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Abstract: The impermeable cover in urban area has been growing due to rapid urbanization, which
prevents stormwater from being naturally infiltrated into the ground. There is a higher chance of
flooding in urban area covered with conventional concretes and asphalts. The permeable pavement
is one of Low-Impact Development (LID) technologies that can reduce surface runoff and water
pollution by allowing stormwater into pavement systems. Unlike traditional pavements, permeable
pavement bases employ open-graded aggregates (OGAs) with highly uniform particle sizes. There is
very little information on the engineering properties of compacted OGAs. In this study, the moduli of
open-graded aggregates under various compaction energies are investigated based on the Plate Load
Test (PLT) and Light-Weight Deflectometer (LWD). Artificial Neural Network (ANN) and Linear
Regression (LR) models are employed for estimation of the moduli of the aggregates based on the
material type and level of compaction. Overall, the moduli from PLT and LWD steeply increase until
the number of roller passes reaches 4, and they gradually increase until the number of roller passes
becomes 8. A set of simple linear equations are proposed to evaluate the moduli of open-graded
aggregates from PLT and LWD based on the material type and the number of roller passes.

Keywords: permeable pavement; modulus of elasticity; open-graded aggregate; Plate Load Test;
Light-Weight Deflectometer; Linear Regression; Artificial Neural Network

1. Introduction

The rainfall pattern changes globally due to climate change, and therefore the rainfall
can be much more intense than in the past. In addition, the impermeable cover in urban
areas has been growing due to rapid urbanization [1,2]. Owing to climate change and urban-
ization, the cities suffer from heavier flood damages nowadays. Low-Impact Development
(LID) is a design philosophy that can remedy these issues, often using surface-infiltrating
stormwater facilities, and is being widely implemented worldwide [1–5]. The permeable
pavements are one of the most popular LID technologies which can especially be well-
applied in urban areas [6–12], which are implemented to not only low-traffic local roads
but also high-traffic highways. Figure 1 shows typical sections of permeable pavements.
Permeable pavements bring other benefits such as reducing the heat island phenomenon,
leveling down traffic noise, and providing better skid resistance [9].

A permeable pavement has a surface layer that is in direct contact with the vehicle load.
In addition, it has a base layer supporting the surface layer that disperses the vehicle load
transmitted through the surface layer [6,8,10]. Compaction of this base layer during road
construction plays a significant role in the stability and longevity of the pavement [13,14].
Therefore, proper compaction quality control of the base is essential for the construction
of roads to ensure that they meet the required engineering specifications. However, a
standard for the compaction quality control of open-graded aggregates (OGAs), which are
used to construct base or sub-base layers of permeable pavements, has not been established,
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despite the increase in the applicability of permeable pavements [6,8–12]. In addition, the
experimental study conducted in the lab environment does not necessarily reflect what
would happen in the field. The magnitude of compaction energy and the way that the
energy is delivered cannot be the same in the field and lab. In this study, the moduli
of OGAs of various sizes under various compaction energies are investigated based on
PLT (Plate Load Test) and LWD (Light-Weight Deflectometer). There have been very few
experimental studies on the stiffness of open-grade aggregates in field conditions. Artificial
Neural Network (ANN) and Linear Regression (LR) models are employed for estimation
of the moduli of the aggregates based on the material type and level of compaction.
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Figure 1. Permeable pavements.

2. Field Modulus Evaluating Devices

In recent years, due to the implementation of mechanistic-empirical pavement design
procedures (MEPDG) [15], modulus-based compaction specifications have been estab-
lished [16], and many kinds of field modulus evaluating devices have been developed and
used to evaluate the field compaction quality of pavement base layers [17]. These include
test methods and devices such as PLT [18], LWD [19], soil stiffness gauge (SSG) [20], and
dynamic cone penetrometer (DCP) [21].

Various studies regarding these devices or test methods have been conducted focusing
on conventional road embankment construction materials. These studies have explored the
feasibility of LWD, SSG, and DCP in compaction quality control during the construction
based on laboratory or field experiments [13,14,17,22–28], investigated the variation of
modulus in response to density or moisture content changes [24,26–29], compared modulus
measurements from each device and suggested relationships between them [14,23,26], and
investigated statistical limits of the measurements in construction quality assurance [30].
In this study, we coped with the modulus measurement data obtained from PLT and
LWD tests.

The PLT is a test that evaluates the mechanical properties of the ground based on
the relationship between the load and the settlement after applying a load through the
rigid loading plate to the ground where the structure is installed. It is used to evaluate
the stiffness of roads and the ground [31]. The test is divided into the non-repetitive
loading method and the repetitive loading method depending on the loading. In Korea,
the Korean Standards Association’s KS F 2310 [32] applies to the non-repetitive loading
method. The German Standardization Association’s DIN 18134 [18] standard applies to
the repetitive method, which is used in this study. There are loading and unloading stages
in the test. From each stage, a stress-settlement curve is obtained by the second-order
polynomial regression, and modulus is determined from the curve, which is represented
as Ev1 (primary strain modulus) and Ev2 (secondary strain modulus), respectively. The
configuration of the test equipment is shown in Figure 2.
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Figure 2. Plate Loading Test (PLT) equipment composition [33].

The LWD measures modulus by dropping a falling weight at a certain height to its
loading plate and measuring the maximum settlement of it. ELWD is the elastic modulus
evaluated using the LWD. The elastic modulus is one of the indicators of the stiffness of
the ground. It is a method to evaluate the compaction of the ground. Compared to the PLT,
this test method has the advantage of being a simple test method with a short test time and
portability [17]. The configuration of the test equipment is shown in Figure 3. A total of six
drops should be performed to complete one test. The first three drops are steps to properly
set the loading plate on the ground, and the latter three are steps to measure the settlement
amount of the loading plate. The settlement of the loading plate is measured for each drop
over time through an accelerometer mounted on the loading plate. The average value of
the last three settlement measurements is used to calculate ELWD.
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Several studies have been conducted using the PLT and LWD test to evaluate the
modulus or compaction of conventional road base construction materials, which are dense-
graded aggregates. Kim and Park [23] and Kim et al. [35] conducted PLTs on pavement base
layers based on both German standard, DIN 18134 [18], and KS F 2310 [32], and the results
from both standards were compared. Wiman [36] evaluated the permanent deformation
and modulus of base materials through the LWD and PLT based on DIN 18134 [18]. Berney,
Mejais-Santiago, and Kyzar [29] constructed testbeds composed of various dense-graded
base materials to evaluate the modulus of them using the LWD with other devices such as
SSG and DCP and accumulated statistical data of the measurements.

The modulus-based compaction quality control technique can be an effective means for
evaluating the compaction quality of OGAs because it is difficult to measure the maximum
dry density and on-site dry density of them. However, most research about modulus-based
compaction quality control has been focused on the materials used in conventional road
base materials, except for a few studies conducted by Choi [37] and Choi et al. [38].

3. Field Experiment
3.1. Test Materials

The base layer in a road pavement is installed directly below the surface layer, and it
distributes the traffic load received from the surface layer [39]. Since it is located under
a thin surface layer, the load pressure distribution transmitted to the base layer is high;
therefore, the selected base layer material needs to support the load and have sufficient
resistance to deformation. In addition to these properties, the base in the permeable
pavement should have a hydrological function to allow water to penetrate and retain
rainwater in the ground. To this end, the base of the permeable pavement is composed of
OGAs having an even particle size and almost no particulates, unlike the base layer of a
road pavement composed of dense-graded aggregates.

In the field test, three different kinds of OGAs were used: D40 (maximum particle size
40 mm), D25 (maximum particle size 25 mm), and D13 (maximum particle size 13 mm).
These particle sizes approximately lie in a commonly used particle size range of the base
materials of permeable pavements. The aggregates were prepared in an air-dried state
with about 0.5% of water contents. D40 and D25 were mixed 1:1 to make D40 + D25, and
D25 and D13 were mixed 1:1 to make D25 + D13. A backhoe was used for the mixing of the
aggregate, and a backhoe bucket was used to measure the volume of those aggregates to be
mixed. In the field test, a total of five types of aggregates were prepared as test materials
and were used in the construction of the test site. The aggregate volume composition, basic
properties, and particle size distribution of each material are shown in Table 1 and Figure 4.
In addition, the particle size distributions of OGAs used in typical permeable pavement
base layers suggested by Smith [6] and Eisenberg, Lindow, and Smith [8], which is ASTM
No. 57 aggregates, and Seoul Metropolitan City [10] are plotted together for comparison.
Most of the materials coped within this study showed similar particle size distributions
with the suggested range, with some exceptions in D13.

Table 1. Basic information of the test materials [38].

Test Material Lithology
Material Composition by Volume

Cu
1 Cc

2 Specific Gravity Abrasion Loss 3 (%)
D40 D25 D13

D40

Rhyolite

100% - - 2.88 1.19

2.67–2.75

12.8
D40 + D25 50% 50% - 2.99 1.08 9.8

D25 - 100% - 2.48 1.02 10.3
D25 + D13 - 50% 50% 2.84 1.16 11.2

D13 - - 100% 2.79 1.16 12.3
1 Coefficient of uniformity; 2 Coefficient of curvature; 3 Loss of the mass of aggregates after the Los Angeles test as a percentage of the
original mass of aggregates calculated by ASTM C131 [40].
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3.2. Test Program

The test was planned as follows using the five aggregates described above. In order
to investigate the change in the stiffness of the compacted aggregate layer depending
on the number of roller passes performed using a compaction roller, a field testbed was
constructed following the dimensions illustrated in Figure 5. Each aggregate was placed to
a height of 30 cm on the road (first lift), and then compacted 2, 4, 8, and 12 times with a
10 ton vibration compaction roller. Two PLTs and four LWD tests were then conducted at
each number of compaction (roller passes) for all materials. A 30 cm diameter plate was
used for the test. After all these tests were completed, an additional layer of each aggregate
was laid to a depth of 30 cm on top of the previously laid aggregate layer (second lift), and
the same measurement process was repeated. As a result, a total of 80 PLT and 160 LWD
measurements were carried out throughout the whole test. Table 2 summarizes the whole
test program.
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Table 2. Test program.

Material Lift Number of Roller Passes Modulus Evaluation

D40

First (30 cm)
Second (30 cm)

2
4
8

12

PLT
LWD

D40 + D25
D25

D25 + D13
D13
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Figure 6 shows the locations corresponding to the test measurements. In the figure,
the gray circles indicate the PLT measurements which have been conducted twice for each
batch. LWD tests were conducted twice for each PLT test, a total of four times each batch.
The numbers 2, 4, 8, and 12 indicate the number of roller passes, and A and B indicate the
first and second PLT test positions. This layout of test location was applied to the tests for
all materials.
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4. Modulus of Open-Graded Aggregate
4.1. Field Test Results

Table 3 presents 80 cases of datasets including types of materials, the number of
roller passes, and the moduli evaluated using PLT and LWD. ELWD is the elastic modulus
measured with the LWD test and Ev1 and Ev2 are the primary and secondary strain moduli,
measured with the PLT test respectively. For each PLT, LWD tests were conducted twice,
and therefore ELWD in the table is the average of two test results. There are five types of
materials: D40, D40 + D25, D25, D25 + D13, and D13. Each of the materials is replaced
with a numerical value of 1, 2, 3, 4, and 5, subsequently, to use as an input to the model.
Areas A and B in Table 3 represent the test locations for PLT shown in Figure 5. In order to
capture trends of the data in Table 3, it is also plotted in Figures 7–9.

Table 3. Dataset.

Dataset No. Material Number of
Roller Passes

Location
ELWD (MPa) Ev1 (MPa) Ev2 (MPa)

First Lift Second Lift Area A Area B

1

1

2

O O 32.95 6.92 77.26
2 O O 34.16 9.03 107.08
3 O O 30.07 10.62 107.81
4 O O 30.91 11.68 110.32

5

4

O O 32.94 17.66 129.37
6 O O 31.67 15.19 102.47
7 O O 33.10 16.45 129.01
8 O O 39.64 13.09 125.98

9

8

O O 41.39 17.77 125.54
10 O O 38.47 20.53 124.90
11 O O 43.27 22.18 114.55
12 O O 38.09 19.65 120.48

13

12

O O 44.52 18.07 115.87
14 O O 39.73 19.32 119.19
15 O O 40.47 21.40 147.15
16 O O 39.88 22.35 136.34
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Table 3. Cont.

Dataset No. Material Number of
Roller Passes

Location
ELWD (MPa) Ev1 (MPa) Ev2 (MPa)

First Lift Second Lift Area A Area B

17

2

2

O O 39.48 11.73 111.32
18 O O 34.11 8.96 99.81
19 O O 33.21 10.82 101.90
20 O O 33.16 7.82 94.12

21

4

O O 32.87 16.97 122.44
22 O O 31.20 12.91 103.39
23 O O 35.46 17.01 127.12
24 O O 34.31 13.49 115.38

25

8

O O 37.96 18.86 83.60
26 O O 32.59 19.73 131.75
27 O O 41.82 19.38 128.94
28 O O 37.75 19.07 106.75

29

12

O O 41.33 20.42 129.75
30 O O 39.10 19.45 111.28
31 O O 38.50 22.63 125.74
32 O O 32.94 18.13 115.32

33

3

2

O O 23.81 9.88 142.27
34 O O 28.52 10.76 118.15
35 O O 29.05 9.70 120.44
36 O O 28.80 9.53 122.32

37

4

O O 27.26 13.05 137.16
38 O O 26.24 12.39 137.85
39 O O 32.73 15.38 154.96
40 O O 29.93 16.69 130.55

41

8

O O 34.92 17.68 149.92
42 O O 28.69 15.43 141.11
43 O O 36.87 18.59 155.86
44 O O 34.84 17.85 146.05

45

12

O O 36.97 22.57 149.79
46 O O 33.49 20.64 143.28
47 O O 33.98 20.11 146.78
48 O O 32.18 18.24 153.81

49

4

2

O O 22.59 10.17 112.55
50 O O 21.43 10.87 103.98
51 O O 20.57 10.39 115.08
52 O O 22.02 10.38 111.43

53

4

O O 25.12 13.03 133.66
54 O O 26.91 11.91 127.44
55 O O 23.89 13.02 114.34
56 O O 29.07 14.58 105.12

57

8

O O 28.18 16.05 154.04
58 O O 29.95 15.24 137.41
59 O O 30.21 17.17 124.13
60 O O 31.26 17.06 121.03

61

12

O O 33.66 16.94 117.71
62 O O 30.72 19.30 123.29
63 O O 32.56 17.82 138.74
64 O O 27.24 16.35 138.90
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Table 3. Cont.

Dataset No. Material Number of
Roller Passes

Location
ELWD (MPa) Ev1 (MPa) Ev2 (MPa)

First Lift Second Lift Area A Area B

65

5

2

O O 20.19 7.77 77.07
66 O O 22.51 8.72 68.08
67 O O 18.03 7.13 94.38
68 O O 20.89 7.87 92.15

69

4

O O 20.28 11.92 115.13
70 O O 20.92 12.00 109.36
71 O O 23.36 11.47 103.47
72 O O 21.74 11.03 83.25

73

8

O O 25.11 14.92 96.55
74 O O 28.98 12.81 77.88
75 O O 22.71 12.20 123.13
76 O O 23.40 12.15 118.23

77

12

O O 27.90 15.70 90.83
78 O O 23.23 18.10 90.66
79 O O 30.14 17.59 111.86
80 O O 25.37 14.22 110.25

”O” indicates the number of lift and planar location of modulus measurement.
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The zone of influence of PLT is known as 1.5 to 2 times the diameter of the plate in the
literatures based on experimental and numerical studies [41,42]. The zone of influence of
LWD, on the other hand, may be identical to or a bit shallower than that of PLT. The zone
of influence of LWD is reported to be 1.5 to 2 times [28] or 1 to 2 times the diameter [43,44].
Field tests have been conducted on the well-compacted and stiffer ground. Following
the zone of influence, the test results for the first lift could possibly be influenced by the
stiff bottom layer. However, when the moduli for the first and second lifts are compared,
the results of the first lifts are not consistently higher than those of the second lifts. The
open-graded aggregates tested in this study have much higher porosity and set-up with
fewer particle-to-particle contacts than dense materials. The aggregates went through
highly plastic behavior. Authors suspect the zone of influence was contained within a
shallow depth with high plastic deformations. As there was no consistent difference found
in the results of the first and second lifts, the number of the lift was not used as a variable
in the regression and neural network analyses.

4.2. Modulus Results Depending on the Number of Roller Passes

The moduli Ev1, Ev2, and ELWD are plotted with respect to the number of roller passes
and material type in Figures 7–9 with the data presented in Table 3. Both the scatter plot
and surface plot, which consists of the average values of the data points of the scatter
plot, are shown in those figures to better visualize data. The Ev1 and Ev2 values steeply
increase until the number of roller passes reaches 4. After 4 passes, Ev1 continues to increase
with increasing number of roller passes with less steep rate, which was not the case for
Ev2 and ELWD. During the first loading, the specimens are compressed and densified (or
compacted), and therefore the second compression curve (or Ev2) is less sensitive to the
number of roller passes. The first loading of the Plate Load Test also involves significant
shear displacement, which does not happen during the second static loading or dynamic
loading: Ev1 is more sensitive to the number of roller passes than Ev2 and ELWD overall.
All three moduli, Ev1, Ev2, and ELWD, values nearly settle after the number of roller passes
becomes 8. The number of roller passes 4, which is typically used in practice, may be an
efficient number, but one may consider applying the number of roller passes 8 to achieve
better stiffness for open-graded aggregates. The difference in measurements with LWD
and PLT are due to different principles assumed for evaluation of the moduli. Therefore,
the differences in measurement are owing to influence depth, loading rate, and the number
of loading postulated for each evaluation method.
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5. Artificial Neural Network and Linear Regression

It was attempted to evaluate the moduli of open-graded aggregates based on either
ANN or Linear Regression [45–48], in order to see whether the moduli can be predicted
well from aggregate and compaction information. MATLAB [49] and MS Excel [50] were
used to implement ANN and LR, respectively.

5.1. Artificial Neural Network Model

The human brain solves many problems that are difficult to solve using current
information processing technologies. Studies have been performed to analyze and model
the functional factors of the human brain that entail excellent thinking ability, memory,
problem analysis, and solving ability [46,51]. Machine learning is a technology through
which a computer learns from accumulated data, and it is one of the artificial intelligence
technologies developed in the 1980s. The algorithms used for machine learning include
decision trees, clustering algorithms, and ANNs. Of these, an ANN operates in a manner
similar to a neural network structure in which multiple neural cells connected to each other
share signals and there is no direct connection between the input layer and the output
layer. An ANN is divided into an input layer, which receives data as inputs, hidden layers
that represent a complex relationship between the input and output, and the output layer,
which produces the final result (Figure 10) [47,48,51].
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The data used to train the ANN were the material type, the number of roller passes,
and the moduli measured via PLT and LWD. Two different ANN models, ANN1 and
ANN2, were set and applied. The “ANN1” model entailed the material type and the
number of roller passes as features (inputs), and the moduli evaluated via PLT and LWD as
labels (outputs), as presented in Figure 11. Therefore, in ANN1, it is attempted to predict
the moduli based only on the material size and compaction level. The “ANN2” model, on
the other hand, incorporates the modulus from LWD as a feature, not a label—the labels
are the moduli from PLT (Figure 12). PLT generally costs much more time and effort to
conduct than LWD. If one can successfully evaluate the results of PLT based on those of
LWD, it would simplify the process of quality assessment while still keeping the benefits
of PLT. An ANN structure with one hidden layer is selected, and 20 nodes were used. To
determine the number of nodes, several different values of nodes were tried, and the use of
20 nodes resulted in efficient performance.
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5.2. Linear Regression Model

Simple LR models were implemented to account for the relationships between the features
and labels which have been postulated in ANN1 and ANN2 models (Figures 11 and 12). ANN
is the black box model, but with LR, explicit equations can be developed for inputs and outputs
enabling an easier application to practice. Two LR models were postulated, LR1 and LR2,
which employ the same features and labels for ANN1 and ANN2, respectively. LR1 entails the
material type (1, 2, 3, 4, 5) and the number of roller passes (2, 4, 8, 12) as inputs, and the moduli
from PLT and LWD as outputs (see Figure 13), while LR2 takes the modulus from LWD as an
input, not an output (see Figure 14). As such, the completed LR1 model equates as follows:

ELWD = −3.55 Nmat + 0.7 Nrp + 37.01 (1)

Ev1 = −0.9 Nmat + 0.93 Nrp + 11.53 (2)

Ev2 = −2.64 Nmat + 1.7 Nrp + 115.52 (3)

where ELWD is the modulus from LWD, Ev1 and Ev2 are the moduli from PLT for loading
and reloading, Nmat is the material type, and Nrp is the number of roller passes. On the
other hand, the LR2 model formulates as follows:

Ev1 = −0.33 Nmat + 0.75 Nrp − 0.18ELWD + 5.46 (4)

Ev2 = −3.5 Nmat + 1.77 Nrp − 0.29ELWD + 127.29 (5)
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Root mean square error (RMSE) values of the equations presented above are presented
in Tables 4 and 5.

Table 4. Root mean square error (RMSE) results for ANN1 and LR1.

Modulus
LR1 ANN1

Training Testing Training Testing

ELWD 2.76 2.53 2.84 3.40
Ev1 2.00 1.95 1.45 1.42
Ev2 18.16 17.71 10.84 17.39

Table 5. RMSE results for ANN2 and LR2.

Modulus
LR2 ANN2

Training Testing Training Testing

Ev1 1.96 1.77 1.49 1.86
Ev2 17.55 21.23 9.33 23.61
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5.3. Evaluation Results and Comparison

The experimental data had a total of 80 sets, as presented in Table 3, and 70%, 15%,
and 15% of data were randomly selected and used for training, validation, and testing
(prediction) respectively, with an option implemented in MATLAB. The results of the
evaluation of the models ANN1 and LR1 are presented in Figure 13 together with the
baseline values (experimental results). The horizontal axis in the figure represents the
dataset not used for training of the ANN model or fitting of the LR model (saved for
evaluation of model performance). It is noted that the prediction based on the ANN model
does not necessarily provide a better match with the baseline. For some datasets, LR
prediction is better; for some others, ANN gives better prediction. In Figure 14, the results
of ANN2 and LR2 models are shown. For amodels, ANN2 and LR2, for some datasets,
the ANN2 model predictions are closer to the baselines, but for others, LR2 predicts closer
values to the baselines.

RMSE (root mean square error) of the ANN and LR models were estimated to investi-
gate overall performance of prediction of proposed models. RMSE is a statistical measure
of the difference between the predicted and baseline, and can be equated as follows:

RMSE =

√
1
n
(Mi − Pi)

2 (6)

where Mi is the predicted, and Pi is the baseline.
Table 4 presents the RMSE values for training and testing of ANN1 and LR1 (see

Figure 13). In the case of the model LR1, for all three moduli, ELWD, Ev1, and E, the
RMSE values for training (fitting) and testing (prediction) are quite close; during fitting
and evaluation, the LR1 model produces similar level of errors. In the model ANN1, on
the other hand, for ELWD and Ev2, the RMSE for testing is larger than that for training.
When the testing RMSEs of two different models, ANN1 and LR1, are compared, RMSE of
ANN1 is higher for ELWD, but RMSE of LR1 is higher for Ev1. One model is not necessarily
superior to the other for prediction. The results of the model evaluations of ANN2 and
LR2 (see Figure 14) are presented in Table 5. The ANN2 model works better for training (or
fitting), but the LR2 model is slightly better at testing (prediction).

PLT costs more much more time and efforts to conduct than LWD and replacing PLT
by LWD would make the quality assessment procedure simpler. The intention of models
ANN2 and LR2 is to predict the results of PLT based on those of LWD. While the models
ANN1 and LR1 employ only the material type and the number of roller passes as inputs,
the models ANN2 and LR2 additionally have ELWD as an input. However, by comparing
Tables 4 and 5, it can be seen that the models ANN1 and LR1, which have fewer inputs,
therefore, are simpler, and have better perdition overall, especially for Ev2. It appears that
there is no significant correlation between the moduli from PLT and LWD, as these two
methods evaluate the moduli on entirely different bases.

Continuous Compaction Control (CCC) or Intelligent Compaction (IC) refers to an
innovative compaction technique which can perform field compaction simultaneously eval-
uating the stiffness of soil, and therefore compaction quality [52]. There was no vibration
sensor implemented to the compaction roller in this study, thus CCC measurements are not
available for comparison with LWD and PLT measurements. However, when CCC or IC is
applied to the open-graded aggregates, the stiffness results of LWD and PLT and regression
equations presented in this study may be taken as references, making CCC operations
more reliable.

6. Summary and Conclusions

In this study, the moduli of open-graded aggregates under various compaction ener-
gies were investigated based on PLT (Plate Load Test) and LWD (Light-Weight Deflectome-
ter). Artificial Neural Network (ANN) and Linear Regression (LR) models were employed
for estimation of the moduli of the aggregates based on the material type and level of
compaction. The conclusions obtained are as follows:
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• The modulus from the first loading curve of PLT was more sensitive to the number of
roller passes than the moduli from the reloading curve of PLT and from LWD. It is
due to the significant compressional and shear deformation that happens during the
first loading of PLT, which does not appear during the reloading of PLT and dynamic
loading of LWD.

• Overall, the moduli from PLT and LWD steeply increase until the number of roller
passes reaches 4, and they gradually increase until the number of roller passes becomes
8. The number of roller passes 4, which is typically used in practice, may be an efficient
number, but one may consider applying the number of roller passes 8 to achieve better
stiffness for open-graded aggregates.

• The models that do have one less input (the modulus from LWD) actually performed
a little better than the models with more inputs. When there is no good correlation
between input and output (e.g., the moduli from PLT and LWD), adding more input
variables does not necessarily help the prediction of the model.

• A set of simple linear equations were proposed to evaluate the moduli of open-graded
aggregates from PLT and LWD based on the material type and the number of roller
passes. The predictions based on ANN models did not necessarily provide a better
match with the baseline compared to LR models.

• The stiffness results of LWD and PLT and regression equations presented in this study
may be taken as references when CCC operations are made in open-graded aggregates.
The characteristics of open-graded aggregates of different sizes, shapes, and minerals
should be further studied for reliable application of open-graded aggregates to the
base of permeable pavements.
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