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Abstract: The present paper provides a semianalytic solution for finite plane strain bending under
tension of an incompressible elastic/plastic sheet using a material model that combines isotropic and
kinematic hardening. A numerical treatment is only necessary to solve transcendental equations and
evaluate ordinary integrals. An arbitrary function of the equivalent plastic strain controls isotropic
hardening, and Prager’s law describes kinematic hardening. In general, the sheet consists of one
elastic and two plastic regions. The solution is valid if the size of each plastic region increases.
Parameters involved in the constitutive equations determine which of the plastic regions reaches its
maximum size. The thickness of the elastic region is quite narrow when the present solution breaks
down. Elastic unloading is also considered. A numerical example illustrates the general solution
assuming that the tensile force is given, including pure bending as a particular case. This numerical
solution demonstrates a significant effect of the parameter involved in Prager’s law on the bending
moment and the distribution of stresses at loading, but a small effect on the distribution of residual
stresses after unloading. This parameter also affects the range of validity of the solution that predicts
purely elastic unloading.

Keywords: bending under tension; large strain; isotropic hardening; kinematic hardening; semiana-
lytic solution

1. Introduction

Finite plane strain bending with and without tension is one of the classical problems
of plasticity. All sheet-metal processes incorporate some bending, which demonstrates the
practical importance of this problem. A brief overview of such processes was presented
in [1]. Moreover, the process of bending is often used as a test for determining material
properties, which requires a theoretical description of the process. In particular, cyclic
bending tests were employed in [2,3]. A four-point bending test was carried out in [4] for
investigating the large-strain elastic constitutive behavior of thin unidirectional composites.
Anisotropic hardening of metal sheets was studied in [5]. An in-plane bending test was
used in [6] for determining the uniaxial large strain work-hardening behavior of high-
strength steel. A pure bending test was employed in [7] to study of the strength differential
effect of DP98 steel sheets.

The first rigorous rigid plastic solution was found in [8] for the model of isotropic
perfectly plastic material. The work in [9] extended this solution for bending with no
tension to rigid plastic, work-hardening material. However, this solution assumes an
artificial strain distribution between the current neutral line and the original center fiber.
The study in [10] further extended the solution for pure plane strain bending given in [8]
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to rigid plastic-laminated sheet metals. Anisotropic material properties were taken into
account in [11]. Deformation theories of plasticity were employed to analyze plane strain
bending at large strains in [12,13]. The work in [14] dealt with finite plastic bending of
a compressible elastoplastic strip with combined isotropic and kinematic hardening at
a given stretch normal to the bending plate. The flow theory of plasticity was adopted.
Since the elastic portion of the strain tensor was not neglected in [14], the solution was
much more complicated than those in [8–11]. It was shown in [15] that the assumption
of incompressibility retained the simplicity of the rigid plastic solutions above for the
corresponding elastic/plastic solutions. In particular, the Kirchhoff stress, which is involved
in the equation that connects the elastic stretching and an objective stress rate, is equal to
the Cauchy stress, and all objective stress rates reduce to the convected derivative. The
authors of [15] adopted an inverse method that assumed transformation equations that
connect Eulerian and Lagrangian coordinates, and showed that these equations described
the geometry of plane strain bending at large strains. These equations can be used in
conjunction with many constitutive equations [16,17]. The basic geometric assumptions
used in [15] were similar to or even less restrictive than those accepted in papers published
in journals devoted to metal forming [18,19].

The present paper extends the solution given in [17] to finite plane strain bending
under tension of isotropic and kinematic hardening sheets. Prager’s law [20] is used to
describe kinematic hardening. Isotropic hardening is controlled by an arbitrary function of
the equivalent plastic strain. Elastic unloading is also included in the solution.

2. Constitutive Equations

A wide elastic/plastic sheet is subject to bending under tension by the bending
moment M and the tensile force F under plane strain conditions. The initial cross-section
of the sheet is rectangular (A1B1C1D1 in Figure 1a). The initial thickness and width of the
sheet are H and 2L, respectively. The Eulerian Cartesian coordinate system (x, y) is chosen
such that its x-axis coincides with the axis of symmetry of the cross-section throughout
the process of deformation. The origin of the coordinate system is situated at point O,
which is the intersection of the axis of symmetry and surface AB at any deformation stage
(Figure 1b). The surface AB coincides with the plane A1B1 at the initial instant.
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The commonly used Eulerian rate-type theory of elastoplasticity is adopted. This
theory is presented, for example, in [21]. The Cauchy stress and Hencky strain are adopted
throughout the paper. The material is assumed to be incompressible. Therefore, Poisson’s
ratio is 1/2. Let τ1 and τ2 be the principal deviatoric stresses in the planes of flow. It will
be seen later that all objective rates reduce to the convected derivative. Then, the elastic
portions of the principal strain rates, ξe

1 and ξe
2, are given by:

ξe
1 =

.
τ1

2G
and ξe

2 =

.
τ2

2G
(1)

where the superimposed dot denotes the convected derivative and G is the shear modulus
of elasticity. The plane strain criterion is assumed to be:

|(τ1 − α1)− (τ2 − α2)| =
2σ0√

3
Φ
(
ε

p
eq

)
(2)

where α1 and α2 are the principal back stresses, εp
eq is the equivalent plastic strain, σ0 is the

yield stress in tension at εp
eq = 0, Φ

(
ε

p
eq

)
is an arbitrary function of its argument satisfying

the conditions Φ(0) = 1 and dΦ
(
ε

p
eq

)
/dεp

eq ≥ 0 for all εp
eq. The following equation defines

the equivalent strain:
.
ε

p
eq =

√
2
3

√(
ξ

p
1

)2
+
(
ξ

p
2

)2
(3)

where ξp
1 and ξp

2 are the plastic portions of the principal strain rates. The overdot in (3)
denotes the convected derivative. In what follows, Prager’s law for the back stresses is
accepted [20]. Then:

.
α1 = Kξp

1 and
.
α2 = Kξp

2 (4)

where K is a constitutive parameter. The plastic flow rule associated with the yield crite-
rion (2) leads to:

ξ
p
1 + ξ

p
2 = 0 (5)

The total strain rate tensor is the sum of the elastic and plastic strain rate tensors. Then:

ξ1 = ξe
1 + ξ

p
1 and ξ2 = ξe

2 + ξ
p
2 (6)

Equations (1), (5) and (6) combine to give the equation of incompressibility:

ξ1 + ξ2 = 0 (7)

3. Strain Analysis

For a class of constitutive equations, strain analysis can be carried out independently
of the stress equations. The compatibility of the strain distribution found with the stress
equations should be verified a posteriori. This approach for pure plane strain bending has
been proposed in [15] and extended to plane strain bending under tension in [17]. These
papers have not dealt with kinematic hardening. However, one can try to combine the
strain analysis completed there and kinematic hardening laws. For the reason of readability,
the main results of [15,17] are presented in this section. These results are also necessary for
finding the stress solution in the next section.

In addition to the Cartesian coordinate system (x, y), one can introduce the La-
grangian coordinate system (ζ, η) such that:

x = Hζ and y = Hη (8)
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at the initial instant. Then, it is seen from Figure 1 that ζ = 0 on AB, ζ = −1 on CD,
η = −L/H on AD, and η = L/H on CB throughout the process of deformation. The
mapping between the (x, y) and (ζ, η) coordinate systems proposed in [15] is:

x
H

=

√
ζ

a
+

s
a2 cos(2aη)−

√
s

a
,

y
H

=

√
ζ

a
+

s
a2 sin(2aη) (9)

where a is a time-like variable such that a = 0 at the initial instant and s is a function of a.
This function should be found from the stress solution. The condition (8) is satisfied if:

s =
1
4

(10)

at a = 0. It is possible to verify by inspection that the mapping given by (9) and (10) satisfy
Equation (7). Moreover, AB and CD are circular arcs, CB and AD are straight, and the
coordinate curves of the (ζ, η)− coordinate system are principal strain rate and principal
strain trajectories. Then, as noted in the previous section, all objective rates reduce to
the convected derivative. The normal strains referred to (ζ, η)− coordinate system are
determined from (9) as:

εζ = −εη = −1
2

ln[4(ζa + s)] (11)

These strains are the principal strains. The equations in (4), (5) and (6) can be immedi-
ately integrated to get:

αζ = Kεp
ζ and αη = Kεp

η (12)

ε
p
ζ = −εp

η (13)

and:
εζ = εe

ζ + ε
p
ζ and εη = εe

η + ε
p
η (14)

Equations (3) and (5) combine to give
.
ε

p
eq = 2

∣∣∣ξp
ζ

∣∣∣/√3 = 2
∣∣∣ξp
η

∣∣∣/√3. As before, one
can integrate these equations to get:

ε
p
eq =

2εp
ζ√
3

if ξp
ζ ≥ 0

ε
p
eq =

2εp
η√
3

if ξp
η ≥ 0

(15)

The inequalities should be satisfied throughout the process of deformation. Using (9), one
can readily find that:

rAB
H

=

√
s

a
,

rCD
H

=

√
s− a
a

, θ0 =
2aL
H

, and
h
H

=

√
s−
√

s− a
a

(16)

where rAB is the radius of arc AB, rCD is the radius of arc CD, θ0 is the orientation of line
CB relative to the x-axis, and h is the current thickness of the sheet (Figure 1).

The methodology of combining the strain analysis above and constitutive equations is
provided in Appendix A.

4. Stress Analysis

The constitutive equations formulated in Section 2 result in the coaxiality of stress and
strain rate tensors. Therefore, the coordinate curves of the Lagrangian coordinate system
coincide with principal stress trajectories. In particular, the surfaces AB, CD, CB and AD
are free of shear stresses. Moreover, the normal stresses referred to the (ζ, η)− coordinate
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system, σζ and ση, are the principal stresses. Using (12) and (13), one can rewrite the yield
criterion in Equation (2) as:∣∣∣σζ − ση − 2Kεp

ζ

∣∣∣ = ∣∣∣σζ − ση + 2Kεp
η

∣∣∣ = 2σ0√
3

Φ
(
ε

p
eq

)
(17)

It is assumed that the principal stresses are independent of η. Then, the only stress
equilibrium equation that is not identically satisfied in the Lagrangian coordinates reads:

∂σζ
∂ζ

+
a(σζ − ση)
2(ζa + s)

= 0 (18)

Equilibrium demands that some pressure P applies over the surface CD if F 6= 0
(Figure 1b). It is assumed that this pressure is uniformly distributed. Then, F = rCDP.
Using (16), one determines:

p =
f a√
s− a

(19)

where p = P/σ0 and f = F/(σ0H).
The stress boundary conditions are:

σζ = 0 (20)

for ζ = 0 and σζ = −P for ζ = −1. Using (19), one transforms the latter to:

σζ
σ0

= − f a√
s− a

(21)

for ζ = −1.
The dimensionless bending moment, m, is determined as [17]:

m =
2
√

3M
σ0H2 =

√
3

a

0∫
−1

(
ση

σ0
− f

H
h

)
dζ (22)

where H/h should be eliminated by means of (16).

4.1. Purely Elastic Solution (Stage 1 of the Process)

The purely elastic solution is independent of the yield criterion. Therefore, the solution
given in [17] is valid. In particular, the general solution in any elastic region is:

σζ
σ0

=
1

2α
ln2[4(ζa + s)] + D0,

ση

σ0
=

1
2α

ln2[4(ζa + s)] +
2
α

ln[4(ζa + s)] + D0 (23)

where α = σ0/G and D0 is constant. In deriving this result, it has been taken into account
that τ1 = τζ, τ2 = τη, τζ = σζ − σ, τη = ση − σ, and σ = (σζ + ση)/2. In particular,
Equation (1) after integrating becomes:

εe
ζ =

(σζ − ση)
4G

and εe
η =

(ση − σζ)
4G

(24)

The purely elastic solution should satisfy the boundary conditions (20) and (21). As a
result, it follows from (23) that:

D0 = − 1
2α

ln2(4s) and
2α f a√

s− a
= ln2(4s)− ln2[4(s− a)] (25)

At given values of a and f, the solution of the second equation in (25) supplies s as a
function of a. Since εp

ζ = ε
p
η = ε

p
eq = 0 during this stage of the process, Equations (17), (23)
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and (25) show that plastic yielding initiates at ζ = 0. The corresponding values of a and s are
denoted as ae and se, respectively. One can find from (17) and (23) that 4se = exp

(
α/
√

3
)

.
Replacing s with se in the second equation in (25) and solving the resulting equation for a
provides ae. In what follows, it is assumed that a ≥ ae.

4.2. Elastic/Plastic Solution with One Plastic Region (Stage 2 of the Process)

There are one elastic region, −1 ≤ ζ ≤ ζ1, and one plastic region, ζ1 ≤ ζ ≤ 0, during
this stage of the process. Thus ζ1 is the elastic/plastic boundary. It is evident that ζ1 is a
function of a and ζ1 = 0 at a = ae. The solution (23) is valid in the elastic region, but (25) is
not. The boundary condition (21) and the solution (23) combine to give:

D0 = − f a√
s− a

− 1
2α

ln2[4(s− a)] (26)

It follows from (23) and (26) that:

σζ
σ0

= p2
σ0

= 1
2α ln2[4(ζ1a + s)]− f a√

s−a −
1

2α ln2[4(s− a)],
ση−σζ
σ0

= 2
α ln[4(ζ1a + s)]

(27)

at ζ = ζ1.
The distribution of σζ and ση in the plastic region is found from (17) and (18). In this

region, ση > σζ and ξp
η > 0. Therefore, Equation (15) becomes:

ε
p
eq =

2εp
η√
3

(28)

Moreover, using (28), one transforms Equation (17) to:

ση − σζ −
√

3Kεp
eq =

2σ0√
3

Φ
(
ε

p
eq

)
(29)

Equations (18) and (29) combine to give:

∂σζ
∂ζ

=

√
3a

2(ζa + s)

[
βε

p
eq +

2
3

Φ
(
ε

p
eq

)]
(30)

where β = K/σ0. The elastic strains are determined from (11), (14) and (28) as:

εe
ζ = −1

2
ln[4(ζa + s)] +

√
3

2
ε

p
eq and εe

η =
1
2

ln[4(ζa + s)]−
√

3
2
ε

p
eq (31)

Equations (24), (29) and (31) combine to give:

ln[4(ζa + s)] =
√

3
(

1 +
αβ

2

)
ε

p
eq +

α√
3

Φ
(
ε

p
eq

)
(32)

It follows from this equation that

∂ε
p
eq

∂ζ
= a(ζa + s)−1

[√
3
(

1 +
αβ

2

)
+
α√

3
Φ′
(
ε

p
eq

)]−1
(33)

where Φ′
(
ε

p
eq

)
= dΦ/dεp

eq. One replaces differentiation with respect to ζwith differentia-

tion with respect to εp
eq in (30) using (33) to transform (30) to

∂σζ

∂ε
p
eq

=

√
3

2

[
βε

p
eq +

2
3

Φ
(
ε

p
eq

)][√
3
(

1 +
αβ

2

)
+
α√

3
Φ′
(
ε

p
eq

)]
(34)
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Let ε1 be the value of εp
eq at ζ = 0. Then, the boundary condition (20) becomes:

σζ = 0 (35)

for εp
eq = ε1. Both σζ and ση should be continuous across the elastic/plastic boundary.

Moreover, εp
eq = 0 at this boundary. Therefore, the solution of Equation (34) satisfying the

condition that σζ is continuous is

σζ
σ0

=
3β
4

(
1 +

αβ

2

)(
ε

p
eq

)2
+ Ψ

(
ε

p
eq

)
−Ψ(0) +

α

6

[
Φ2
(
ε

p
eq

)
− 1
]
+
αβ

2
ε

p
eqΦ
(
ε

p
eq

)
+

p2

σ0
(36)

where Ψ
(
ε

p
eq

)
is the antiderivative of Φ

(
ε

p
eq

)
and p2 should be eliminated using (27). The

stress ση is determined from (29) and (36) as:

ση
σ0

= 3β
4

(
1 + αβ

2

)(
ε

p
eq

)2
+ Ψ

(
ε

p
eq

)
−Ψ(0) + α

6

[
Φ2
(
ε

p
eq

)
− 1
]
+

αβ
2 ε

p
eqΦ
(
ε

p
eq

)
+
√

3βεp
eq +

2√
3

Φ
(
ε

p
eq

)
+ p2
σ0

(37)

The continuity of ση across the elastic/plastic boundary is equivalent to the continuity
of ση − σζ. The latter combined with (27) and (29) at εp

eq = 0 leads to

ζ1 =
1
a

[
1
4

exp
(
α√

3

)
− s
]

(38)

Using the boundary condition (35), one finds from (36) that

3β
4

(
1 +

αβ

2

)
ε2

1 + Ψ(ε1)−Ψ(0) +
α

6

[
Φ2(ε1)− 1

]
+
αβ

2
ε1Φ(ε1) +

p2

σ0
= 0 (39)

It follows from (32) that

ln(4s) =
√

3
(

1 +
αβ

2

)
ε1 +

α√
3

Φ(ε1) (40)

Using this equation, one eliminates s in the expression for p2 given in (27). As a result,
Equation (39) connects a and ε1. This equation should be solved numerically to find the
dependence of ε1 on a. Then, s, ζ1, and D0 as functions of a are readily determined from
(40), (38) and (26). The equations in (23) supply the distribution of the stresses in the
elastic region. Equations (32), (36) and (37) provide the distribution of the stresses in the
plastic region in parametric form with εp

eq being the parameter. The bending moment is
determined from (22) by numerical integration.

This stage of the process ends when the yield criterion starts to satisfy at ζ = −1. It
follows from (23) and (17) at εp

ζ = ε
p
η = 0 that:

|ln[4(s− a)]| = α√
3

(41)

Since s as a function of a has already been found, this equation allows one to determine
the value of a corresponding to plastic yielding initiation at ζ = −1. This value is denoted
as a1.

4.3. Elastic/plastic Solution with Two Plastic Regions (Stage 3 of the Process)

There are one elastic region, ζ2 ≤ ζ ≤ ζ1, and two plastic regions, ζ1 ≤ ζ ≤ 0 and
−1 ≤ ζ ≤ ζ2, at a > a1. Thus ζ1 and ζ2 are the elastic/plastic boundaries. Both are
functions of a and ζ2 = −1 at a = a1. The solution (23) is valid in the elastic region, but (25)
and (26) are not. Moreover, the general solution in the plastic region ζ1 ≤ ζ ≤ 0 provided
in Section 4.2 is also valid.
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Consider the plastic region −1 ≤ ζ ≤ ζ2. In this region, ση < σζ and ξp
ζ > 0.

Therefore, Equation (15) becomes:

ε
p
eq =

2εp
ζ√
3

(42)

Moreover, using (42), one transforms Equation (17) to:

σζ − ση −
√

3Kεp
eq =

2σ0√
3

Φ
(
ε

p
eq

)
(43)

Equations (18) and (43) combine to give:

∂σζ
∂ζ

= −
√

3a
2(ζa + s)

[
βε

p
eq +

2
3

Φ
(
ε

p
eq

)]
(44)

The elastic strains are determined from (11), (14) and (42) as:

εe
ζ = −1

2
ln[4(ζa + s)]−

√
3

2
ε

p
eq and εe

η =
1
2

ln[4(ζa + s)] +
√

3
2
ε

p
eq (45)

Equations (24), (43) and (45) combine to give:

ln[4(ζa + s)] = −
√

3
(

1 +
αβ

2

)
ε

p
eq −

α√
3

Φ
(
ε

p
eq

)
(46)

It follows from this equation that:

∂ε
p
eq

∂ζ
= −a(ζa + s)−1

[√
3
(

1 +
αβ

2

)
+
α√

3
Φ′
(
ε

p
eq

)]−1
(47)

One replaces differentiation with respect to ζwith differentiation with respect to εp
eq

in (44) using (47) to transform (44) to:

∂σζ

∂ε
p
eq

=

√
3

2

[
βε

p
eq +

2
3

Φ
(
ε

p
eq

)][√
3
(

1 +
αβ

2

)
+
α√

3
Φ′
(
ε

p
eq

)]
(48)

Let ε2 be the value of εp
eq at ζ = −1. Then, the boundary condition (21) becomes:

σζ
σ0

= − f a√
s− a

(49)

for εp
eq = ε2. Both σζ and ση should be continuous across the elastic/plastic boundary

ζ = ζ2. Moreover, εp
eq = 0 at this boundary. Therefore, the solution of Equation (48)

satisfying the condition that σζ is continuous is:

σζ
σ0

=
3β
4

(
1 +

αβ

2

)(
ε

p
eq

)2
+ Ψ

(
ε

p
eq

)
−Ψ(0) +

α

6

[
Φ2
(
ε

p
eq

)
− 1
]
+
αβ

2
ε

p
eqΦ
(
ε

p
eq

)
+

p1

σ0
(50)

where p1 is determined from (23) as:

p1

σ0
=

1
2α

ln2[4(ζ2a + s)] + D0 (51)

The stress ση is found from (43) and (50) as:

ση
σ0

= 3β
4

(
1 + αβ

2

)(
ε

p
eq

)2
+ Ψ

(
ε

p
eq

)
−Ψ(0) + α

6

[
Φ2
(
ε

p
eq

)
− 1
]

+αβ2 ε
p
eqΦ
(
ε

p
eq

)
−
√

3βεp
eq − 2√

3
Φ
(
ε

p
eq

)
+ p1
σ0

(52)
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The continuity of ση across the elastic/plastic boundary is equivalent to the continuity
of ση − σζ. The latter combined with (23) and (43) at εp

eq = 0 leads to:

ζ2 =
1
a

[
1
4

exp
(
− α√

3

)
− s
]

(53)

Using the boundary condition (49), one finds from (50) that:

3β
4

(
1 +

αβ

2

)
(ε2)

2 + Ψ(ε2)−Ψ(0) +
α

6

[
Φ2(ε2)− 1

]
+
αβ

2
ε2Φ(ε2) +

p1

σ0
= − f a√

s− a
(54)

It follows from (46) that:

ln[4(s− a)] = −
√

3
(

1 +
αβ

2

)
ε2 −

α√
3

Φ(ε2) (55)

The first equation in (23) supplies the value of p2 involved in (36) and (37) in the form:

p2

σ0
=
α

6
+ D0 (56)

Here Equation (38) has been taken into account. Equations (51) and (53) combine
to give:

p1

σ0
=
α

6
+ D0 (57)

It is seen from (56) and (57) that p1 = p2 during this stage of the process. Therefore,
one can replace p2 with p1 in (36), (37) and (39). Then, one eliminates p1 between (39) and
(54) to get:

3β
4

(
1 + αβ

2

)
ε2

1 + Ψ(ε1)−Ψ(0) + α
6
[
Φ2(ε1)− 1

]
+ αβ

2 ε1Φ(ε1) =

3β
4

(
1 + αβ

2

)
(ε2)

2 + Ψ(ε2)−Ψ(0) + α
6
[
Φ2(ε2)− 1

]
+ αβ

2 ε2Φ(ε2) +
f a√
s−a

(58)

Equations (40) and (55) are solved for a and s as:

s = 1
4 exp

[√
3
(

1 + αβ
2

)
ε1 +

α√
3

Φ(ε1)
]
,

a = 1
4 exp

[√
3
(

1 + αβ
2

)
ε1 +

α√
3

Φ(ε1)
]
− 1

4 exp
[
−
√

3
(

1 + αβ
2

)
ε2 − α√

3
Φ(ε2)

] (59)

Using (59), one eliminates a and s in (58). The resulting equation connects ε2 and ε1.
This equation should be solved numerically to find the dependence of ε1 on ε2. Then, a, s,
ζ1, ζ2, p1, and D0 as functions of ε2 are readily determined from (59), (38), (53), (54), and
(57), respectively. It is evident that it is also possible to express ε1, ε2, s, ζ1, ζ2, p1, and D0
as functions of a using this solution. The equations in (23) supply the distribution of the
stresses in the elastic region. Equations (32), (36) and (37) provide the distribution of the
stresses in the plastic region ζ1 ≤ ζ ≤ 0 in parametric form with εp

eq being the parameter.
Equations (46), (50) and (52) provide the distribution of the stresses in the plastic region
−1 ≤ ζ ≤ ζ2 in parametric form with εp

eq being the parameter. The bending moment is
determined from (22) by numerical integration.

The solution above is valid if the size of each plastic region increases as the deformation
proceeds. The condition is equivalent to:

dζ1

da
≤ 0 and

dζ2

da
≥ 0 (60)

These inequalities should be verified numerically. It is worthy to note that the process’
analysis beyond the instant when one of the conditions in (60) is violated is possible but
requires additional constitutive equations that describe reversed plastic yielding.
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5. Residual Stresses

Consider elastic unloading, assuming that the strains and the displacements are small
at this stage. Therefore, variations of the shape can be neglected. Denote rCD = R0 and
rAB = R1 at the end of loading when a = al , s = sl , p = pl , h = hl and m = ml . All these
values are calculated using the solution given in the previous section. The distribution of
σζ and ση corresponding to a = al is denoted as σ(l)ζ and σ(l)η . It is convenient to introduce
a polar coordinate system (r, θ) by the following transformation equations:

r
H

=

√
ζal + sl

al
, θ = 2alη (61)

It is evident from these equations that the coordinate curves of the (r, θ)—coordinate
system coincide with the coordinate curves of the (ζ, η)—coordinate system. Therefore,
σ
(l)
ζ = σr and σ(l)η = σθ. Using (61), one can represent the solution given in the previous

section in the polar coordinate system with no difficulty.
The general solution for the increment of the principal stresses from the configuration

corresponding to a = al is independent of the solution at loading. Therefore, one may
adopt the solution provided in [17]. According to this solution:

σ∗r
2G

= V0 ln
(

r
R0

)
−U0

(
R0

r

)2
+ C1,

σ∗θ
2G

= V0

[
1 + ln

(
r

R0

)]
+ U0

(
R0

r

)2
+ C1 (62)

where

U0 = C1 − αpl
2 , V0 =

2C1(1−ρ2
0)+αρ

2
0 pl

2 lnρ0
,

C1 = −B/A,

B = α f lnρ0
hl
− αplρ

4
0

2σ0
+
αρ2

0
6

[
3pl + 2 ln ρ0

(√
3ml

H2

R2
0
− 3 f

hl
− 3pl + 6pl ln ρ0

)]
,

A =
(
ρ2

0 − 1
)2 − 4ρ2

0 ln2 ρ0

(63)

where ρ0 = R0/R1. The radial distribution of the residual stresses can be found from the
equations σres

r = σres
ζ = σr + σ∗r and σres

θ = σθ + σ
∗
θ.

The solution in this section is valid if no reverse yielding occurs. Using Equation (17),
the corresponding condition can be written in the form:

Λ =

∣∣∣∣σres
ζ

σ0
−
σres
η

σ0
− 2βεp

ζ

∣∣∣∣− 2√
3

Φ
(
ε

p
eq

)
≤ 0 (64)

In this equation, εp
eq and εp

ζ are understood to be calculated at a = al .

6. Numerical Example

Even though the solution found is semianalytic, its full parametric analysis is not fea-
sible due to the significant number of parameters that affect the solution. Since the solution
for isotropic hardening laws has already been discussed in [17], the numerical example
below focuses on kinematic hardening. The numerical integration and solution of tran-
scendental equations have been performed using the corresponding build-in commands in
Mathematica (version 11.3) [22].

Swift’s law describes isotropic hardening. Then:

Φ
(
ε

p
eq

)
=

(
1 +

ε
p
eq

ε0

)n

, Ψ
(
ε

p
eq

)
=

ε0

(1 + n)

(
1 +

ε
p
eq

ε0

)n+1

, Φ′
(
ε

p
eq

)
=

n
ε0

(
1 +

ε
p
eq

ε0

)n−1

(65)

It is assumed that n = 0.25 and ε0 = 0.222. In all calculations, α = 3× 10−3. The
parameter β varies in the range 0 ≤ β ≤ 10. The material with no kinematic hardening
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is obtained at β = 0. The through-thickness distribution of the principal stresses and the
bending moment are calculated according to the procedure described in Section 4.

The inequalities in (60) control the range of validity of the solution at loading. Figure 2
demonstrates the variation of ζ1 and ζ2 with H/rCD at β = 5 for several values of f.
The convex down lines correspond to ζ1 and the convex up lines to ζ2. Stars denote the
extremum points. It is evident that the derivatives with respect to a and H/rCD have the
same sign and vanish simultaneously. It is seen from Figure 2 that the solution may break
down because (i) dζ1/da = 0 and dζ2/da > 0, or (ii) dζ2/da = 0 and dζ1/da < 0, or (iii)
dζ1/da = 0 and dζ2/da = 0 at a certain value of H/rCD. These conditions are taken into
account in the numerical example below.
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Figure 2. Illustration of the solution nonexistence conditions following from Equation (60) at β = 5
and several values of f .

Since ζ = ζ1 and ζ = ζ2 are the elastic/plastic boundaries, Figure 2 illustrates the
elastic and plastic regions’ thickness in the Lagrangian coordinates. In particular, the
thickness of the plastic region adjacent to the outside surface is |ζ1|, the thickness of the
plastic region adjacent to the inside surface is (1 + ζ2), and the thickness of the elastic region
is (ζ1 − ζ2). It is seen from this figure that the thickness of the elastic region decreases
quickly at the very beginning of the process and, as a result, becomes small after a small
amount of deformation.

Figures 3 and 4 depict the variation of the dimensionless bending moment with
H/rCD at f = 0 (pure bending) and f = 0.2, respectively. Each figure shows several curves
corresponding to different values of β. It is evident that m = 0 and H/rCD = 0 at the
initial instant. Figures 3 and 4 reveal a significant effect of β on the dimensionless bending
moment. In general, the material with no kinematic hardening requires the least moment
for the deformation to proceed.
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Figure 4. Variation of the dimensionless bending moment with H/rCD at f = 0.2 and several values
of β.

Figures 5–8 illustrate the through-thickness distribution of the principal stresses at
H/rCD = 0.06 and several values of β. This value of corresponds rCD to the third stage
of the process. In these figures, X is the dimensionless distance from the surface ζ = −1
defined as:

X =
r− rCD

H
(66)

The distribution of the stress σζ at f = 0 and f = 0.2 is depicted in Figures 5 and 7,
respectively. Figures 6 and 8 show the distribution of the stress ση at the same set of
parameters. It is seen from these figures that the thickness of the elastic region is quite
narrow at this stage of the process. The effect of β on the magnitude of the stress ση
is not significant in some vicinity of the elastic/plastic boundaries and increases as the
distance from these boundaries increases. The effect is most pronounced and significant
at the surfaces ζ = −1 and ζ = 0 and in the elastic region’s central part. The effect of β
on the magnitude of the stress σζ is most significant in the sheet’s central part. It is not
surprising since the magnitude of this stress is prescribed at ζ = −1 and ζ = 0 by the
boundary conditions.
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Figure 8. Through-thickness distribution of the stress ση at H/rCD = 0.06, f = 0.2, and several
values of β.

Figures 9–12 illustrate the through-thickness distribution of the residual stresses
calculated according to the procedure in Section 5. All the parameters corresponding to the
end of loading and involved in this procedure are taken at H/rCD = 0.06. Therefore, the
distributions of σζ and ση shown in Figures 5–8 are σ(l)ζ and σ(l)η .

The variation of the stress σres
ζ with X at f = 0 and f = 0.2 is depicted in Figures 9 and 11,

respectively. Figures 10 and 12 show the through-thickness distribution of the stress σres
η .

The magnitude of the stress σres
ζ is quite small. The magnitude of the stress σres

η sharply
increases as X increases in the region that is purely elastic at the loading stage. This stress
significantly decreases as X increases in the two other regions and vanishes at two points.
One of these points lies in the region that is purely elastic at the loading stage, and the
other in the region ζ1 < ζ < 0. The latter region is plastic at the loading stage.
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The distribution of the residual stresses does not satisfy the inequality (64) if β is
large enough. It is evident that one can represent Λ involved in (64) as a function of X.
This function is depicted in Figure 13 for f = 0 and Figure 14 for f = 0.2. It is seen from
Figure 14 that Λ practically vanishes at one point if β = 6. Therefore, the solution for
the residual stresses is not valid for β > 6. For this reason, the curves for β = 8 and
β = 10 are not shown in Figures 11 and 12. For consistency, such curves are not depicted
in Figures 9 and 10.
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7. Discussion

A semianalytic solution describing the process of finite plane strain bending under
tension of an elastic/plastic sheet has been derived assuming combined isotropic and
kinematic hardening. The material is supposed to be incompressible. The solution has been
found by an inverse method starting from the transformation equations between Eulerian
and Lagrangian coordinates given in Equation (9). In general, the process consists of three
stages. The sheet is purely elastic during the first stage. This stage ends when a plastic
region starts to spread from the surface AB to the surface CD (Figure 1). The second stage
of the process ends when another plastic region starts to spread from the surface CD to the
surface AB (Figure 1). The solution is valid if the inequalities in Equation (60) are satisfied.
Figure 2 shows that these solution nonexistence conditions depend on process parameters.
The process of unloading has also been considered assuming that no reverse plastic region
appears. Equation (64) controls the latter condition.

The solution is semianalytic but includes several parameters and an arbitrary function
Φ
(
ε

p
eq

)
, its derivative and antiderivative. Therefore, the complete parametric analysis of

the solution is not feasible, but it is straightforward to find any quantity of interest for
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any given set of parameters and the function Φ
(
ε

p
eq

)
. In particular, the derivative and

antiderivative of Φ
(
ε

p
eq

)
can be found in terms of elementary functions for all widely used

isotropic hardening laws.
One of the limiting cases of the process considered in the present paper is tension

with no bending. In this case, there is one elastic region at the beginning of the process.
This region is replaced with a plastic region at a certain value of the tensile force. The
distribution of stresses and strains is uniform in this limiting case. If the bending moment is
small, then Stage 3 of the process never occurs. The solutions given in Sections 4.1 and 4.2
are valid. As the deformation proceeds, the elastic/plastic boundary may reach the inside
surface of the sheet, ζ1 = −1. If the deformation further proceeds, the plastic region
occupies the entire sheet.

The numerical example has been provided for the function Φ
(
ε

p
eq

)
shown in

Equation (65). Figures 3–14 demonstrate that the parameter β involved in Prager’s law sig-
nificantly affects the bending moment and the through-thickness distribution of the stresses
at loading but slightly affects the through-thickness distribution of the residual stresses. Of
course, this conclusion is only valid for the parameters used in the numerical solution.

The solution found in conjunction with experimental research can be used for iden-
tifying constitutive models. Various bending tests have already been employed for this
purpose [2–7]. An advantage of the present solution is that it is given in closed form, except
simple numerical techniques for calculating the bending moment and solving transcenden-
tal equations, for arbitrary function Φ

(
ε

p
eq

)
involved in Equation (2). One can vary this

function for improving the agreement between the theory and experiment.
The solution can be used as a benchmark problem for verifying numerical codes,

which a necessary step before using such codes [23,24].

8. Conclusions

The following conclusions were reached from the theoretical analysis of plane strain
bending under tension of a wide sheet:

(1) The constitutive equations comprising combined isotropic and kinematic hardening
laws and the normality rule permit a semianalytic solution. No restriction, other than
the conventional restrictions from the general theory of plasticity, is imposed on the
isotropic hardening law. Prager’s law describes kinematic hardening. Numerical
techniques are only necessary for solving transcendental equations and evaluating
ordinary integrals.

(2) An inverse method is used for finding the solution. Its key point is transformation
equations that connect Eulerian and Lagrangian coordinates. These equations describe
the geometry of the process and are independent of the stress equations.

(3) The distribution of residual stresses is also given, assuming that unloading is purely elastic.
(4) An applied aspect of the solution is that it can be used in conjunction with experi-

mental data for identifying material properties. An advantage of the solution in this
respect is that it is valid for the arbitrary isotropic hardening law.

(5) One can use the solution for verifying numerical codes, which is a necessary step for
their subsequent use.
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Appendix A

This appendix describes the general methodology of using the inverse method pro-
posed in [17] to analyze bending under tension. The solution starts with the assumption
that Equation (9) connects the Eulerian and Lagrangian coordinates. This equation is uni-
versal for all material models that include the equations of incompressibility and coaxiality.
The latter means that the principal directions of the stress and strain rate tensors coincide.
The components of the strain and strain rate tensors are immediate from Equation (9).

The second part of the solution, which depends on the constitutive equations, is
finding the distribution of stresses and decomposing the total strain tensor into elastic
and plastic portions. This part involves a numerical solution of transcendental equations.
Since Equation (9) is a combination of elementary functions, it is straightforward and
advantageous to rewrite all equations in the Lagrangian coordinates.
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