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Abstract: Four different phosphate glass formulations (F0, F1, F2, and F3) were developed according
o wheat nutrient requirements to be used as controlled-release fertilizers. These glasses contain
macro-elements (P2O5-K2O-CaO-MgO), with the addition of microelements (Fe-Mn-Zn-B-Cu-Mo)
in each formulation. The effects of these elements’ addition on thermal properties, glass structure,
and dissolution behaviors were investigated. Results showed that these glasses are composed
essentially of metaphosphate chains and that the addition of micronutrients could change the
chemical durability of phosphate glasses. A greenhouse experiment was performed using wheat
(Triticum durum L.) to evaluate the efficiency of the four glasses, with or without application of
chemical nitrogen (N) (N + VF and VF, respectively). The different formulas were tested using two
rates of 0.3 and 1 g per plant. In addition to the vitreous fertilizer formulations, two other treatments
were applied: control treatment with no amendment and Nitrogen-Phosphorus-Potassium treatment
with the application of the conventional fertilizers on the base of optimal rates. After four months of
cultivation, vitreous fertilizers application significantly improved growth (7% to 88%), photosynthetic
(8% to 49%) parameters, and yield (29% to 33%) compared to NPK treatment and to the control. It
has been found that formulas F1, F2, and F3 may constitute a potential alternative to conventional
fertilization due to their positive impact on wheat production and can be used in practice as an
environmentally controlled-release fertilizer.

Keywords: glass; phosphate; chemical durability; growth; yield; Triticum durum

1. Introduction

The world population continues to increase, and at the existing rate of growth, it is
expected to increase by over a third, or 2.3 billion people, between 2009 and 2050 [1]. This
rate of growth is much slower than the one noticed in the past four decades, during which it
grew by around 90% or 3.3 billion people [2]. Almost all of this growth is predicted to occur
in developing countries [3]. These statistics mean that it is necessary to raise overall food
production by around 70% to nourish a world population of 9.1 billion people in 2050 [4].
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The market demand for food would require almost double in developing countries [5]. As
a result, the production of several key basic commodities has significantly increased. To
ensure nutritional security, cereals’ annual production, especially wheat, should increase
by nearly one billion tons [6].

Wheat is considered a multipurpose crop due to its important utilization as human
and animal food [7]. In this regard, wheat production is currently considered a great
challenge for countries worldwide to maintain food security [8]. In Morocco and the other
countries located in North Africa, wheat productivity is affected by various abiotic and
biotic constraints, such as drought, high temperatures, leaf rust, severe imbalances in
soil fertility (absence of essential nutrients and/or micro-organisms), and unfavorable
soil physical characteristics especially degradation of agricultural soil resources which is
already seriously limiting the production of crops in these countries [9–11]. Morocco’s
wheat production in 2018 has been estimated to be 7,320,620 t with an area of cultivation of
2,842,748 ha [12]. To meet its needs for the same year, Morocco has imported 3,946,570 t of
wheat to become the world’s 14th largest importer of this cereal [12].

For this, agriculture faces multiple challenges in the 21st century: to nourish a growing
population with less arable lands, it has to produce more food force, and also it has to
participate in the overall development in the many agriculture-dependent developing
countries [13]. Furthermore, agriculture must adopt more efficient and eco-friendly pro-
duction techniques because the use of chemical products, such as herbicides, insecticides,
and fungicides, to increase agricultural production has become more harmful to plants’
health and the physicochemical quality of soils [14]. Moreover, the overuse of conventional
fertilizers implies a large amount of nutrients in soils, leading to a high release velocity in
such a way that plants cannot absorb and consume them [15]. The unconsumed released
nutrients may also be adsorbed and retained either on the outer surface or within the pores
of soil particles. Most of the nutrients pass to rivers or lakes, contaminating drinking water,
and causing eutrophication [16].

Vitreous controlled-release fertilizers are considered one of the most promising solu-
tions to increase crop yields without any environmental problems [17]. These fertilizers
ensure the presence and availability of nutrient elements over time [15]. Consequently, the
soil nutrients will be in adequate quantities but contained within exact and controllable
limits, depending on crops requirement and development stage [15]. Generally, these
nutrient elements are classified into three categories: primary elements, i.e., Nitrogen (N),
Phosphorus (P) and Potassium (K); secondary elements, i.e., Calcium (Ca) and Magnesium
(Mg); and microelements, i.e., Boron (B), Zinc (Zn), Manganese (Mn), Iron (Fe), Copper (Cu)
and Molybdenum (Mo). This classification depends on the amount of elements absorbed
by the crops, not on their function since they are all indispensable for the plants’ balanced
growth. Glasses (especially phosphate glasses) have the ability to incorporate the majority
of these nutrients, making it possible to develop fertilizers that provide plants with all that
is needed to produce crops with high nutritional value [18].

For vitreous fertilizers, the controlled release rate of nutrients, which is the most
distinguished property with conventional fertilizers, is principally linked to the chemical
composition of glass [19]. It can be adjusted to have fertilizers that can dissolve quickly or
maintain their activity for a long period, depending on plants’ requirements. Several mi-
croelements, such as Mn, Fe, Zn, Mo, and CuO, have been proposed to improve phosphate
glasses’ chemical resistance [20–24].

In this study, four phosphate glass formulations (F0-F1-F2-F3) were established ac-
cording to wheat nutrient requirements: F0 contains only major nutrients (P2O5-K2O-CaO-
MgO), iron was added in F1 and manganese in F2, while F3 incorporates all microelements
(Fe-Mn-Zn-B-Cu-Mo) necessary for wheat growth. This work focused on the effect of these
elements on glass thermal properties, structure, and dissolution behaviors in order to as-
sess their appropriateness of being applied as controlled-release fertilizers. In addition, an
agronomic valorization was carried out to assess the effectiveness of the elaborated vitreous
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fertilizers on wheat growth, photosynthesis, and yield in comparison to non-amended and
conventional fertilizers treatments under greenhouse conditions.

2. Materials and Methods
2.1. Glass Synthesis

The vitreous fertilizers were elaborated by the melt quench technique, using CaCO3,
K2CO3, NH4H2PO4, MgO, Fe2O3, MnO, ZnO, H3BO3, CuO, and MoO3 as raw materials.
The appropriate amounts of batch constituents were accurately weighed, drily milled
to a fine powder and thoroughly mixed using an agate mortar, and then placed in an
alumina crucible. The batches were thermally treated at 200 ◦C for 2 h and 450 ◦C for 4 h to
eliminate CO2, H2O, and NH, and form the starting materials’ decomposition and prevent
NH4H2PO4 foam. The melting stage lasted 2 h at 800 ◦C, as shown in Figure 1 [19].
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Figure 1. Thermal profile used to elaborate glasses.

The melted samples were taken out of the furnace and quenched in the air by pouring
on a carbon mold. All the glasses were directly annealed at 10 ◦C below their transition
temperature (Tg) for about 4 h and then cooled slowly to ambient temperature. X-ray
diffraction analysis was used to confirm the amorphous character of the glasses (PANAn-
alytical XPERT diffractometer working at 40 kV/200 mA, the angular range 10–70◦ (2θ)
was scanned with a step size of 0.07◦ (2θ) and counting time of 5 s/step). The resulting
glass compositions were examined using Inductively Coupled Plasma Optical Emission
spectroscopy (ICP-OES Ultima Expert, Horiba Inc., Burlington, ON, Canada).

2.2. Thermal Analysis

Differential Thermal Analyzer was used to study the thermal properties of the vitreous
fertilizers (DTA, Labsys Evo 1600, SETARAM). The process consists of heating ~30 mg
of glass sample powder in a platinum crucible from ambient temperature to 800 ◦C at a
heating rate of 10 ◦C min−1. The glass transition temperature (Tg), the onset crystallization
temperature (Tc,on), peak crystallization temperatures (Tc), the melting temperatures (Tf)
and the liquidus temperature (Tliq) were recorded for all the samples.

Glass stability is described in terms of resistance to the crystallization of glass during
heating and processes involving the reforming of existing glass. Hruby suggested that
a parameter, KH, indicates glass stability against crystallization [25]. This parameter is
defined by KH = (Tc,on − Tg)/(Tliq − Tc,on). According to Hruby, glasses with higher values
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of KH indicate higher stability against crystallization on heating and, apparently, higher
vitrifiability on cooling.

2.3. Density Measurements

The glass’s density was measured at ambient temperature applying the Archimedes
method using diethyl-ortho-phthalate as the buoyant liquid. The measurements were
managed in accordance with the standard test method for the density of glass by buoyancy
(ASTM C693). The samples mass was measured both in air and after immersion in diethyl-
ortho-phthalate. The density was calculated from the following equation [26]:

ρglass = mglass/(mglass + (mortho − m(ortho + glass)) × ρortho

with:

ρ = Density
mglass = mass of glass measured in air
mortho = mass of diethyl-ortho-phthalate only
m(ortho + glass) = mass of glass immersed in diethyl-ortho-phthalate
ρortho = 1.11422 g/cm3

In order to obtain an average density value, the measurements were carried out
three times.

The molar volume (VM) was determined from the density value and molecular glass
weight of the batch composition using the equation: VM = ρglass/Mglass with Mglass as the
glass’s molar mass [27].

2.4. Characterization of Glass Structure

Raman spectroscopy, and Fourier Transform infrared spectroscopy were used to study
glass structure.

The Raman spectrum was obtained by analyzing a fine powder of glass using the
Confotec MR520 Raman Confocal Microscope, with an Argon-ion laser emitting 514 nm
as an excitation source. The spectra were obtained in the range 400–4000 cm−1 over an
average of 128 scans and 1 s exposure time in the micro Raman compartment with a
10× objective.

FTIR spectra were obtained applying the KBr technique, using a spectrometer Bruker
VERTEX 70, in the 400–4000 cm−1 domain, with a resolution of 4 cm−1, and 32 scans for
each determination. Finely round glasses were mixed with pulverized KBr with a ratio
(0.01/0.99 g), respectively. The weighted mixtures were subjected to a pressure of 6 t/cm2

to produce homogeneous discs. To avoid moisture attack, The FTIR spectra were measured
immediately after preparing the mixture discs.

2.5. Glass Dissolution

Each glass sample’s chemical durability was defined from its dissolution rate (DR) in
distilled water. The glass samples were pulverized and sieved to particle sizes between
1 and 2 mm. One gram of glass grains was placed in a vial containing 20 mL of distilled
water with an initial pH of 6.5 [19].

To study the release rate of the glasses versus time, several samples were prepared
and then suspended in a thermostatic bath maintained at temperature = 25 ± 1 ◦C for 1
to 35 days. The specimens were taken out at various time points, residual glass samples
were filtered from leachate solutions, dried at 90 ◦C for 10 h, and then weighted using an
analytic balance sensitive (±0.1 mg) (Shimadzu AW220).

Their dissolution rates were calculated using the following formula [19]:

DR =
Wi − Wt

Wi
× 100,

where Wi is the sample’s initial weight, and Wt is the sample’s weight after t days.
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pH and ion measurements were carried out at the same time as the weight loss
measurement took place, using a pH meter (Adwa-AD8000), and ICP-OES, respectively.

2.6. Agronomic Valorization of Vitreous Fertilizers
2.6.1. Plant Material and Experimental Design

A greenhouse experiment was performed to evaluate the effect of the prepared vit-
reous fertilizers on wheat growth in the greenhouse with a day/night cycle of 16/8 h,
25.5 ◦C temperature average, 68.5% relative humidity average, and 410 µm−2 s−1 photon
flux density average. The experiment was performed using two rates of the prepared
vitreous fertilizers (VF R1 = 0.3 and VF R2 = 1 g/plant) compared with traditional mineral
fertilizer (NPK). NPK fertilizer was added based on the recommendations of the Ministry
of Agriculture and Fisheries [28].

The soil sample used in this experiment was taken from Saada district (10 Km South-
west of Marrakesh, Morocco) and was characterized by a pH value of 7.92; electrical
conductivity (EC), 1.72 mS cm−1; available phosphorus, 31 mg kg−1; organic matter, 1.3%;
and total organic carbon, 0.80%. The texture of this soil was sandy clay loam.

Seeds of Triticum durum L. cv. Carioca underwent a 10 min sterilization using a 10%
sodium hypochlorite solution and were rinsed several times with sterile distilled water.
The germination test was performed in plastic dishes containing a sterile filter paper disk
with incubation for seven days at 28 ◦C in the dark. One-week wheat seedlings were later
transplanted into plastic pots (8 cm × 8 cm × 25 cm) (1 seedling/pot) containing 1.9 kg
of soil.

The recommended doses of chemical fertilizer (NPK) were 140 kg N/ha as ammonium
nitrate + 80 kg P2O5/ha as superphosphate + 50 kg K2O/ha as potassium sulphate.

The experiment was designed in 18 treatments crossing four vitreous fertilizer levels
(F0, F1, F2, and F3) with two rates (0.3 and 1 g/plant) and two nitrogen fertilizer applications
(0 and 1.4 g N/pot) besides NPK and control treatments. Pots of the different treatments
were randomly disposed with ten replicates for each treatment (180 pots in total). Watering
was done with the same amount of distilled water twice a week.

2.6.2. Growth Parameters

At harvest (four months from germination), the following measurements were recorded:
ears, shoot and root dry and fresh weights (g/plant), plant height (cm), root length (cm),
leaf area (cm2), number of leaves, the weight of 1000 grain, and weight and number of
grains (g/plant). The plants’ fresh weights were determined directly after the harvest,
while dry weights were measured after the samples were kept at 105 ◦C for 24 h.

2.6.3. Photosynthetic Efficiency and Stomatal Conductance

Measurements of these two parameters were carried out on fully expanded leaves
from the third rank from five plants per treatment. Four measurements were taken from
different parts of each leaf and their average was considered as one replicate.

Chlorophyll fluorescence traits were assessed using a portable fluorometer (Opti-
sciences OSI 30p). Leaf clips were used to keep the leaves in the dark for 30 min and then
the measurements were recorded. Chlorophyll fluorescence was assessed as Fv/Fm ratio
where Fv = Fm − F0 and F0 and Fm are initial and maximum fluorescence respectively [29].
Stomatal conductance (gs) measurements were taken on a sunny day before harvest using
a porometer system (Leaf Porometer LP1989, Decagon Device, Inc., Washington, DC, USA).

2.7. Statistical Analysis

The presented data are mean values based on three to five replicates ± standard error
(SE) per treatment. SPSS software (IBM Corp. Released 2013. IBM SPSS Statistics for
Windows, Version 22.0. Armonk, NY, USA: IBM Corp.) package for Windows was used
to perform statistical analysis. All data were subjected to one-way analysis of variance
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(ANOVA) and the differences among means were assessed using Duncan’s test calculated
at p < 0.05.

3. Results and Discussion
3.1. Glass Formation

As shown in Figure 2, no sharp peak was observed in the XRD patterns which confirms
the amorphous nature of the vitreous fertilizers [30]. The entire glasses showed a regular
and homogeneous surface.
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Figure 2. XRD patterns for F0, F1, F2 and F3 glasses.

Few bubbles were observed, and all the obtained glasses were transparent. The
formula F0 was colorless, while F1, F2, and F3 were brown, purple, and green, respectively.
The brown color of phosphate glasses suggested the presence of Fe2+ and Fe3+ ions [31,32],
while the purple color indicated the presence of Mn2+ and Mn3+ ions [32,33]. The green
color of the formula F3 results from the presence of several elements like copper, iron,
manganese, and molybdenum.

The analyzed compositions of the vitreous fertilizers are shown in Table 1. Differences
between nominal and the analyzed compositions were minor for all samples and are
attributed to measurement errors and melting volatilization.

Table 1. Nominal and analyzed compositions of the vitreous fertilizers.

Glass
Nominal Compositions

% P2O5 % K2O % CaO % MgO % Fe2O3 % MnO % ZnO % B2O3 % CuO % MoO3

F0 50.00 33.33 11.11 5.56 0.00 0.00 0.00 0.00 0.00 0.00
F1 50.81 32.26 10.75 5.38 0.81 0.00 0.00 0.00 0.00 0.00
F2 50.00 32.89 10.96 5.48 0.00 0.66 0.00 0.00 0.00 0.00
F3 50.72 31.51 10.50 5.25 0.79 0.63 0.32 0.16 0.11 0.02

Analyzed Compositions

% P2O5 % K2O % CaO % MgO % Fe2O3 % MnO % ZnO % B2O3 % CuO % MoO3

F0 50.17 ± 1.01 33.26 ± 0.83 11.07 ± 0.24 5.50 ± 0.17 0.00 0.00 0.00 0.00 0.00 0.00
F1 50.64 ± 1.00 32.43 ± 0.90 10.52 ± 0.33 5.57 ± 0.17 0.84 ± 0.02 0.00 0.00 0.00 0.00 0.00
F2 49.94 ± 1.22 33.07 ± 0.82 10.78 ± 0.23 5.50 ± 0.21 0.00 0.71 ± 0.01 0.00 0.00 0.00 0.00
F3 50.99 ± 1.19 31.45 ± 0.78 10.37 ± 0.28 5.23 ± 0.15 0.77 ± 0.02 0.64 ± 0.01 0.26 ± 0.01 0.15 ± 0.02 0.13 ± 0.02 0.01 ± 0.01
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3.2. Thermal Behaviour

Figure 3 shows the thermal curves obtained from the differential thermal analysis,
and Table 2 gives a summary of Tg, Tc,on, Tliq, and KH values of the samples. The three
formulas containing microelements had higher glass transition, crystallization, and liquidus
temperatures than F0. Glass F3 had higher values of Tg and Tliq. For the two glasses F1 and
F2, it can be seen that they had close values of Tg, which is due to the Ionic Field Strength
(IFS) of Fe and Mn (IFS = z/r2, where r is the ionic radius, and z is the valence cation),
being IFS equal to 0.16 and 0.15 for Fe and Mn, respectively, according to Dietzel [34]. The
increase in the glass transition temperature, which depends on the number and strength of
the cross-links between oxygen atoms and the cation, and the density of covalent cross-
linking, plays an important role in understanding the physical properties of glasses. This
increase in Tg reflects a strengthening of the structure and increased network stability [35].
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Table 2. Glass transition (Tg) crystallization (Tc,on) melting (Tliq) temperatures and KH of prepared
glasses.

Glass F0 F1 F2 F3

Tg (◦C) 340 ± 2 345 ± 2 348 ± 1 353 ± 1
Tc,on (◦C) 417 ± 5 453 ± 2 453 ± 3 573 ± 2
Tliq (◦C) 658 ± 3 699 ± 4 670 ± 2 709 ± 3

KH 0.319 ± 0.002 0.4391 ± 0.001 0.484 ± 0.002 0.528 ± 0.002

The DTA curves show multiple or broad crystallization and melting peaks. There is
some evidence for the presence of multiple phases inside the glass matrix, or the network is
constituted from different phosphate species [36]. The introduction of microelements in the
phosphate glass matrix increased KH from 0.1395 for F0 to 0.4391, 0.4839, and 0.5279 for F1,
F2, and F3 glasses, respectively, which reveals that the thermal stability of these glasses is
greater than that of microelements-free glass samples, because the addition of these oxides
creates cross-links between phosphate chains which reinforces the network [35].

3.3. Glass Density

Table 3 summarizes the measured densities of the studied glasses. The densities
changed from 3.341 for F0 to 3.426 for F3, whereas the molar volumes varied from 33.18 to
32.66 cm3 mol−1. Density is sensitive to spatial arrangement and the nature of atoms [36,37].
Variations in glass density could illustrate the degree of structural compactness of the
glass network. However, in this work, these changes were small and not likely to be
significant because most of the microelements incorporated are glass modifiers (expect
B2O3), principally placed in the holes in the vitreous network [38].

Table 3. Density of F0, F1, F2, and F3 glasses.

Glass F0 F1 F2 F3

Density 3.341 ± 0.002 3.382 ± 0.003 3.371 ± 0.003 3.426 ± 0.005

The calculated molar volumes are shown in Figure 4. Molar volume, which compares
volumes occupied by one mole of glass, is more sensitive to glass structure changes than
density as it normalizes for atomic masses of glass components [27].
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The decrease in molar volume by incorporating microelements reflects that the glass
structure becomes more compact [35]. Furthermore, the increase in glass transition temper-
ature (Tg) accompanied by a decrease in the molar volume may reflect an overall increase
in the glass network cross-linking [39].

3.4. Glass Structure

The Raman spectra of the four phosphate glasses, in the range between 200 and
1400 cm−1, are presented in Figure 5. It is common knowledge that the phosphate network
is built around PO4 tetrahedral units, which are classified depending on the number of
bridging oxygens, using the Qn designation, where “n” signifies the number of bridging
oxygen atoms per tetrahedral unit (n = 0, 1, 2, 3) [40]. All Raman spectra are characterized
by the existence of strong bands at around 1170 and 690 cm−1. Further weaker bands
can be distinguished around 1270, 1100, 760, and 290–390 cm−1. The strong and broad
band at 1170 cm−1 is assigned to the symmetric stretching mode of the PO2

− non-bridging
bond in Q2 groups. The feature at 1270 cm−1 is related to the asymmetric stretch mode
of PO2

−, Vas(PO2
−) in Q2 groups. Q1 units appeared through two weak shoulders at

1100 cm−1 and 760 cm−1, which are attributed to the symmetric stretching vibration of
terminal PO3

2− units, and to the symmetric stretching vibration of P–O–P, respectively. The
band at 690 cm−1 is attributed to the symmetric stretching mode of the P–O–P in Q2 groups.
Bands between 290 and 390 cm−1 could be related, respectively, to bending vibrations of
PO2

− and PO3
2− [38,39,41–43].
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Figure 6 represents the FTIR spectra for the studied glasses in the range between 400
and 1400 cm−1, which shows no significant difference between the four formulas; this
indicated that the prepared glasses have similar chemical functional groups and similar
chemical bonding. The feature at around 1290 cm−1 is assigned to the asymmetric stretching
of (PO2

−) in the phosphate tetrahedron Q2, υas (PO2
−). The FTIR bands observed at

1155–1160 cm−1 are characteristic of the symmetric stretching of (PO2
−) in Q2 groups. The

vibration of the band about 1100 cm−1 is attributed to the υs PO3
2− stretching vibrations,

while the feature at 955–1080 cm−1 is attributed to the stretching vibration υas O–P–O
band in the phosphate tetrahedron Q1. The two absorption peaks at 880 and 715 cm−1 are
attributed to asymmetric and symmetric stretching of the P–O–P in Q2 groups, respectively.
While the band at around 765 cm−1 is assigned to the P–O–P stretching vibrations Q1

species, bands between 550 and 480 cm−1 are assigned to bending vibration of O–P–O and
PO3

2− bonds, respectively [26,38,44].
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Figure 6. FTIR spectra of prepared glasses.

Raman and FTIR spectra suggest that the structure of these vitreous fertilizers re-
sembles metaphosphates, and the network is composed essentially of Q2 units. However,
the spectra also show the existence of Q1 units, generally result in the presence of shorter
phosphate chains, which can explain the appearance of several Tc and Tf during thermal
analyzes. Table 4 summarizes frequency ranges and assignments of the Raman and FTIR
bands of the four glasses.

Table 4. Assignments and frequency ranges (cm−1) of the FTIR and Raman bands of the prepared glasses.

Wave Number (cm−1) Assignment

F0 F1 F2 F3 -
FTIR Raman FTIR Raman FTIR Raman FTIR Raman

1296 1270 1288 1269 1286 1272 1296 1269 Vas (PO2
−), Q2

1159 1174 1155 1171 1151 1174 1159 1172 Vs (PO2
−), Q2

1107 1103 1109 1101 1105 1103 1105 1101 Vs (PO3
2−), Q1

962–1074 - 956–1074 - 958–1072 - 956–1072 - Vas (PO2
−), Q1

885 - 889 - 877 - 879 - Vas (P-O-P), Q2

761 758 767 758 767 759 771 760 Vs (P-O-P), Q1

717 691 715 691 719 690 719 689 Vs (P-O-P), Q2

557 382 547 385 543 383 549 386 δ(PO2
−)

487 296–332 491 294–336 486 301–340 491 290–335 δ(PO3
2−)

* Abbreviations: as, asymmetric; s, symmetric; V, stretching; δ, bending.

3.5. Dissolution Behavior

With increasing dissolution time in distilled water, the vitreous fertilizers exhibit
an increased DR, as revealed in Figure 7. Chemical bonds between glass modifiers and
glass formers are created due to the vitrification process. Consequently, if the glass stays
undissolved, those modifiers cannot be liberated.

The dissolution of phosphate glass is the result of a set of complex mechanisms that
depends not only on its physicochemical properties but also on the leaching conditions [45].
When glass particles are in contact with water, processes of inter-diffusion, ion-exchange,
reaction–diffusion, and hydrolysis take place. These processes involve three dissolution
rate regimes: (i) Initial diffusion, which reflects the exchange between protons in leachate
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solution and glass network-modifier cations. At the beginning of dissolution, water
particles permeate into the glass, mobile alkali modifier ions undergo diffusional ion
exchange with protons in the solution; (ii) Hydrolysis process which involves the hydrolysis
of P-O-M bonds (with M = P, Mg, Ca, Zn, Fe, etc.), constituting the network structure of a
glass [46]. Hydrolysis changes the phosphate network by attacking bridging bonds in the
interphase formed by mobile elements’ release; and (iii) Rate drop, which is a transition
between the initial rate and residual dissolution rate, as a result of the gradual saturation
of the solution. This saturation induces a gradual rate decrease until a residual dissolution
rate where the glass dissolution rate attains a relatively constant value, and thermodynamic
equilibrium is approached—i.e., the chemical affinity for dissolution decreases [45,46].
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The initial dissolution rates V0 (V0 = dm
dt of the linear part of the dissolution curves) are

given in Table 5. The chemical resistance of the glass is mainly dependent on its chemical
composition. Formula F0 showed the highest dissolution rate, while F3 showed the lowest
dissolution rate, followed by F2 and F1. The initial diffusion and hydrolysis process for F0
lasted only two days, with an initial dissolution rate V0 = 0.69 g/day. Almost the entirety
was dissolved in water within less than four days. The degradation rate was found to
decrease for F1 and F2 by incorporating iron and manganese into the glass matrix. The
initial dissolution rates for these glasses were 0.14 and 0.17 g/day, respectively. The initial
diffusion and hydrolysis process lasted between four and six days.

Table 5. Initial dissolution rate of F0, F1, F2, and F3 glasses.

Glass F0 F1 F2 F3

V0 (g/day) 0.69 0.14 0.17 0.03

Hasan et al. [47] have studied the chemical durability of P2O5-Fe2O3-Na2O-CaO-
MgO glasses and reported that Fe2O3 addition leads to the creation of more hydration
resistant Fe-O-P bonds instead of P-O-P bonds, which increased cross-linking between the
phosphate chains and improved the chemical durability of the glass.
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Ahmina et al. [48] suggested that by adding MnO to phosphate glasses, the chemical
resistance was enhanced due to the increase in the cross-link between the phosphate chains
by the formation of P–O–Mn bonds. These changes can be explained by the effect of cation
substitution on the glass network structure. The addition of MnO causes the phosphate
network to shrink and produce more entangled and networked metaphosphate chains.

In all the investigations above, MnO and Fe2O3 can both improve the durability of
phosphate glasses; however, this study showed that Fe2O3 was much more effective in
decreasing the initial degradation rate, while MnO had a greater effect on decreasing the
residual rate. The admixture of Fe and Mn, in addition to other elements such as Zn, B, Cu,
and Mo, in a phosphate glass network (F3) induces a rapid improvement in the chemical
durability, which may be related to the strengthening of the bonds between non-bonding
oxygen atoms and cations, leading to an overall network reticulation effect. The hydration
process based on ion exchange between the cations in phosphate chains and water becomes
thermodynamically less favorable with the increase of the cross-linking between the chains.
Glass F3 has a V0 = 0.03 g/day; after 34 days, it had not yet reached the saturation stage,
with a weight loss of only 71%.

Amounts of released elements from vitreous fertilizers to the leachate solution were
determined using the ICP-OES, in the form of oxides normalized to the initial glass weight,
and the pH measurements are presented in Figures 8 and 9. The percentage of released
ions increased over time. For F0, amounts of P, K, Ca, and Mg in distilled water were
significantly enhanced during the first two days of immersion. While for glasses F1, F2, and
F3, the effect of the addition of microelements, which resulted in a slower release of ions in
water, has been noted. For the four glass formulations, the presence of entire elements in
the analyzed solutions, with a percentage comparable to the glass composition, suggests
that the glasses dissolved congruently, and no selective leaching occurred [49]. The pH of
the leachate solutions changed after immersion of glasses in distilled water. pH diminished
linearly with dissolution time from 6.5 to attain the acidic range for all the studied fertilizers,
then remained almost unchanged during periods of immersion. Previous studies showed
the leachate solution’s pH varied with phosphate content of the immersed glass, with
higher phosphorus contents in the solution resulting in lower pH values [50]. However,
even though formula F0 releases more phosphorus, formula F1 achieves a lower pH value.
This can be explained by the fact that with the addition of iron, the metaphosphate chains
are broken into smaller groups of short-chain phosphates such as P4O13

6−, P3O10
5− and

P2O7
4−, which are linked to iron through P–O–Fe bonds [51]. This phenomenon was not

noted during the structural characterization by FTIR and Raman, which means that these
short chains are in small quantities but have a remarkable effect on the pH.
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3.6. Growth Parameters

The application of F1 treatments mainly improved plant height, fresh and dry shoot
weight, fresh ear weight, and the number of grains per plant, and the F2 treatments
mainly improved leaf area, fresh and dry root weight, and 1000 grain weight compared
to the control and NPK treatments (Table 6). On the other hand, the F0 and F3 treatments
increased the root length and dry ear weight, respectively, compared to the control and
NPK treatments. Ouis et al. [52] reported an improvement of ears, straw, grains, and maize
yield under field conditions after applying vitreous fertilizers (SiO2, P2O5, K2O, Fe2O3,
CuO). In addition, Abou-Baker et al. [53] reported the same results using vitreous fertilizers
containing the same elements in addition to ZnO and CuO.

Considering the maximum values of improvement, fresh and dry shoot weight, fresh
ear weight, and the number of grains per plant showed a maximum improvement with
the application of F1 (F1 R1 (30% to 58%) and F1 R2 (18% to 61%)) (Table 6). On the other
hand, plant height and root length, fresh root weight, and weight of 1000 gain showed a
maximum increase after the application of F2 (F2 R1 (23% to 64%) and F2 R2 (23% to 159%)).
In addition, root and ear dry weights and grain weight per plant showed a maximum
improvement after the application of F3 (F3 R1 + N (63 to 188%) and F3 R2 (85 to 140%)).
The leaf area exhibited a maximum improvement after the application of F0 R2 (28%).
The positive effect of the vitreous fertilizers on growth traits (especially F1 and F2) could
be explained by the high rates of release of different mineral elements contained in the
vitreous fertilizers [54].

3.7. Photosynthetic Parameters

The stomatal conductance (gs) and photosystem II efficiency (Fv/Fm) were increased
by 32% and 13%, respectively, with the application of NPK fertilizer compared to the
control. The gs was increased by 70% in plants treated with vitreous fertilizers (34% for
F0, 45% for F1, 47% for F2, and 107% for F3) (Table 6), while Fv/Fm was increased by 14%
with the application of these fertilizers (11% for F0, 13% for F1, 16% for F2, and 18% for F3).
The F2 provided the highest percentages of improvement of these two parameters (151%
(F2 R1) and 116% (F2 R2 + N) for gs and 24% (F2 R2) for Fv/Fm). The improvements in
these photosynthetic attributes by the application of vitreous fertilizers could be explained
by the key role of these amendments in providing essential elements such as potassium,
magnesium, copper, iron, and manganese, which are involved in many photosynthetic
related processes and biomolecules, including stomata movements and photosynthetic
pigments and enzymes. Ion et al. [55] demonstrate that the application of vitreous fertilizers
improved grapevine nutrition, in particular K and Mg uptake, which can stimulate many
metabolism pathways, such as the regulation of stomatal exchanges as well as the balance
of hormones such as ABA and thereby the photosynthesis functioning [56]. The absorption
of the essential nutrients included in the vitreous fertilizers boosts wheat growth and yield
performances.

Based on the number of the improved parameters and the maximum values of this
improvement, F1, F2, and F3 were distinguished in comparison to the control, NPK and F0
treatments especially with R2 application (1 g/plant). It seems that these three effective
formulations could be suitable for a large-scale application in the open field to further
investigate the performance of the applied vitreous fertilizers.
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Table 6. Effects of vitreous fertilizers on the growth, physiology, and yield of wheat after four months of culture.

Fertilizer
Treat-
ment

Plant
Height

(cm)

Root
Length

(cm)

Number
of Leaves

Leaf Area
(cm2)

Shoot
Fresh

Weight
(g)

Shout
Dry

Weight
(g)

Root
Fresh

Weight
(g)

Root Dry
Weight

(g)

Ear Fresh
Weight

(g)

Ear Dry
Weight

(g)

Total
Grain

Weight/
Plant (g)

Number
of Grain/

Plant

1000
Grain

Weight
(g)

Stomatal
Conduc-

tance
(mmol

m−2 s−1)

Fv/Fm

Control 60.43 ±
1.34 j

17.33 ±
0.58 i

5.33 ±
0.58 d

17.85 ±
0.26 h

2.27 ±
0.61 f

0.5 ± 0.13
g

0.95 ±
0.20 h

0.23 ±
0.05 h

1.18 ±
0.27 f

0.68 ±
0.12 h

0.46 ±
0.05 ef

18.67 ±
3.21 f

16.78 ±
0.87 i

17.63 ±
1.66 j

0.65 ±
0.03 g

NPK
fertilizer

67.27 ±
0.25 i

18.67 ±
0.58 ghi

7.00 ±
0.00 a

28.60 ±
2.20 d–g

3.44 ±
0.32 e

0.88 ±
0.05 ef

1.83 ±
0.10 de

0.26 ±
0.11 gh

1.99 ±
0.28 e

0.74 ±
0.15 gh

0.44 ±
0.10 f

25.67 ±
4.04 b–f

27.79 ±
4.22 cde

23.37 ±
2.69 i

0.74 ±
0.03 a–f

F0 R1 75.17 ±
2.75 d–g

26.33 ±
1.15 a

6.00 ±
0.00 bcd

25.39 ±
2.94 fg

3.75 ±
0.21 de

1.20 ±
0.08 bc

1.65 ±
0.15 ef

0.43 ±
0.02 c–f

1.99 ±
0.30 e

0.87 ±
0.15 e–h

0.47 ±
0.03 def

25.67 ±
2.08 b–f

22.18 ±
3.18 e–i

22.33 ±
0.38 i

0.68 ±
0.05 efg

F0 R1 + N 82.13 ±
2.73 d–g

23.00 ±
1.00 b–e

6.33 ±
0.58 abc

26.90 ±
2.71 efg

4.52 ±
0.21 a–d

1.23 ±
0.10 bc

1.51 ±
0.18 efg

0.33 ±
0.06 fgh

2.42 ±
0.09 b–e

1.06 ±
0.08 c–f

0.71 ±
0.04 bcd

28.33 ±
3.79 a–d

24.02 ±
3.27 d–h

25.33 ±
3.12 ghi

0.80 ±
0.01 ab

F0 R2 82.10 ±
1.13 ab

20.00 ±
0.00 f–i

6.00 ±
0.00 abc

39.42 ±
2.48 a

4.49 ±
0.28 a–d

1.37 ±
0.09 ab

1.55 ±
0.35 efg

0.49 ±
0.07 bcd

2.88 ±
0.11 abc

1.12 ±
0.13 b–e

0.78 ±
0.15 abc

30.67 ±
1.15 abc

26.08 ±
2.94 c–g

24.60 ±
1.22 ghi

0.72 ±
0.05 efg

F0 R2 + N 74.00 ±
2.21 d–h

24.67 ±
1.53 abc

6.33 ±
0.58 abc

27.15 ±
1.93 efg

5.01 ±
0.80 ab

1.34 ±
0.01 ab

1.58 ±
0.11 efg

0.34 ±
0.07 e–h

2.39 ±
0.19 b–e

0.82 ±
0.11 fgh

0.49 ±
0.13 def

24.33 ±
5.13 c–f

20.10 ±
1.83 ghi

22.60 ±
2.21 i

0.71 ±
0.03 d–g

F1 R1 80.23 ±
4.20 abc

24.67 ±
2.89 abc

5.67 ±
0.58 cd

34.89 ±
2.52 a–d

5.10 ±
0.85 a

1.33 ±
0.19 ab

1.87 ±
0.55 de

0.32 ±
0.03 fgh

3.15 ±
0.32 a

1.33 ±
0.12 bc

0.88 ±
0.12 abc

33.33 ±
2.52 a

26.43 ±
1.66 c–f

27.27 ±
0.59 efg

0.78 ±
0.06 a–d

F1 R1 + N 77.00 ±
2.78 c–f

23.33 ±
0.76 bcd

6.33 ±
0.58 abc

32.79 ±
4.45 a–e

4.94 ±
0.24 abc

1.32 ±
0.05 ab

1.54 ±
0.17 efg

0.44 ±
0.10 c–f

3.09 ±
0.38 a

1.25 ±
0.21 bcd

0.81 ±
0.09 abc

30.33 ±
3.21 abc

24.06 ±
2.44 d–h

28.37 ±
1.27 ef

0.71 ±
0.01 c–g

F1 R2 82.77 ±
2.68 ab

23.33 ±
0.58 bcd

7.00 ±
0.00 a

38.13 ±
3.95 ab

5.26 ±
0.69 a

1.43 ±
0.13 a

2.29 ±
0.32 c

0.54 ±
0.05 abc

3.08 ±
0.34 abc

1.34 ±
0.14 bc

0.91 ±
0.15 ab

30.33 ±
0.57 abc

30.41 ±
4.75 c

22.93 ±
1.56 i

0.79 ±
0.04 abc

F1 R2 + N 74.23 ±
1.07 d–h

22.00 ±
2.65 c–f

6.00 ±
0.00 bcd

24.96 ±
1.28 fg

4.91 ±
0.37 abc

1.30 ±
0.07 ab

1.55 ±
0.16 efg

0.28 ±
0.01 gh

2.93 ±
0.22 abc

1.12 ±
0.15 b–e

0.76 ±
0.10 abc

30.00 ±
2.65 abc

19.97 ±
0.53 hi

23.83 ±
1.60 hi

0.68 ±
0.03 fg

F2 R1 82.87 ±
2.73 a

25.00 ±
2.00 ab

6.33 ±
0.58 abc

34.11 ±
6.20 abc

4.54 ±
0.57 a–d

1.35 ±
0.12 ab

2.80 ±
0.20 b

0.61 ±
0.09 ab

2.77 ±
0.11 abc

1.23 ±
0.09 bcd

0.86 ±
0.11 abc

22.33 ±
5.69 def

45.54 ±
4.08 a

44.33 ±
0.59 a

0.77 ±
0.06 a–e

F2 R1 + N 69.77 ±
0.97 hi

17.33 ±
0.58 i

7.00 ±
0.00 a

32.22 ±
5.57 b–f

3.41 ±
0.69 e

0.92 ±
0.04 ef

1.23 ±
0.09 fgh

0.31 ±
0.06 fgh

2.15 ±
0.39 de

0.96 ±
0.19 d–h

0.64 ±
0.14 c–f

27.67 ±
1.53 a–d

20.78 ±
0.67 fgh

28.70 ±
0.87 ef

0.76 ±
0.02 a–f

F2 R2 82.90 ±
4.37 a

27.00 ±
2.00 a

7.00 ±
0.00 a

36.07 ±
2.19 abc

4.75 ±
0.38 abc

1.29 ±
0.12 ab

4.75 ±
0.38 a

0.51 ±
0.03 abc

2.99 ±
0.27 ab

1.17 ±
0.36 bcd

0.80 ±
0.14 abc

26.00 ±
3.60 a–e

39.04 ±
8.53 b

26.50 ±
1.70 fgh

0.82 ±
0.04 a

F2 R2 + N 78.47 ±
2.47 a–d

21.33 ±
2.31 d–g

7.00 ±
1.00 a

31.69 ±
3.32 b–f

4.63 ±
0.58 a–d

1.25 ±
0.06 abc

2.10 ±
0.09 cd

0.46 ±
0.08 cde

2.93 ±
0.36 abc

1.31 ±
0.19 bc

0.91 ±
0.14 ab

32.67 ±
4.51 ab

28.89 ±
1.23 cd

38.03 ±
0.91 bc

0.70 ±
0.07 efg

F3 R1 76.87 ±
2.32 c–f

18.20 ±
1.56 hi

6.67 ±
0.58 ab

25.45 ±
1.50 fg

3.56 ±
0.16 e

0.98 ±
0.12 def

1.63 ±
0.11 ef

0.38 ±
0.05 d–g

2.35 ±
0.04 cde

1.05 ±
0.04 c–f

0.71 ±
0.02 bcd

27.33 ±
2.08 a–e

27.30 ±
1.76 cde

37.17 ±
1.22 bcd

0.74 ±
0.05 a–f
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Table 6. Cont.

Fertilizer
Treat-
ment

Plant
Height

(cm)

Root
Length

(cm)

Number
of Leaves

Leaf Area
(cm2)

Shoot
Fresh

Weight
(g)

Shout
Dry

Weight
(g)

Root
Fresh

Weight
(g)

Root Dry
Weight

(g)

Ear Fresh
Weight

(g)

Ear Dry
Weight

(g)

Total
Grain

Weight/
Plant (g)

Number
of Grain/

Plant

1000
Grain

Weight
(g)

Stomatal
Conduc-

tance
(mmol

m−2 s−1)

Fv/Fm

F3 R1 + N 73.57 ±
2.06 e–h

20.33 ±
0.57 e–h

6.67 ±
0.57 ab

30.30 ±
3.54 c–f

3.33 ±
0.13 e

0.96 ±
0.08 def

1.14 ±
0.16 gh

0.25 ±
0.04 gh

2.63 ±
0.21 a–d

2.13 ±
0.15 a

0.71 ±
0.14 bcd

31.00 ±
5.20 abc

23.80 ±
1.97 d–h

35.33 ±
0.78 cd

0.78 ±
0.03 a–d

F3 R2 78.03 ±
3.10 b–e

20.67 ±
1.53 d–h

7.00 ±
0.00 a

35.60 ±
1.05 a–d

4.15 ±
0.07 b–e

1.10 ±
0.04 cd

2.20 ±
0.19 cd

0.62 ±
0.07 a

2.96 ±
0.22 abc

1.37 ±
0.04 b

0.98 ±
0.05 a

32.67 ±
1.15 ab

30.14 ±
2.13 c

39.00 ±
1.47 b

0.81 ±
0.02 a

F3 R2 + N 72.87 ±
3.07 fgh

18.00 ±
1.00 hi

7.00 ±
0.00 a

22.84 ±
0.0.28 gh

3.45 ±
0.37 e

0.85 ±
0.05 f

1.17 ±
0.05 gh

0.37 ±
0.09 d–g

2.43 ±
0.13 b–e

0.99 ±
0.06 d–g

0.70 ±
0.06 b–e

28.00 ±
1.73 a–d

24.86 ±
0.69 c–h

34.50 ±
2.11 d

0.76 ±
0.04 a–f

* Control: treatment with no fertilizer addition, NPK fertilizer: treatment with traditional chemical fertilizers, F0 R1: treatment with formula 0 of vitreous fertilizers at 0.3 g/pot, F0 R1 + N: treatment with formula
0 of vitreous fertilizers at 0.3 g/pot combined with traditional chemical fertilizers, F0 R2: treatment with formula 0 of vitreous fertilizers at 1 g/pot, F0 R2 + N: treatment with formula 0 of vitreous fertilizers at
1 g/pot combined with traditional chemical fertilizers, F1 R1: treatment with formula 1 of vitreous fertilizers at 0.3 g/pot, F1 R1 + N: treatment with formula 1 of vitreous fertilizers at 0.3 g/pot combined with
traditional chemical fertilizers, F1 R2: treatment with formula 1 of vitreous fertilizers at 1 g/pot, F1 R2 + N: treatment with formula 1 of vitreous fertilizers at 1 g/pot combined with traditional chemical fertilizers,
F2 R1: treatment with formula 2 of vitreous fertilizers at 0.3 g/pot, F2 R1 + N: treatment with formula 2 of vitreous fertilizers at 0.3 g/pot combined with traditional chemical fertilizers, F2 R2: treatment with
formula 2 of vitreous fertilizers at 1 g/pot, F2 R2 + N: treatment with formula 2 of vitreous fertilizers at 1 g/pot combined with traditional chemical fertilizers, F3 R1: treatment with formula 3 of vitreous
fertilizers at 0.3 g/pot, F3 R1 + N: treatment with formula 3 of vitreous fertilizers at 0.3 g/pot combined with traditional chemical fertilizers, F3 R2: treatment with formula 3 of vitreous fertilizers at 1 g/pot, F3
R2 + N: treatment with formula 3 of vitreous fertilizers at 1 g/pot combined with traditional chemical fertilizers. Mean values in each column followed by the same letter did not differ significantly at p < 0.05 by
Duncan’s test.
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4. Conclusions

Physico-chemical properties, structure, and dissolution behaviors of four phosphate
glasses, elaborated according to wheat nutrient requirements, have been investigated
in this study. It was confirmed that the prepared vitreous fertilizers are amorphous,
Raman and FTIR spectra showed that their structure approaches metaphosphates, and the
network is formed essentially of Q2 units. This study showed an increase in glass transition
temperature (Tg), the onset crystallization temperature (Tc), liquidus temperature (Tf), and
glass stability accompanied by a decrease in the molar volume (VM) and glass dissolution
with incorporating trace elements such as Fe2O3 and MnO. It was suggested that these
behaviors are due to stronger cross-linking of the phosphate chains and the replacement
of the easily hydrated P-O-P bond by a more chemically resistant M-O-P bond (M = Fe,
Mn, Zn, Mo, etc.). Moreover, for all glasses, no selective ion leaching was observed, and
the dissolution was congruent. The prepared vitreous fertilizers, in particular F1, F2, and
F3, showed a boosting effect on wheat growth, photosynthetic, and yield traits compared
to non-amended and NPK treatments, suggesting the importance of considering the use
of these fertilizers in large-scale application to improve crop production with no harm to
the environment.
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