Introduction

The disulfide bond is one of the most important structural functionalities which plays
a crucial role affecting the stability, folding, and biological function of proteins and peptides.
It also allows the maintenance of the cellular redox balance in cells. Although aforemen-
tioned biological properties are significant in life science, disulfides [1–3] are also important
and versatile compounds due to their applications in material and food chemistry.

The unsymmetrical disulfides can be applied in the formation of self-assembled mono-
layers (SAMs) on gold or other metals [4–6]. Good quality SAMs can be produced both
from thiols and disulfides [5]. However, the disulfides provide several practical advantages.
They are more stable and significantly more resistant to oxidation. Moreover, in the case of
disulfides, the problems associated with intra or intermolecular reactivity of the thiol group
can be avoided [7]. The unsymmetrical disulfides give monolayers of well-defined surface
compositions without phase separation [8]. When a mixture of two different thiols is used,
in some cases, the elimination of cooperative effects associated with the co-adsorption
of corresponding thiols cannot be avoided [9]. The surface composition modified by the
unsymmetrical disulfides has been applied for double-stranded DNA–protein microar-
rays [10], DNA immobilization via intercalation [11], and studies on surface reactions on
nanoparticles [9]. Unsymmetrical disulfides have been involved in the preparation of
the electrostatic self-assembly of nanostructured materials [12,13] and chemosensors for
biological applications [3].

Moreover, the synthesis of unsymmetrical disulfides is an important step for the prepa-
ration of a variety of compounds involved in medicinal chemistry and advanced organic
synthesis [14–17]. The developments in disulfide bond synthesis have been reviewed
recently [18–22]. Although disulfides are very important in numerous fields, effective
methods for the preparation of unsymmetrical disulfides are still rare. The most common
synthesis of disulfide functionality is based on the nucleophilic substitution reaction of a
sulfenyl derivative with a thiol or thiol derivative. The most frequently utilized electrophilic
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sulfenyl derivatives are: sulfenyl chlorides [23,24], S-alkylsulfanylisothioureas [25,26], S-
alkyl thiosulfates and S-aryl thiosulfates (Bunte salts) [27], benzotriazolyl sulfanes [28,29],
benzothiazol-2-yl disulfides [30], (alkylsulfanyl)dialkylsulfonium salts [31,32], dithioperox-
yesters [33], 2-pyridyl disulfides and derivatives [34,35], sulfonamides [36], N-alkyltetrazolyl
disulfides [37], sulfenyl thiocyanates [38], sulfenyldimesylamines [39], thiolsulfinates [40]
and thiosulfonates [41–43], 4-nitroarenesulfenanilides [44], thionitrites [45], thioimides [46],
sulfenyl sulfanylsulfinamidines [47–49], and thiophosphonium salts [50]. The disulfides
can also be efficiently obtained by the reaction of a thiol with a sulfinylbenzimidazole [51],
a disulfide exchange reaction promoted by rhodium catalyst [52,53], an electrochemical
method [54], using tetrathiomolybdate in the presence of a symmetrical disulfide to pro-
mote a ring opening of an aziridine [55,56], or the application of diethyl azodicarboxylate
(DEAD) [57] or a solid support [58] to promote a sequential coupling of two different thiols.
The oxidation of a mixture of two different thiols to obtain an unsymmetrical disulfide has
also been reported recently. The reactions can be accomplished by using 2,3-dichloro-5,6-
dicyanobenzoquinone (DDQ) [59–61] or iridium (III) photoredox catalysis [62].

The 5,5-dimethyl-2-thioxo-1,3,2-dioxaphosphorinane-2-disulfanyl derivatives are read-
ily available and can be applied for the synthesis of unsymmetrical disulfides with addi-
tional functional groups. The synthetic methodology based on the electrophilic disulfanyl
derivatives allow one to obtain alkyl-aryl disulfides [63], dialkyl disulfides [64], “bioresis-
tant” disulfides [65], unsymmetrical disulfides of L-cysteine and L-cystine [66], and diaryl
disulfides [67]. The electrophilic properties of disulfanyl derivatives of phosphorodithioic
acid can also be applied for the synthesis of α-sulfenylated carbonyl compounds [68],
phosphorothioates with additional functional groups [69], unsymmetrical alkynyl sul-
fides [70,71], and symmetrical [72,73] and unsymmetrical trisulfides [74,75].

Block and co-workers isolated ajoene as an E/Z isomers mixture in 1984 [76]. Ajoene
was produced as a rearrangement product of allicin from freshly crushed garlic. The
structure was established as an allyl sulfoxide containing a vinyl disulfide functionality.
The presence of an unusual vinyl disulfide functionality was unexpected and other natural
products with such functionality are rare. The activity of Z-ajoene as an anti-thrombotic
agent [77] is higher than its E-isomer. Due to the higher biological activity of the Z-isomer,
anticancer studies have focused primarily on this isomer [78,79].

Although unsymmetrical disulfides can be obtained by several different synthetic
methods, the synthesis of unsymmetrical alkenyl disulfides can be accomplished by only
four methods (Scheme 1A–D).

Scheme 1. Previously reported methods for the synthesis of alkenyl disulfides (A–D) and our new synthesis approach (E).
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The first method involves the reaction of sulfenyl bromide with trityl-alkenyl sul-
fide [80] (Scheme 1A). The alkenyl disulfides can also be obtained by the low-temperature
cleavage of an alkenyl thioacetate with hydroxide to give alkenethiolate and the subsequent
sulfenylation reaction with corresponding S-alkyl p-toluenethiosulfonate. The appropriate
vinyl disulfide was obtained with a high yield after column chromatography in the second
method [81–83] (Scheme 1B). Unfortunately, the formation of the E isomer or a mixture of
Z/E alkenyl disulfides for both methods (Scheme 1A,B) was observed. The synthesis of
unsymmetrical Z-alkenyl disulfides with additional functional groups can be accomplished
with readily available staring materials under mild conditions with moderate to high yields
(Scheme 1C). The third method is diastereoselective and an exclusive formation of Z-isomer
is observed. The developed method includes the reaction of E-alkenyliodonium salt with
sodium thiotosylate and thiols in the presence of a base [84]. The fourth method [85] is
based on the base-promoted rearrangement of a-thiophosphorylated ketones followed by
thioalkylation with thiotosylates (Scheme 1D).

There are a limited amount of synthetic methods available for the synthesis of alkenyl
disulfides (Scheme 1). We were interested in the development of an experimentally practical
and versatile method to access vinyl disulfides with additional functional groups. The
designed method is based on the readily available S-vinyl phosphorodithioate and S-vinyl
thiosulfonate (Scheme 1E).

The synthetic potential of vinyl disulfides can involve formation of complexes with
metals, multicomponent reactions, Heck reaction, olefin metathesis, or the variety of
cycloaddition reactions. Due to the poor availability of vinyl disulfides, aforementioned
transformations has not been examined yet.

2. Materials and Methods

Preparation of thiotosylates 1a–1e; 1k; 1m–1n; 1r was described previously [71,85]. All
bromides were purchased from ProChimia (Sopot, Poland) and were used for synthesis
of required thiotosylates. Sodium 4-methylbenzenesulfenate was purchased from Merck
and was used for preparation of sodium 4-methylbenzenesulfonothioate as described
previously [85]. Vinyl magnesium bromide solution (1M) in THF (tetrahydrofuran) and
tetrabutylammonium fluoride (TBAF) solution (1M) in THF were purchased from Merck.
Tetrahydrofuran was pre-dried over KOH pellets and distilled. Subsequently, tetrahy-
drofuran (THF) was dried by heating under reflux over potassium in the presence of
benzophenone as an indicator and distilled. Silica gel plates Supelco UV254 (St. Louis,
MS, USA) were used for thin layer chromatography (TLC). A silica gel 60 (230-400 mesh,
Merck, Darmstadt, Germany) was used for column chromatography. NMR spectra were
recorded on Brucker 400 MHz spectrometers. The residual solvent peak was used as
the internal reference (CDCl3: δ = 7.26 ppm for 1H, δ = 77.0 ppm for 13C). Nicolet Is50
Fourier-transform infrared (FT-IR) spectrometer (Wien, Austria) was used to record the
IR spectra by attenuated total reflectance (ATR) method. A Gallenkamp 7936B apparatus
(Warwick, UK) was used to determine melting points.

2.1. Synthesis of 5,5-Dimethyl-2-thioxo-2-vinylsulfanyl-[1,3,2]dioxaphosphorinane

A stirred solution of 868 mg (2.2 mmol) bis-(5,5-dimethyl-2-thioxo-1,3,2-dioxaphos-
phorinan-2-yl) disulfide in dry THF (3 mL) was cooled to −5 ◦C under nitrogen, then
vinylmagnesium bromide (2.0 mmol, 1M solution in THF, 2 mL) was added dropwise. After
complete addition, the mixture was stirred for 15 min at rt, and the solvent was removed
in vacuo. Crude product was purified by silica gel column chromatography(petroleum
ether/DCM 4:1) to provide 296 mg of S-vinyl phosphorodithioate as a white powder with
66% yield.

Chromatography: PE/DCM 4/1 (Rf = 0.2), Yield 0.296 g 66%,white solid, mp. 57.8–58.8 ◦C.
1H NMR (400 MHz, CDCl3) δ 6.50 (dt, J = 16.6, 9.3 Hz, 1 H), 5.79–5.63 (m, 2 H), 4.21 (dd,
J = 10.8, 7.0 Hz, 2 H), 4.02 (dtd, J = 11.2, 2.4, 1.2 Hz, 2 H), 1.29 (s, 3H), 0.97 (s, 3 H).
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13C NMR (101 MHz, CDCl3) δ 124.0 (d, J = 4.5 Hz), 123.5 (d, J = 12.6 Hz), 77.6 (d, J = 9.0 Hz),
32.5 (d, J = 7.0 Hz), 21.0 (d, J = 1.2 Hz).
31P NMR (202 MHz, CDCl3) δ 82.46.
HRMS (ESI): m/z [M + H]+ calcd for C7H14O2PS2: 225.0167; found: 225.0168.

2.2. A Typical Procedure for the Preparation of Vinyl Disulfides 2 from S-vinyl Thiotosylate and
Representative Analytical Data

To a stirred, ice-cooled solution of S-vinyl thiotosylate 428 mg (2.0 mmol) and thiol 4
(1.0 mmol) in dry DCM (10 mL) under nitrogen, NEt3 (1.0 mmol, 140 µL) was added in one
portion. The mixture was stirred at rt for 15 min. Then, the solvent was evaporated and the
reside was purified by column chromatography (SiO2) to provide disulfide 2.
1-Vinyldisulfanyldodecane 2a.
Chromatography: Hexene (Rf = 0.6), Yield 0.253 g, 97%, colorless oil.
1H NMR (400 MHz, CDCl3) δ 6.41 (dd, J = 16.2, 9.6 Hz, 1 H), 5.56 (d, J = 16.2 Hz, 1 H), 5.36
(d, J = 9.6 Hz, 1 H), 2.73 (t, J = 7.3 Hz, 2 H), 1.74–1.64 (m, 2 H), 1.44–1.26 (m, 18 H), 0.91 (t,
J = 6.9 Hz, 3 H).
13C NMR (101 MHz, CDCl3) δ 133.8, 113.1, 38.3, 31.9, 29.6, 29.6, 29.6, 29.5, 29.3, 29.2, 29.1,
28.5, 22.7, 14.1.
HRMS (ESI): m/z [M + H]+ calcd for C14H29S2: 261.1705; found: 261.1711.
11-Vinyldisulfanylundecanoic acid methyl ester 2c
Chromatography: Hexene/DCM 2/1(Rf =0.25), Yield 0.256 g, 88%, colorless oil.
1H NMR (400 MHz, CDCl3) δ 6.40 (dd, J = 16.2, 9.6 Hz, 1 H), 5.55 (d, J = 16.3 Hz, 1 H), 5.36
(d, J = 9.6 Hz, 1 H), 3.69 (s, 3 H), 2.72 (t, J = 7.3 Hz, 2 H), 2.32 (t, J = 7.5 Hz, 2 H), 1.77–1.62
(m, 4 H), 1.48–1.20 (m, 12 H).
13C NMR (101 MHz, CDCl3) δ 174.3, 133.8, 113.1, 51.5, 38.2, 34.1, 29.4, 29.3, 29.2, 29.2, 29.1,
29.1, 28.5, 24.9.
HRMS (ESI): m/z [M + H]+ calcd for C14H27O2S2: 291.1447; found: 291.1452.

2.3. A Typical Procedure for the Preparation of benzo[b][1,4]thiazine disulfanyl derivatives 7 and
Representative Analytical Data

To a solution of 2-N-sulfonylthiophthalimide 5.242 mg (0.5 mmol) and vinyl disulfide
2 (0.75 mmol) in dry CHCl3 (20 mL) under nitrogen, triethylamine (0.5 mmol, 70 µL) was
added. Mixture was stirred under reflux for 17 h. Then, the solvent was evaporated and
the reside was purified by column chromatography (SiO2) to provide 7.

3-(Dodec-1-yldisulfanyl)-6,8-dimethoxy-4-(4-toluenesulfonyl)-3,4-dihydro-2H-benzo-
[1,4]thiazine 7a
Chromatography: Hexane/DCM 2/1 (Rf = 0.32), Yield 0.150 g, 50%, thick yellow oil
IR (ATR): 2922(w), 2851(w), 1578(w), 1455(w), 1434(w), 1308(s), 1284(w), 1228(w), 1185(w),
1060(w), 1039(w), 842(s), 829(s), 812(s), 705(w), 694(s), 644(s) cm−1

1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 8.3 Hz, 2 H), 7.21 (d, J = 8.1 Hz, 2 H), 7.03 (d, J =
2.4 Hz, 1 H), 6.37 (d, J = 2.4 Hz, 1 H), 5.89 (t, J = 5.2 Hz, 1 H), 3.83 (s, 3 H), 3.83 (s, 3 H),
3.15-2.85 (m, 2 H), 2.87–2.74 (m, 2 H), 2.40 (s, 3 H), 1.71-1.54 (m, 2 H), 1.44–1.21 (m, 18 H),
0.88 (t, J = 6.9 Hz, 3 H).
13C NMR (101 MHz, CDCl3) δ 157.8, 156.0, 144.2, 135.9, 133.4, 129.6, 127.4, 109.2, 105.1, 97.4,
65.4, 56.1, 55.6, 39.2, 31.9, 29.7, 29.7, 29.5, 29.4, 22.7, 21.6, 14.1.
HRMS (ESI): m/z [M + H]+ calcd for C29H44NO4S4: 598.2148; found: 598.2153.

Synthesis of starting materials, vinyl disulfides 2 and benzo[b][1,4]thiazine disulfanyl deriva-
tives 7 with analytical data, copy of IR, and NMR spectra are in the Supplementary Materials.

3. Results and Discussion

The corresponding S-vinyl phosphorodithioate was obtained by the reaction of bis-(5,5-
dimethyl-2-thiono-1,3,2-dioxaphosphorinanyl)disulfide with vinylmagnesium bromide
in THF with 66% yield. We examined several methods to prepare S-vinyl thiotosylate.
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The most effective reaction was the reaction of ditosylsulfide (1,3-di-p-toluene-trisulfane-
1,1,3,3-tetraoxide) with vinylmagnesium bromide in THF at−78 ◦C to produce the required
S-vinyl thiotosylate with 60% yield.

The first method developed for the preparation of unsymmetrical vinyl disulfides
with additional functional groups included the reaction of S-vinyl phosphorodithioate
with thiotosylates 1 in the presence of tetrabutylammonium fluoride (TBAF) in THF at
0 ◦C for 15 min. We selected a variety of thiotosylates 1a–r to determine the limitations
and scope of the designed transformation. Compound 1 contained alkyl and aryl groups
with additional thioacetyl, ester, protected amino, nitro or carbon–carbon double-bond
functionalities. The results are presented in Table 1.

Table 1. Synthesis of vinyl disulfides 2 from S-vinyl phosphorodithioate.
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1 –n–C12H25 1a 93 2a -
2 –(CH2)9CH=CH2 1b 82 2b -
3 –(CH2)10COOMe 1c 73 2c -
4 –(CH2)11OMe 1d 62 2d -
5 –(CH2)11SAc 1e 85 2e -
6 –(CH2)2NHBoc 1f 75 2f -
7 –(CH2)2C6H4–4–CH3 1g 76 2g -
8 –(CH2)2–3–indyl 1h 75 2h -
9 –(CH2)2C6H4–4–CF3 1i 65 2i -

10 –(CH2)2C6H4–4–F 1j - 100 3j
11 –C6H4–4–CH3 1k - 100 3k
12 –CH2–2–naphthyl 1l - 80 3l
13 –CH2C6H4–4–NO2 1m - 70 3m
14 –CH2C6H4–4–OMe 1n - 85 3n
15 –CH2C6H4–4–CN 1o - 75 3o
16 –(CH2)2C6H4–4–OMe 1p - 86 3p
17 –CH2Ph 1r - 76 3r

1 Reaction conditions: TBAF (1.1 mmol) was added to a solution of S-vinyl phosphorodithioate (1.0 mmol) and
thiotosylate 1 (1.0 mmol) in dry THF (5 mL) at 0 ◦C. A mixture was stirred for 15 min under a N2 atmosphere at
0 ◦C. 2 Isolated yields.

Although vinyl disulfides 2a–i were obtained with high or very high yields of 62–
93% (entries 1–9), other vinyl disulfides 2j–r could not be obtained by the developed
method. We noticed that thiosulfonate 1 could be converted to symmetrical disulfide 3
in the presence of TBAF when S-vinyl phosphorodithioate was not added. The success
of the above method depended on the rate of the reaction of fluoride anion with S-vinyl
phosphorodithioate and thiotosylate. When the reaction of the fluoride anion with S-
vinyl phosphorodithioate was faster than the reaction with thiotosylate, the corresponding
vinylthiolate anion was generated, and the subsequent reaction with thiotosylate provided
vinyl disulfide 2. However, when the reaction of the fluoride anion with thiotosylate was
faster, symmetrical disulfide 3 was produced. As shown in Table 1, the developed method
is efficient for alkyl thiosulfonates. In the case of aryl- or benzyl-type thiosulfonates, the
corresponding symmetrical disulfides 3 were produced exclusively.

We developed another method for the synthesis of unsymmetrical vinyl disulfides
to overcome the above limitations. The transformation comprises the reaction of S-vinyl
thiotosylate with thiols 4 in the presence of NEt3 at room temperature. The obtained results
are presented in Table 2.
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Table 2. Synthesis of vinyl disulfides 2 from S-vinyl thiotosylate.
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2a–t were obtained with very high yields of 80–98%. The developed method is ef-fective
for alkyl-vinyl disulfides 2a and 2c (entries 1,2) and for disulfides 2j–r, which could not be
obtained with S-vinyl phosphorodithioate (Table 1 entries 10–17). The developed method
is more convenient and versatile. The method allows for a broad range of products to be
accessed, and all starting materials are readily available.

Benzo[b][1,4]thiazine is a valuable heterocyclic system with promising and wide applica-
tions in medical chemistry [86,87]. We decided to explore the possibility of benzo[b][1,4]thiazine
derivative synthesis with a disulfide functionality. The het-ero-Diels–Alder reaction [88] is
the most convenient approach for the synthesis of benzo[b][1,4]thiazine derivatives based
on the generation of transient o-iminothioquinone 6 from 2-N-sulfonylthiophthalimides
5 and subsequent reaction with vinyl disulfides 2 in an inverse electron-demand [4+2]
cycloaddition to produce compounds 7. The preliminary results are summarized in Table 3.

Table 3. Synthesis of benzo[b][1,4]thiazine disulfanyl derivatives 7.
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Entry 1 R Yield (%) 2 Recovered 2 (%) 2

1 –n–C12H25 2a 50 7a 35 2a
2 –(CH2)10COOMe 2c 30 7c 42 2c
3 –CH2C6H4–4–NO2 2m 29 7m 46 2m
4 –CH2C6H4–4–OMe 2n 27 7n 44 2n
5 –CH2Ph 2r 25 7r 52 2r

1 Reaction conditions: A solution of 2-N-sulfonylthiophthalimides 5 (0.5 mmol), vinyl disulfide 2
(0.75 mmol) and NEt3 (0.5 mmol) in dry CHCl3 (20 mL) was refluxed for 17 h under N2 atmosphere.
2 Isolated yields.
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Although the reaction conditions were not optimized, the corresponding benzo-
[b][1,4]thiazine disulfanyl derivatives 7 were obtained with moderate yields of 25–50%.
Moreover, there is no alternative method that allows for the preparation of compounds 7a,
7c, 7m, 7n, 7r. The recovered vinyl disulfides 2 demonstrated the possibility of improving
the yield of product 7 by prolonging the reaction time or selecting a solvent with a higher
boiling point. The optimal conditions, scope of starting materials and stereoselectivity of
the hetero-Diels-Alder reaction are under investigation.

4. Conclusions

In summary, we developed a convenient and experimentally practical method for
preparing unsymmetrical vinyl disulfides with additional functional groups under mild
conditions. The method is based on readily available starting materials. The applied mild
reaction conditions tolerate a variety of additional functionalities, including esters, carboxy,
carbon–carbon double bonds, and protected amino, nitro, cyano, and hydroxy groups.
We demonstrated that functionalized unsymmetrical vinyl disulfides can be used in the
inverse electron-demand [4+2] hetero-Diels–Alder reaction to produce benzo[b][1,4]thiazine
disulfanyl derivatives.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-1
944/14/6/1342/s1: Synthesis of starting materials, vinyl disulfides 2, and benzo[b][1,4]thiazine
disulfanyl derivatives 7 with analytical data, copy of IR, and NMR spectra.
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