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Abstract: In this study, we report a novel high-throughput and instant-mixing droplet microfluidic
system that can prepare uniformly mixed monodisperse droplets at a flow rate of mL/min designed
for rapid mixing between multiple solutions and the preparation of micro-/nanoparticles. The
system is composed of a magneton micromixer and a T-junction microfluidic device. The magneton
micromixer rapidly mixes multiple solutions uniformly through the rotation of the magneton, and the
mixed solution is sheared into monodisperse droplets by the silicone oil in the T-junction microfluidic
device. The optimal conditions of the preparation of monodisperse droplets for the system have
been found and factors affecting droplet size are analyzed for correlation; for example, the structure
of the T-junction microfluidic device, the rotation speed of the magneton, etc. At the same time,
through the uniformity of the color of the mixed solution, the mixing performance of the system is
quantitatively evaluated. Compared with mainstream micromixers on the market, the system has
the best mixing performance. Finally, we used the system to simulate the internal gelation broth
preparation of zirconium broth and uranium broth. The results show that the system is expected to
realize the preparation of ceramic microspheres at room temperature without cooling by the internal
gelation process.

Keywords: microfluidic; high-throughput; micromixing; monodisperse droplets; internal gela-
tion process

1. Introduction

Mixing is a necessary process for reactants to come into contact with each other before
a reaction. A micromixer has the advantages of fast and uniform mixing, no contamination
of the reagents and the reduction of reagent consumption [1,2], better heat and mass
conduction, and can effectively realize chemical reactions sensitive to air and humidity [3]
and the safer synthesis of dangerous compounds [4]. These advantages have attracted
strong interest from researchers, leading to the widespread study of micromixers in DNA
hybridization [5], cell activation [6,7], enzyme reactions [8], protein folding [9], water
quality monitoring [10], flow chemistry [11] and the synthesis of micro-/nanoparticles,
etc. [12–15].

Su, for example, in the synthesis of micro-/nanoparticles, used a T-junction mixer to
mix two solutions to prepare 15–100 nm BaSO4 nanoparticles [16]. Wang mixed the reagent
and zirconium broth in a glass capillary, and silicone oil simultaneously sheared the two
solutions to form droplets and prepared 100 µm ZrO2 microspheres under the condition
of zirconium broth flow rate of 1 µL/min [17]. Frenz embedded an external electrode on
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both sides of the microchannel to induce the fusion of two different component droplets
through alternating current and prepared Fe3O4 nanoparticles smaller than 15 nm under
the condition of an aqueous phase flow rate of 120 µL/h [18]. Zhang prepared a 1.8 mm
wide and 100 mm thick micromagnetic gyromixer to achieve uniform mixing [19]. The
micromixers adopted by the above researchers can be divided into passive micromixers
and active micromixers according to whether there is an external power source. Passive
micromixers mainly improve the mixing performance by increasing the contact area be-
tween fluids and constructing chaotic convection through the microchannels. Passive
micromixers have a drawback, i.e., the mixing performance is not ideal when the Reynolds
number is low, which limits their application. However, active micromixers do not have
this drawback because they actively enhance mixing performance by using some form of
external energy to generate chaotic convection, such as electric or magnetic fields. Active
micromixers, for example micromagnetic gyromixers, also have limited application due to
their complicated manufacturing process and high cost [20–22]. Moreover, by reducing the
size of the droplets to shorten the distance of solute diffusion, researchers have currently
achieved micromixing at a flow rate of µL/min or µL/h, which is unfavorable for large-
scale industrial applications of micromixing. In addition, these micromixers usually have
microchannels etched on polydimethylsiloxane and then thermally bonded together. If the
two solutions react when mixed in the micromixer they may generate insoluble substances;
for example, FeCl3 solution and NaOH solution generate Fe(OH)3 particles, which can
easily block the microchannels and cause damage to the micromixer. However, a reusable,
low-cost, high-throughput micromixer has not been developed yet. Therefore, there is
an urgent need for a high-throughput micromixer with good mixing performance, which
needs to be disassembled to clean the insoluble matter in the micromixer, so as to realize
the reuse of the micromixer.

In this work, a novel high-throughput and instant-mixing droplet microfluidic system
(noted as DMS) is constructed. The DMS is composed of an active magneton micromixer
and a T-junction microfluidic device. Liquid droplets can be produced with such a device.
The DMS can be used for the rapid and uniform mixing of two solutions, and can also
be used for the preparation of micro/nano ceramic particles. It is easy to disassemble the
DMS and clear the insoluble matter from the microchannel. By adjusting the structure of
the T-junction microfluidic device and process parameters such as the magneton speed,
and the content of surfactant, etc., the most suitable conditions for the DMS are found.
The DMS is compared with the mainstream micromixers on the market and their mixing
performance and the uniformity of the droplets’ sizes are analyzed. The effectiveness of
the DMS is evaluated by using dispersed phases of different viscosities to simulate the
preparation of zirconium broth and uranium broth in the internal gelation process.

2. Materials and Methods
2.1. Construction of High-Throughput and Instant-Mixing Droplet Microfluidic System

The high-throughput and instant-mixing droplet microfluidic system is schematically
shown in Figure 1. The DMS is mainly composed of a magneton micromixer and a
coaxial T-junction (1/4-28UNF, Runze Fluid) microfluidic device. A charge coupled device
camera (CCD, Olympus, Tokyo, Japan) is used to monitor the dropping processs in situ.
Two miscible aqueous phases are propelled into the chamber equipped with magnets
at a flow rate of mL/min through the injection path by two syringe pumps (XFP12-BD,
Zhongxinqiheng, China). The mixing performance of the two aqueous phases is adjusted by
controlling the magneton speed. In order to facilitate the flexible rotation of the magneton
in the chamber, the shape of the chamber is set to a cylinder with an inner diameter of 8
mm and a height of 6 mm. The volume of the liquid filling the chamber can be estimated
to be 0.256 mL by subtracting the volume of the magneton from the volume of the chamber.
When the flow rate of the two aqueous phases is 0.25 mL/min and the flow time of the
two aqueous phases in the microchannel is ignored, it takes only 30 s to for the fluid to
fill the entire chamber. It means that it only takes 30 s for the two aqueous phases to mix
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thoroughly and form droplets. In addition, in order to prevent the magneton from sending
the two aqueous phases without being sufficiently mixed into the sample path beforehand,
this micromixer is designed with the injection path at the bottom of the chamber and
the sample path at the top of the chamber. The mixed solution as the dispersed phase
is sheared into droplets by the continuous phase of silicone oil in the coaxial T-junction
microfluidic device and the droplets are collected in a measuring cylinder. The droplet
formation process is observed under the CCD camera. The physical image of DMS and
Magneton micromixer are mentioned in detail in Figure S1.
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Figure 1. Schematic drawing of the droplet microfluidic system (DMS) for preparing monodisperse droplets.

The magneton micromixer is sealed with fastening screws and gaskets, and the pipe
of the coaxial T-junction microfluidic device is fixed with inverted cone joints. When the
two aqueous phases are not uniformly mixed or the mixing ratio is not appropriate to
produce insoluble substances, the DMS can be easily disassembled to clean the clogged
part, thereby realizing the reuse of the DMS and greatly reducing the cost compared with
clogged and scrapped micromixer of the previous researchers.

The DMS increases the contact area of the two aqueous phases by using the magneton
rotation to generate chaotic convection, and when the mixed solution is sheared into
droplets, the solute diffusion distance is shortened to improve the mixing performance.
Therefore, the DMS combines the characteristics of the active and passive micromixers.

2.2. Mixing-Target Liquids

In order to prevent the DMS from firstly clogging, deionized water was used as the
aqueous phase in the process of preparing monodisperse droplets. In the comparison of
mixing performance, two portions of 150 mL deionized water were added with 1 g of
pigment. According to the mixing principle of the pigment, the same amount of the sky
blue aqueous phase and the lemon yellow aqueous phase will become the dispersed phase
of kelly green. The mixing performance is judged based on the color uniformity of the
collected pictures by the CCD camera. In addition, a certain amount of polyvinyl alcohol
abbreviated as PVA (Mw 13,000–23,000, Sigma-Aldrich (Munich, Germany)) was added to
water with pigment to simulate a zirconium broth and a uranium broth. In order to prevent
the addition of the pigment from affecting the formation of monodisperse droplets, the
density, viscosity, and interfacial tension of different aqueous phases with the appropriate
continuous phase are measured, as shown in Table 1. The composition of this suitable
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continuous phase, which will be given in the third part, is 83.6 mPa·s silicone oil (Aladdin,
Shanghai, China) with 2% v/v Dow Corning 749 (Dow Corning, Midland, TX, USA).

Table 1. The density, viscosity, and interfacial tension of different aqueous phases.

Samples Density (g/cm3) Viscosity (mPa·s) Interfacial Tension
(mN/m)

Deionized water 1.000 1.0 20.7
Water with lemon
yellow pigment 1.013 8.1 20.5

Water with kelly
green pigment 1.007 7.5 20.0

Water with sky blue
pigment 1.001 7.8 20.2

Zirconium broth [23] 1.211 7.0 20.9
Uranium broth [24] 1.512 14.5 21.0
Water with PVA and
kelly green pigment

for simulating
zirconium broth

1.003 8.1 19.6

Water with PVA and
kelly green pigment

for simulating
uranium broth

1.008 15.2 20.0

It can be seen from Table 1 that the viscosity of the water and water with PVA after
adding the pigment will increase a few mPa·s, and the density and interfacial tension are
basically unchanged compared with the original solution. When the same amount of sky
blue pigment solution is mixed with the lemon yellow pigment solution to obtain the kelly
green pigment solution, compared with the two solutions before mixing, the density and
interfacial tension of the kelly green pigment solution are basically unchanged, and the
viscosity is slightly reduced. Zirconium broth and uranium broth are nearly saturated
solutions, so it is normal that the density of water with PVA and pigment is lower than
that of zirconium broth and uranium broth. Unlike macroflow, the interfacial tension plays
a dominant role in microfluidics and the effect of gravity is usually negligible. In other
words, the density difference between the simulated solution and the broth can be ignored
in the DMS.

In general, deionized water is used as the aqueous phase and combined with the DMS
to prepare monodisperse droplets. This mixing performance is quantitatively characterized
by analyzing the color uniformity of the kelly green pigment solution mixed from the sky
blue solution and the lemon yellow solution.

2.3. Characterization

The density of the aqueous phases is measured by a liquid densitometer. The viscosity
of the aqueous phases is measured with an LVDV-1 digital rotation viscometer (Shanghai
Jingtian Electronic Instrument Co., Ltd., Shanghai, China). The picture of the droplets
formed at the capillary port and the picture of the droplets of the collecting cylinder are
captured by an Olympus IX71 fluorescence microscope (Olympus, Tokyo, Japan). Through
image recognition, the size and coefficient of variation of the droplets in these pictures are
extracted, as shown in Figure 2A. The program automatically recognizes the number and
outline of the droplets in the picture (Figure 2B), and calculates the size and coefficient of
variation of the droplets. The specific identification principle is mentioned in the previous
article by the research group [25]. The simplified variance normalization method is used to
characterize the mixing performance (noted as MP) [1], as shown in Equation (1) where
mi is the gray value of the i-th point in the picture, and m is the average gray value on the
picture, and n is the number of pixel points in the picture.
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3. Results and Discussion
3.1. The Structure of the T-Junction Microfluidic Device

The T-junction microfluidic device is a key device for forming monodisperse droplets.
According to the flow direction of the continuous phase and the dispersed phase, the T-
junction microfluidic device can be divided into T-junction perpendicular flow, T-junction
transverse flow and coflowing. When the flow rate of dispersed phase and the continuous
phase is 1 mL/min and 4 mL/min, respectively, and the continuous phase viscosity is
66 mPa·s, the droplets formed by the three flow structures are observed. It can be seen
from Figure 3 that the size of the droplets prepared by the coaxial T-junction microfluidic
device is the most uniform and the coefficient of variation is less than 5%, which meets the
requirements of monodisperse droplets [26].
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The reason for the difference is related to the droplet formation mechanism of these
three flow structures. T-junction perpendicular flow and T-junction transverse flow mainly
use the pressure difference before and after the droplet to break the droplet. In T-junction
perpendicular flow, the dispersed phase is squeezed into a continuous liquid column
that moves in in the microchannel, resulting in uneven droplet sizes (Figure 3A). In
T-junction transverse flow, the dispersed phase is squeezed into discontinuous liquid
columns in the microchannel and satellite droplets are generated, resulting in uneven
droplet sizes (Figure 3B). The mechanism of coflowing by the coaxial T-junction microflu-
idic device to generate droplets is Kelvin–Helmholtz instability. That is, when the difference
between the flow rate of the two phases exceeds a certain range, monodisperse droplets
will be generated, as shown in Figure 3C. In addition, due to the interfacial tension of the
droplets and the continuous phase, the sphericity of the droplets formed by these three
flow structures is all less than 1.05 (Figure 3D), which is good. The sphericity will not be
discussed in the subsequent droplet evaluation process. Therefore, the suitable structure of
the T-junction microfluidic device that generates monodisperse droplets is coflowing, that
is the coaxial T-junction microfluidic device.

3.2. The Magneton Rotation Speed

The rotational speed of the magneton directly affects the mixing performance of the
liquid in the chamber of the magneton micromixer. Equal amounts of water with lemon
yellow pigment and water with sky blue pigment are pushed into the chamber to observe
the mixing performance under different magneton speeds. The mixing performance at
different magneton speeds can be seen from Figure 4. When the magneton speed is
0 r/min, the mixing performance reaches 0.800. This is solely due to the solute diffusion
between the two pigment solutions. It can be seen from the picture of the chamber in the
magnetic micromixer at 0 r/min that there are still some lemon yellow solutions that are
not completely mixed. When the magneton speed increases from 0 r/min to 600 r/min,
the mixing performance is significantly improved, reaching 0.944. However, when the
magneton speed further increases from 600 r/min to 1200 r/min, the improvement of
mixing performance reaches plateau. Therefore, 600 r/min was chosen as the magneton
speed of this experiment.
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3.3. The Content of Surfactant

Dow Corning 749 (Dow Corning Co., Ltd.) is decamethyl-cyclopentasiloxane and
trimethylated silica as the surfactant, which is one of the oil-soluble polymers. The surfac-
tant is used to prevent coalescence between droplets by reducing the interfacial tension
between the continuous phase and the dispersed phase. The surfactant is added to 50 mPa·s
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silicone oil as the continuous phase according to the volume ratio. When the flow rate
of dispersed phase and the continuous phase is 0.5 mL/min and 2 mL/min, respectively,
and the magneton speed is 600 r/min, the size and coalescence of droplets are observed,
as shown in Figure 5. The droplets’ sizes decrease with the increase in the content of
surfactant. This can be attributed to the increase in the surfactant, which reduces the
interfacial tension between the dispersed phase and the continuous phase. The decreased
interfacial tension is beneficial to generation of smaller droplets by the DMS. The coefficient
of variation of the droplets’ sizes after the addition of surfactants does not have obvious
regularities in Figure 5. It can be seen from the physical map of the collected droplets that
the surfactant has little effect on the coalescence of the droplets. Then, in order to prevent
the excessively high content of the surfactant from affecting the subsequent experiments of
preparing monodisperse microspheres by DMS, 2% v/v of the surfactant was added to the
silicone oil.

Materials 2021, 14, x FOR PEER REVIEW 8 of 16 
 

 

silicone oil as the continuous phase according to the volume ratio. When the flow rate of 
dispersed phase and the continuous phase is 0.5 mL/min and 2 mL/min, respectively, and 
the magneton speed is 600 r/min, the size and coalescence of droplets are observed, as 
shown in Figure 5. The droplets’ sizes decrease with the increase in the content of surfac-
tant. This can be attributed to the increase in the surfactant, which reduces the interfacial 
tension between the dispersed phase and the continuous phase. The decreased interfacial 
tension is beneficial to generation of smaller droplets by the DMS. The coefficient of vari-
ation of the droplets’ sizes after the addition of surfactants does not have obvious regu-
larities in Figure 5. It can be seen from the physical map of the collected droplets that the 
surfactant has little effect on the coalescence of the droplets. Then, in order to prevent the 
excessively high content of the surfactant from affecting the subsequent experiments of 
preparing monodisperse microspheres by DMS, 2% v/v of the surfactant was added to the 
silicone oil. 

 
Figure 5. The variation of the content of surfactant with droplet’s size and coefficient of variation. 

3.4. Factors Affecting Droplets’ Sizes and Coefficient of Variation 
When 2% v/v of the surfactant is added to the silicone oil, the viscosity of the silicone 

oil needs to be re-measured as the viscosity of the continuous phase. When 2% v/v the 
surfactant is added to the silicone oil of different viscosity as the continuous phase, and 
the flow rate of the dispersed phase and the continuous phase is 0.5 mL/min and 2 
mL/min, respectively, the magneton speed is 600 r/min, and the coaxial T-junction micro-
fluidic device is used, the relationship between the droplet’s size and coefficient of varia-
tion and various factors is obtained, as shown in Figure 6A. It can be seen that as the 
viscosity of continuous phase increases, the size of the droplets decreases, and the coeffi-
cient of variation decreases from the initial 0.047 to 0.003. This is because the viscosity of 
the continuous phase increases, which increases its shearing force on the dispersed phase, 
resulting in a smaller and more uniform droplet sizes. Then, when the viscosity of the 
continuous phase is very large, it will increase the flow resistance of the continuous phase 
and the dispersed phase in the microchannel, which is not conducive to high-throughput 
droplet microfluidic systems. Therefore, a moderate viscosity of continuous phase (83.6 
mPa·s) was selected. From the physical image of the droplets collected, which formed at 
83.6 mPa·s in a measuring cylinder (Figure 6A), it can be seen that the droplets are uniform 
in size and have good sphericity. 

Figure 5. The variation of the content of surfactant with droplet’s size and coefficient of variation.

3.4. Factors Affecting Droplets’ Sizes and Coefficient of Variation

When 2% v/v of the surfactant is added to the silicone oil, the viscosity of the silicone
oil needs to be re-measured as the viscosity of the continuous phase. When 2% v/v
the surfactant is added to the silicone oil of different viscosity as the continuous phase,
and the flow rate of the dispersed phase and the continuous phase is 0.5 mL/min and
2 mL/min, respectively, the magneton speed is 600 r/min, and the coaxial T-junction
microfluidic device is used, the relationship between the droplet’s size and coefficient of
variation and various factors is obtained, as shown in Figure 6A. It can be seen that as
the viscosity of continuous phase increases, the size of the droplets decreases, and the
coefficient of variation decreases from the initial 0.047 to 0.003. This is because the viscosity
of the continuous phase increases, which increases its shearing force on the dispersed
phase, resulting in a smaller and more uniform droplet sizes. Then, when the viscosity of
the continuous phase is very large, it will increase the flow resistance of the continuous
phase and the dispersed phase in the microchannel, which is not conducive to high-
throughput droplet microfluidic systems. Therefore, a moderate viscosity of continuous
phase (83.6 mPa·s) was selected. From the physical image of the droplets collected, which
formed at 83.6 mPa·s in a measuring cylinder (Figure 6A), it can be seen that the droplets
are uniform in size and have good sphericity.
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The effect of the flow rate of the continuous phase is investigated under the condition
that the viscosity of the continuous phase is 83.6 mPa·s, the flow rate of the dispersed
phase is 0.5 mL/min, 2% v/v surfactant is used, the magneton speed is 600 r/min, and
the coaxial T-junction microfluidic device is used. The results are presented in Figure 6B.
With the increase in the continuous phase flow rate, the droplet’s size rapidly decreases
and the coefficient of variation of the droplets fluctuates around 0.007. The volume of the
continuous phase is only 100 mL on the syringe pump. Considering the initial bubble
elimination time of the DMS and the time for the droplets to reach stable generation
conditions, the DMS requires at least 50 min of running time to ensure accurate data
collection. Therefore, 2 mL/min is chosen as the flow rate of continuous phase.

The influence of the flow rate of dispersed phase is investigated under the condition
that the viscosity of the continuous phase is 83.6 mPa·s, the flow rate of the continuous
phase is 2 mL/min, 2% v/v surfactant is used, the magneton speed is 600 r/min, and the
coaxial T-junction microfluidic device is used. The results as shown in Figure 6C indicate
that as the flow rate of the dispersed phase increases, the droplets’ sizes also increase. When
the flow rate of the dispersed phase is 0.9 mL/min, the droplets’ size sin the microchannel
become larger and the distance between the droplets becomes smaller, because the shear
force of the continuous relative dispersed phase becomes smaller. This will easily cause
the droplets of the microchannel to collide and the collected droplets in the measuring
cylinder will be of uneven size. For example, when the flow rate of the dispersed phase
is 0.9 mL/min, the coefficient of variation of the droplets will reach 0.04. However, if the
flow rate of the droplets is small, it is not conducive to the high-throughput preparation
of monodisperse droplets. Therefore, a moderate dispersed phase flow rate (0.5 mL/min)
was selected.

The effect of the flow ratio of the continuous phase to the dispersed phase is analyzed
under the condition that the viscosity of the continuous phase is 83.6 mPa·s, the flow rate
of the dispersed phase is 0.5 mL/min, 2% v/v surfactant is used, the magneton speed is
600 r/min, and the coaxial T-junction microfluidic device is used, as shown in Figure 6D. As
the flow ratio of the continuous phase to the dispersed phase becomes larger, the size of the
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droplets decreases rapidly, and the coefficient of variation of the droplets fluctuates at 0.01,
which can be ignored. Since the inner diameter of the outlet tube of the microchannel is
1600 µm, the size of the droplets cannot be too large to avoid friction between the droplets
and the tube wall of the microchannel. This means that the larger the flow ratio of the
continuous phase to the dispersed phase, the better. However, considering the stable
working time of the DMS, 4:1 was chosen as the best flow ratio of the continuous phase to
the dispersed phase.

Therefore, using deionized water as the aqueous phase, the best conditions for the
DMS to prepare monodisperse droplets are found—that is, in the coaxial T-junction mi-
crofluidic device, the magneton speed is 600 r/min, and the content of surfactant is 2%
v/v, the viscosity of continuous phase is 83.6 mPa·s, the flow rate of continuous phase
and dispersed phase is 2 mL/min and 0.5 mL/min, respectively, and the flow ratio of the
continuous phase to the dispersed phase is 4:1.

3.5. Correlation Analysis of Influencing Factors

As can be seen from the above, there are many factors that affect the size of the droplets
prepared by the DMS. Mathematical statistics and numerical simulations are widely used
in scientific research [27–29]. The SPSS software (version 22.0) developed by IBM (Armonk,
NY, USA) is used to do Pearson correlation analysis of these influencing factors and the
droplets’ sizes. The correlation coefficient and significance of each influencing factor are
shown in Table 2. It can be seen that except for the flow rate of the dispersed phase, the
other influencing factors are negatively related to the droplets’ sizes. The flow ratio of
the continuous phase to the dispersed phase is varied by maintaining the flow rate of the
dispersed phase at a constant rate while the flow rate of the continuous phase is changed.
Its correlation coefficient is basically the same as that of the flow rate of the continuous
phase; both are about 0.974. In addition, the viscosity of the continuous phase has the
largest correlation coefficient, followed by the flow rate of the continuous phase, then the
flow rate of the dispersed phase and finally the content of the surfactant. This shows that
the viscosity of the continuous phase has the closest relationship with the droplets’ sizes
in the DMS, which is significant at the level of 0.01. Therefore, the droplets’ sizes can be
changed mainly by changing the viscosity and flow rate of the continuous phase.

Table 2. Pearson correlation coefficient of influencing factors and droplet size.

The Influencing Factors Pearson Correlation with Droplets’ Size

The content of surfactant −0.886 α

The viscosity of continuous phase −0.987 β

The flow rate of continuous phase −0.973 β

The flow rate of dispersed phase 0.900 α

The flow ratio of continuous phase to
dispersed phase −0.974 β

α Correlation is significant at the 0.05 level (2-tailed); β Correlation is significant at the 0.01 level (2-tailed).

3.6. Mixing Performance and Uniformity of Droplets’ Sizes

In order to verify the mixing performance of the DMS, the DMS is compared with the
mainstream micromixers on the market. The aqueous solutions of sky blue pigment and
lemon yellow pigment (as shown in Table 1) are respectively passed into the micromixer
at the dispersed phase and are sheared into droplets under the abovementioned optimal
droplet generation conditions. The droplet generation drawings in the microchannel
drawing are shown in Figure 7.
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Figure 7A shows that the droplets prepared by DMS are evenly mixed in color,
and Figure 7B shows that the droplets prepared by the T-junction microfluidic device,
which is composed of a T-junction micromixer and the coaxial T-junction microfluidic
device, are yellow on the outermost surface and have uniform internal color. The colors
of the two pigment solutions in the droplets prepared by the serpentine micromixing
chip in Figure 7C are still clearly visible. Moreover, the two pigment solutions have gone
through eight u-shaped bends in the serpentine micromixing chip and they are still not
evenly mixed. Their mixing performance is quantitatively extracted, as shown in Figure 8A.
It can be seen from Figure 8A that the mixing performance of the collected droplets in a
measuring cylinder is better than that of the generated droplets in the microchannel because
the solute diffusion inside the droplets increases mixing performance when the generated
droplets move into the measuring cylinder through the microchannel. Under the same flow
rate of the dispersed phase, whether it is the generated droplets or the collected droplets,
the mixing performance of DMS is the best, followed by the T-junction microfluidic device,
and the serpentine micromixing chip comes last. This is because both T-junction microflu-
idic device and serpentine micromixing chip are passive micromixers, which mainly rely
on solute molecular diffusion for mixing, while DMS is an active micromixer, which is
prone to generating chaotic convection and has the best mixing performance among these
microfluidic devices.
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The magneton and serpentine microfluidic device in Figure 7D is integrated by the
magneton micromixer and a serpentine micromixing chip. When the magneton speed is
600 r/min, the magneton and serpentine microfluidic device and the DMS are considered
to reach the same degree of mixing. This is explained from the fact that the mixing
performance of the two is similar in Figure 8A. However, the magneton and serpentine
microfluidic device cannot achieve high throughput. Under the conditions of 0.5 mL/min
for the dispersed phase and 2 mL/min for the continuous phase, the dispersed phase cannot
be sheared into droplets by the continuous phase. The continuous phase can flow counter-
currently into the chamber with the magneton that mixes the aqueous phase solutions,
hindering the mixing of the solutions, resulting in the inability to form droplets. Only when
the flow rate of the dispersed phase is 20 µL/min and the flow rate of the continuous phase
is 100 µL/min can the droplets be formed. At a similar mixing performance level, the DMS
can achieve a flow rate of mL/min to prepare droplets while the magneton and serpentine
microfluidic device can only prepare droplets at µL/min, which directly illustrates the
superiority of the DMS structure. It can be seen from Figure 8B that the size of the droplets
generated by the DMS and the T-junction microfluidic device is very uniform, and the
coefficient of variation is below 0.006. The coefficient of variation of the droplets by the
serpentine micromixing chip and magneton and serpentine microfluidic device exceeded
0.5, indicating that the size distribution of the droplets prepared by these two micromixers
is very large.

Therefore, compared to these three kinds of micromixers, the DMS has the best mixing
performance and droplet size uniformity. In principle, the coaxial T-junction microfluidic
device prepares droplets which are more stable under force on a three-dimensional flow
scale than other microfluidic devices. The magneton micromixer has a simple structure
and uniform mixing. It makes the flow resistance in the DMS far smaller than that of the
complex microchannels in other microfluidic devices, thereby achieving the preparation of
high-throughput uniformly mixed monodisperse droplets.

3.7. Simulated Broths Experiment by DMS

In the preparation of ZrO2 and UO2 gel microspheres by the internal gelation pro-
cess, the metal ion solution needs to be mixed with a mixed solution of urea and hex-
amethylenetetramine (noted as HMUR solution) to form a zirconium or uranium broth,
and the broth is rapidly dispersed into droplets and falls into hot silicone oil to form gel
microspheres [30,31], which can be found in Figure S2. However, hexamethylenetetramine
is thermally unstable and easily decomposes into ammonium hydroxide, leading to the
premature precipitation and gelation of metal ions to block the dispersing device. The reac-
tion can be simplified into Equation (2) [17,30,31] and Mn+ is the metal ion. Therefore, the
metal ion solution and the HMUR solution need to be cooled and mixed at 5 ◦C, which is
not conducive to large-scale industrial production. Moreover, when the metal ion solution
and the HMUR solution are not sufficiently mixed, certain positions in the mixed solution
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will reach the pH at which the metal ion gelation reaction occurs, so the broth will quickly
gel and block the device.

Mn+ + nOH− → M(OH)n (2)

The water with PVA and sky blue pigment solution is used to simulate metal ion
solution and the water with PVA and lemon yellow pigment solution is used to simulate
HMUR solution. The two kinds of solutions are mixed into the kelly green pigment solution
similar to the interfacial tension and viscosity of the broth by the magneton micromixer,
and then droplets are formed on the coaxial T-junction microfluidic device under the
abovementioned optimal droplet generation conditions. The pictures of the collected
droplets in the measuring cylinder are shown in Figure 9A,B. The droplet size and the
coefficient of variation and the mixing performance of the DMS for these two simulated
broths can be seen from Figure 9C.
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It can be seen from the Figure 9A,B that the droplets of simulated zirconium broth and
simulated uranium broth are formed by DMS with good sphericity and uniform size and
uniform mixing. The coefficient of variation of the droplets is less than 0.01. The mixing
performance is greater than 0.95 for the generated droplets in the microchannel and the
collected droplets in the measuring cylinder, which can be regarded as uniformly mixed. In
addition, the size of the droplets formed by the simulated uranium broth is slightly smaller
than that of the simulated zirconium broth. The viscosity of the simulated uranium broth is
greater than that of the simulated zirconium broth. However, previous studies have shown
that changing the viscosity of the dispersed phase will not change the force state of the
droplets in the microchannel. So, it is normal that the size of the droplets slightly changes
with the viscosity of the dispersed phase [32].
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The internal gelation process is a process of hydrolysis of metal ions which is heavily
dependent on temperature. When the temperature rises from 5 ◦C to 20 ◦C, the protonation
of HMTA and the decomposition of protonated HMTA will accelerate, leading to an
increase in the pH of the broth and promoting the hydrolysis of the metal ions [23,24]. For
example, when the temperature rises from 5 ◦C to 20 ◦C, the stability time of the zirconium
broth is reduced from 5 h to 1 h, and the stability time of uranium broth is reduced from
16 h to 200 s [23,24]. Because of the short stabilization time, it is difficult to achieve a
continuous internal gelation process at room temperature without cooling to prepare the
zirconia or uranium oxide microspheres. The time for DMS to mix and form droplets is
only 30 s, much less than 200 s and 1 h. Therefore, it is expected that the mixing process
using the DMS will not strongly affect the hydrolysis and gelation process of the metal ions
such that gel microspheres can be prepared at room temperature by DMS without cooling
the precursor solution.

4. Conclusions

In this study, a novel high-throughput and instant-mixing droplet microfluidic system
is designed for solution mixing and preparation of micro-/nanoparticles. The system
is detachable and it is easy to clean any blockages in the microchannel, which realizes
the reuse of the system and greatly reduces the cost. Moreover, the system can mix the
solution uniformly and produce droplets of uniform size at a flow rate of mL/min, which
overcomes the shortcomings of low droplet yield and easy clogging of the micromixing
chips on the market.

The results show that the best conditions for the DMS to prepare uniform mixing
and monodisperse droplets with good sphericity are in the coaxial T-junction microfluidic
device, where the magneton speed is 600 r/min, and the content of surfactant is 2% v/v, the
viscosity of continuous phase is 83.6 mPa·s, the flow rate of continuous phase and dispersed
phase is 2 mL/min and 0.5 mL/min, respectively, and the flow ratio of continuous phase
to dispersed phase is 4:1. The viscosity and flow rate of continuous phase have a major
impact on monodisperse droplets of different sizes. The DMS achieves the preparation
of monodisperse droplets with better mixing performance than three micromixing chips
on the market. Moreover, the simulation broths are used to simulate the preparation of
zirconium and uranium gel microspheres in the internal gelation process by the DMS.
The DMS can potentially realize the continuous production of ZrO2 and UO2 ceramic
microspheres without cooling at room temperature. Thus, the DMS is expected to meet the
demands in various fields, including the high-volume industrialization of microfluidics,
micromixing, and micro-/nanoparticles.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/5/1263/s1, Figure S1: (A) Physical image of DMS; (B) The physical image of the magneton
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