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Abstract: In this work, the fatigue crack growth (FCG) behavior and fatigue damage mechanism of
the 2.25Cr1Mo0.25V steel welded joint used in hydrogenation reactors were investigated. The multi-
pass welding was carried out to manufacture the welded joint using the combined shielded metal arc
welding (SMAW) and submerged automatic arc welding (SAAW) processes. The FCG behavior of
different zones in the welded joint, including the base metal (BM), the heat-affected zone (HAZ) and
the weld metal (WM), were studied by compact tension tests. Moreover, the acoustic emission (AE)
technique was used to monitor AE signals generated from FCG process for further understanding
FCG behavior and fatigue mechanisms. Additionally, the microstructures and fracture surfaces of
different specimens were observed by optical microscopy (OM) and scanning electron microscopy
(SEM). The results revealed that the microstructure of BM is fine granular bainite, while the WM
shows coarser bainite grains. The HAZ exhibits the most significant inhomogeneity with large
dispersion of grain size. FCG results showed that the HAZ exhibits much higher fatigue crack
growth rate (FCGR) at low ∆K values, while the BM shows the most superior fatigue resistance.
The AE technique is successful in monitoring and identifying damage evolutions during the FCG
process. Moreover, an enhanced AE activity is observed in FCG of the WM specimen, which is
attributed to the combined influence of the formation of numerous secondary cracks and coarse-
grained microstructures.

Keywords: fatigue crack growth; welded joint; acoustic emission; 2.25Cr1Mo0.25V steel

1. Introduction

Hydrogenation reactor plays a crucial role in petrochemical hydroreforming, hydrore-
fining and hydrocracking industries. The equipment is generally operated in harsh service
environment, such as high temperature and high pressure conditions. The materials that
possess high mechanical properties and excellent resistance to corrosion and hydrogen
damage are; therefore, needed. However, the traditional high strength low alloy Cr-Mo
steels, for example, 2.25Cr1Mo steel, are not suitable to be applied in the extreme service
conditions due to their relatively low strength and poor performance of resistance to hydro-
gen damage [1]. Therefore, a new vanadium (V)-modified Cr-Mo steel (i.e., 2.25Cr1Mo0.25V
steel) with superior mechanical properties has been developed and is being employed in
the fabrication of hydrogenation reactors [1,2].

In general, hydrogenation reactors suffer severe cyclic loads, such as numerous startup-
shutdown operating cycles during their entire service history. The cyclic stress will in-
evitably cause considerable stress concentration in the defects of the material, for instance,
the inclusions in welded joint, leading to fatigue crack initiation. The further propagation
of fatigue cracks will cause serious failure of equipment once the crack size exceeds the
critical size. In recent years, a large number of studies focused on the microstructures
and mechanical properties [3–5], reheat cracking sensitivity [6,7], creep behavior [8] and
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hydrogen-induced damage [4,9] of 2.25Cr1Mo0.25V steel; however, the study of fatigue
crack growth (FCG) behavior is limited. For instance, Peral et al. [10] investigated the
combined effects of the pre-charged hydrogen and loading frequency on FCG behavior
of 2.25Cr1Mo and 2.25Cr1Mo0.25V steels. The results showed that the presence of in-
ternal hydrogen caused an important increase in the crack propagation rate, and this
effect increased with the decrease of test frequency. Zhao et al. [11] investigated the low
cycle fatigue behavior of 2.25Cr1Mo0.25V steel at 728 K in air by using different strain
amplitudes. The results showed that the steel failed from propagation of transgranular
fatigue cracks. Moreover, the cyclic softening was observed during whole fatigue life, and
such behavior can be accelerated by the increase of strain amplitude. The limited work on
fatigue behavior of 2.25Cr1Mo0.25V steel greatly hinders the solid understanding of the
fatigue fracture mechanism as well as the fatigue life prediction.

On the other hand, welding is commonly employed in the fabrication of hydrogenation
reactors. The welded joint is generally considered as one of the most critical parts in
equipment, and can be commonly divided into three regions (i.e., the base metal (BM); the
heat affected zone (HAZ), which is located just beneath the fusion line; and the weld metal
(WM)). In particular, the HAZ and WM are likely to become the weak parts under stress
due to microstructural inhomogeneity caused by complex thermal history. For example,
it has been reported by Tsay et al. [12] that the fatigue crack growth rate (FCGR) of HAZ
was higher than that of other regions in the 2.25Cr1Mo steel welded joint. Deng et al. [13]
investigated the FCG behavior of the dissimilar welded joint made from advanced 9Cr and
2.25Cr1Mo0.25V steels. The results showed that the 9Cr-HAZ with narrow size was the
weaker part with higher crack growth rate, compared with other parts of the whole welded
joint. Our previous work also demonstrated that the WM showed poorer performance
of fracture toughness and resistance to hydrogen embrittlement than those of BM in the
2.25Cr1Mo0.25V steel welded joint [14,15]. Fully understanding the fatigue behaviors and
damage mechanisms of different zones (BM, HAZ and WM) of welded joints is; thus, of
great importance in the safety and reliability of hydrogenation reactors. However, to the
best of our knowledge, the FCG behaviors and failure mechanisms of different zones in
2.25Cr1Mo0.25V steel welded joint have not been investigated before.

The present work aimed to investigate the FCG behavior and fatigue mechanism of
the 2.25Cr1Mo0.25V steel welded joint. The multi-pass welding was carried out on the steel
plates using the combined shielded metal arc welding (SMAW) and submerged automatic
arc welding (SAAW) processes. Compact tension (CT) specimens with notches in different
regions (i.e., BM, HAZ and WM) were machined from the welded joint. The fatigue tests
were performed on an Instron testing machine and the crack growth rates were measured.
Moreover, the acoustic emission technique (AET) was used to monitor acoustic emission
(AE) signals generated from FCG of different regions. AET is a significant nondestructive
testing method, and has been widely utilized in detecting and evaluating crack growth
in various materials due to its high sensitivity to microstructural change and excellent
capability of online monitoring [16,17]. Previous work has taken advantage of AE to
investigate the effects of microstructures such as grain size, phase condition and inclusions
on mechanical behaviors of materials [18–21]. Therefore, in this study, AE signals during
FCG were measured to investigate crack growth behaviors and corresponding failure
mechanisms of BM, HAZ and WM in the 2.25Cr1Mo0.25V steel welded joint. In addition,
the microstructures and fracture morphology of specimens were investigated by optical
microscopy (OM) and scanning electron microscopy (SEM), respectively, to clarify the
fatigue mechanisms.

2. Materials and Methods

The 2.25Cr1Mo0.25V steel plates, with a thickness of 112, a width of 250 mm and
a length of 800 mm was used for welding in this study. The mechanical properties of
2.25Cr1Mo0.25V steel from tensile test is provided in Table 1. The steel plates were welded
by the multi-pass welding method, which was conducted by Lanzhou LS Heavy Equipment
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Co., Ltd (Lanzhou, China). In particular, the shielded metal arc welding (SMAW) was
first applied for root welding, and the remaining passes were performed by submerged
automatic arc welding (SAAW). During the SAAW process, the current, voltage and travel
speed were maintained at 580 A, 32 V and 316 mm/min, respectively. The choice of these
welding parameters were based on the actual manufacture procedure of hydrogen reactors
made of CrMo steels. More relevant information for welding can be found in our previous
studies [22,23]. After welding, the welded joints were analyzed using X-radiography
(XLBG-350TX-5, Xinli, Dandong, China) for locating any defects. The chemical composition
of BM and WM of the 2.25Cr1Mo0.25V steel welded joint was measured by spark atomic
emission spectrometry (Spark-AES, S600, Boyue Instrument, Nanjing, China) according to
ASTM E415 standard [24], and the result is provided in Table 2. The BM, HAZ and WM
compact tension (CT) specimens, with a width of 62.5 mm and a thickness of 12.7 mm
(see Figure 1a), were machined from the as-welded material according to ASTM E647
standard [25]. The macrographic photo of the CT specimen is shown in Figure 1b. The CT
specimens were machined near the top surface of the welded joint and along the welding
direction. The sharp notches were located in BM, HAZ and WM to facilitate crack initiation
and propagation, respectively, as shown in Figure 1c.
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Table 1. Mechanical properties of 2.25Cr1Mo0.25V steel.

Yield Strength
(MPa)

Ultimate Strength
(MPa)

Percentage of
Elongation (%)

Percentage of Area
Reduction (%)

569 678 29 81
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Table 2. Chemical composition of base metal (BM) and weld metal (WM) (wt.%).

Element C Si Mn P S Cr Mo V Al Ni Cu

BM 0.15 0.10 0.54 0.009 0.01 2.30 0.98 0.30 0.05 - -
WM 0.12 0.22 1.07 0.004 0.004 2.45 1.03 0.42 - 0.03 0.11

The metallographic specimens (10 × 10 × 10 mm), in different zones extracted from
the top surface of the welded joint, were also machined to examine the microstructures
of BM, HAZ and WM by using an optical microscope (ECLIPSE, Melville, LA, USA).
The preparation of metallographic specimens was conducted based on the ASTM E3
standard [26]. Specifically, these specimens were gradually ground with grinding papers
up to 1500 grit and, subsequently, mirror-polished using a 1 µm diamond paste. Then,
the specimens were cleaned with de-ionized water and ethanol, and dried with the aid
of a stream of cold air. To observe the microstructures, the specimens were etched using
a 5% Nital solution, and finally cleaned with ethanol and dried with the help of cold
air. In addition, the measurement of grain size was carried out based on the ASTM E112
standard [27].

Fatigue crack growth (FCG) tests were performed according to ASTM E647 stan-
dard [25] on an Instron servo-hydraulic testing machine (Instron, Norwood, MA, USA) at
room temperature. The sinusoidal cyclic load with a peak load of 20 kN and stress ratio (the
ratio of the minimum peak stress to the maximum peak stress of one loading cycle) of 0.1
was applied to the specimens. The test frequency was maintained at 15 Hz for all specimens.
To accurately measure the crack size, the direct current potential drop (DCPD) method was
used due to its high resolution and excellent stability on crack length increment detection.
In particular, a constant current of 2 A was applied through the specimen and the potential
difference across the crack was measured by using a nano-voltmeter during fatigue test.
The measured crack voltages were then related to the crack lengths. After tests, monotonic
uniaxial tensile processes were further carried out on the tested specimens to complete
fracture. The fracture surfaces were investigated for understanding fatigue mechanisms
using a scanning electron microscope (SEM, SU 3500; Hitachi, Tokyo, Japan).

The AE signals generated during FCG were recorded by using an AE monitoring
system (SAMOS, Physical Acoustic Corporation, PAC, Princeton Jct, NJ, USA) to investigate
the fatigue mechanisms of different zones in 2.25Cr1Mo0.25V steel welded joint. To collect
signals, an AE sensor (R15α) with high sensitivity was mounted on the surface of specimens
with the aid of vacuum grease and insulating tape, as shown in Figure 1. A preamplifier
with a gain of 40 dB was also used to amplify the AE signals. During FCG tests, an
amplitude threshold of 55 dB and a compatible filter of 100-400 kHz were maintained to
eliminate the mechanical and environmental noises. Different characteristic parameters
such as amplitude, count and energy were extracted from AE waveforms. The definitions
of these parameters can be found in [28].

3. Results and Discussion
3.1. Microstructures

Figure 1 shows the typical microstructures of BM, HAZ and WM in the 2.25Cr1Mo0.25V
steel welded joint. It is obvious that the main microstructure of BM is fine granular bai-
nite, while WM exhibits coarse bainite grains, whose grain size are much larger than BM.
Moreover, the microstructure of HAZ exhibits the lath-like bainite morphology with coarse
grains (see Figure 2b). It is noteworthy that the grain size in HAZ is much larger than that
in other regions of the welded joint. During welding, the HAZ, located next to the fusion
line, attains a very high peak temperature thermal cycle, which allows the previously
precipitated carbides to enter into solution, promoting a significant grain growth [29,30].
As a result, after cooling, the HAZ is characterized by a coarse-grained microstructure.
The grain sizes were determined by ImageJ software (National Institutes of Health, NIH,
Bethesda, MD, USA) using at least 10 metallographic figures obtained on different areas of
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each specimen. Figure 2d shows the grain size distribution results. The average grain sizes
of the BM, HAZ and WM were obtained as 7.5, 121 and 53 µm, respectively. Moreover, the
microstructures of HAZ and WM exhibit significant inhomogeneity due to large dispersion
of their grain sizes. Thus, different FCG and AE behaviors are expected for the three regions
in the welded joint.
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3.2. FCG Behavior

The stress ratio of 0.1 and the frequency of 15 Hz were used to test the FCG behaviors
of different zones in the welded joint. The relationship of fatigue crack length with fatigue
cycles is shown in Figure 3a. It is obvious that the fatigue crack propagates more rapidly in
HAZ specimen, whereas BM shows the most superior fatigue resistance with the longest
fatigue life. The fatigue crack growth rates (FCGRs) of different specimens were calculated
by using the seven-point incremental polynomial method according to ASTM standard
E647 [25]. The relationship of FCGR to the stress intensity factor range (∆K) is displayed in
Figure 3b. In particular, the stress intensity factor range indicates the crack driving force,
and the ∆K of CT specimen can be calculated according to the following equation [25]:

∆K =
∆P

B
√

W
(2 + α)

(1− α)3/2

(
0.886 + 4.64α− 13.32α2 + 14.72α3 − 5.6α4

)
(1)

where α = a/W; a is the fatigue crack length, mm; ∆P is the applied loading amplitude, N;
B is the specimen thickness, mm; and W is the specimen width, mm.
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In Figure 3b it is obvious that FCGR almost linearly decreases with ∆K for BM speci-
men, whereas several inflection points can be observed in FCGRs for HAZ specimen. This
is probably due to the non-uniform microstructure with much coarser grains in HAZ, as
shown in Figure 2. At low ∆K, the HAZ shows much higher FCGRs than those of BM
and WM, indicating the weakest fatigue crack growth resistance in the whole welded joint.
Specifically, the FCGR of HAZ in this region is approximately two times higher than that
of BM and WM. This is expected since the coarse-grained materials generally possess low
fatigue strength. Deng et al. [13] reported that, in the dissimilar 9Cr-CrMoV welded joint,
the 9Cr-HAZ and CrMoV-HAZ with narrow size were the weaker parts because of the
lower FCG threshold compared to BM and WM. This is consistent with our results that
HAZ possesses higher FCGR at low ∆K values. With further propagation of crack, the
FCGR becomes comparable with that of BM.

On the other hand, the FCGR of WM reached as much as 1.5 times larger than that
of BM in the intermediate region, which is probably due to the effect of tensile welding
residual stress in WM specimen [31]. Previous work performed by our group measured
the welding residual stress of the 2.25Cr1Mo0.25V welded joint by using the hole-drilling
method, and the results showed that tensile residual stress was mainly distributed in the
fusion zone [22]. Some studies have pointed out that the welding residual stress would
partly retained in fracture mechanics specimens extracted from the welded joints [32,33].
Moreover, it has been reported that the FCGR of the WM can be significantly increased by
the retained tensile residual stress [31], which is consistent with the present results. With
further increase of ∆K, the slope of the FCGR of WM gradually decreases and finally the
FCGR becomes comparable with that of BM.

The FCGR data of different specimens can be fitted using the following Paris–Erdogan
crack growth law [34]:

da
dN

= C(∆K)m (2)

where C and m are material constant, which can be determined experimentally and are
dependent on the test conditions. This formula can also be written as:

log
(

da
dN

)
= m log(∆K) + log C (3)

This equation means that the relationship between FCGR and ∆K is linear in the
double logarithmic axes, as shown in Figure 3b. The Paris–Erdogan law coefficients and
the corresponding correlation coefficient R2 are given in Table 3. The obtained values of
R2 close to 1 show a good fit to the Paris–Erdogan law. It is obvious from Table 3 that the
FCGR data of BM shows the best correlation with ∆K, while the HAZ shows the poorest.
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Table 3. Paris–Erdogan law parameters for different specimens.

Specimen C m R2

BM 6.309−10 3.454 0.986
HAZ 8.433−9 2.772 0.899
WM 2.564−10 3.746 0.950

3.3. Fracture Morphology

To investigate the fatigue mechanisms of different zones in the 2.25Cr1Mo0.25V
steel welded joint, the fracture surfaces of the fatigued CT specimens were analyzed by
using SEM. Typical fatigue fracture surfaces of BM, HAZ and WM at different stress
intensity factor amplitudes ∆K (approximately 28.5, 33 and 55 MPa·m1/2) are displayed in
Figures 4–6. These figures obviously show transgranular fatigue fracture for all specimens.
Fatigue striations, which are essentially a series of parallel and slightly curved stripes
perpendicular to the crack growth direction, were frequently observed in the fracture
surfaces of all specimens, as shown by the white arrows. The formation of fatigue striations
can be explained by the crack-tip blunting mechanism proposed by Laird [35]. When the
stress reaches the maximum compressive stress in a cycle, the crack tip is fully closed and
sharpened. With the increase of the stress to maximum tensile stress, the crack tip reopens
and becomes blunted. The crack tip becomes sharpened again when the stress changes to
compressive stress. Thus, with the fatigue cycle going, the crack constantly propagates
forward, leaving a series of striations on fracture surface. Moreover, the fatigue striation
generally corresponds to the crack growth rate. It can be seen from these figures that the
fatigue striation spacing becomes large and evident for each specimen with the increase of
∆K and FCGR.
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Materials 2021, 14, 1159 8 of 16Materials 2021, 14, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 5. Fatigue fracture surfaces of (a,b) BM, (c,d) HAZ and (e,f) WM specimens at ΔK value of approximately 33 
MPa·m1/2. Typically, the red arrows represent the crack growth direction, the white arrows represent the fatigue striations, 
and the yellow arrows indicate the secondary cracks. Some secondary cracks perpendicular to fatigue striations can be 
found in (d–f). 

Figure 5. Fatigue fracture surfaces of (a,b) BM, (c,d) HAZ and (e,f) WM specimens at ∆K value of approximately
33 MPa·m1/2. Typically, the red arrows represent the crack growth direction, the white arrows represent the fatigue
striations, and the yellow arrows indicate the secondary cracks. Some secondary cracks perpendicular to fatigue striations
can be found in (d–f).



Materials 2021, 14, 1159 9 of 16Materials 2021, 14, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 6. Fatigue fracture surfaces of (a,b) BM, (c,d) HAZ and (e,f) WM specimens at ΔK value of approximately 55 
MPa·m1/2. Typically, the red arrows represent the crack growth direction, the white arrows represent the fatigue striations, 
and the yellow arrows indicate the secondary cracks. Some secondary cracks perpendicular to fatigue striations can be 
found in (c) and (f). 

Besides fatigue striations, numerous secondary cracks can be observed in all speci-
mens, as shown by the yellow arrows in these figures. It is apparent that a large majority 
of the secondary cracks are perpendicular to the crack growth direction (i.e., parallel to 
fatigue striations). This secondary cracking phenomenon has been well explained by 
Gauthier et al. [36] and supported by many experimental observations and results [37]. 
During fatigue loading, tension stresses appear at the bottom of each striation, and they 
might be high enough to promote the transformation of some micro-striations into micro-
cracks, consequently leading to a large amount of secondary cracks parallel to fatigue stri-
ations in the fracture surface [36]. On the other hand, several secondary cracks parallel to 
the crack growth direction (i.e., perpendicular to fatigue striations) are also observed, as 
shown in Figures 5d–f and 6d,e by the yellow arrows. Additionally, fractographic exami-
nations at a higher magnification reveal that inclusions are embedded in some secondary 

Figure 6. Fatigue fracture surfaces of (a,b) BM, (c,d) HAZ and (e,f) WM specimens at ∆K value of approximately
55 MPa·m1/2. Typically, the red arrows represent the crack growth direction, the white arrows represent the fatigue
striations, and the yellow arrows indicate the secondary cracks. Some secondary cracks perpendicular to fatigue striations
can be found in (c,f).

Besides fatigue striations, numerous secondary cracks can be observed in all speci-
mens, as shown by the yellow arrows in these figures. It is apparent that a large majority
of the secondary cracks are perpendicular to the crack growth direction (i.e., parallel to
fatigue striations). This secondary cracking phenomenon has been well explained by
Gauthier et al. [36] and supported by many experimental observations and results [37].
During fatigue loading, tension stresses appear at the bottom of each striation, and they
might be high enough to promote the transformation of some micro-striations into micro-
cracks, consequently leading to a large amount of secondary cracks parallel to fatigue
striations in the fracture surface [36]. On the other hand, several secondary cracks parallel
to the crack growth direction (i.e., perpendicular to fatigue striations) are also observed, as
shown in Figures 5d–f and 6d,e by the yellow arrows. Additionally, fractographic exami-
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nations at a higher magnification reveal that inclusions are embedded in some secondary
cracks, as displayed in Figures 5b and 6d. Energy dispersive spectrum (EDS) analysis re-
sults (see Figure 7) further reveal that the chemical composition of inclusion contains higher
contents of C and O than those in the matrix, indicating that the presence of inclusions
assisted the initiation and growth of secondary cracks.
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However, when carefully comparing the fracture surface features of BM, HAZ and
WM specimens, it can be seen that the fracture surface of the WM specimen shows a
significantly larger density of secondary cracks and micro-holes than those of BM and
HAZ specimens. Specifically, some of the secondary cracks exhibit much larger size with
significantly increased length and width. For instance, the fractograph of the fracture
surface of WM at a higher ∆K value of 55 MPa·m1/2 exhibits a large secondary crack with
the width up to 3.9 µm, as shown in Figure 6f. It has been reported that the secondary
cracks would share a part of energy during crack extension process, decreasing the crack
driving force and thus reducing the crack growth rate [38,39]. It can be; thus, inferred that
the larger amount of secondary cracks with larger size are likely to consume more energy
during crack growth, resulting in reduced FCGR and enhanced fatigue life. This is the
reason why the slope of FCGR of WM gradually decreases at high ∆K values and finally
becomes comparable to that of BM in this study.

In addition, it is worth noting that no evident difference in surface roughness can be
seen from the SEM photographs of fracture surfaces of different specimens at the same
∆K. Previous investigations have reported that the grain size can significantly affect the
crack growth path and FCGR in various materials [40–42]. In particular, severe crack
deflection is prone to occur in coarse-grained materials, leading to rougher fatigue fracture
surface than that in fine-grained material. The rough crack surface can further promote
the roughness-induced crack closure (RICC) effect, reducing the effective driving force for
crack propagation and; therefore, leading to a low FCGR [40–42]. In this study, despite the
fact that BM exhibits fine equiaxed bainite grains and the microstructures of HAZ and WM
consist of much coarser grains, their fatigue fracture surfaces show no significant difference
in surface roughness. Therefore, the FCGRs of these specimens could be comparable in
most of the fatigue life.

3.4. Acoustic Emission Analysis

In order to investigate the effect of microstructures on FCG behavior of the
2.25Cr1Mo0.25V steel welded joint, in this study, the AET was used to simultaneously
monitor the AE signals generated during the FCG process, and a great number of AE wave-
forms were collected by using a high sensitivity AE sensor, as shown in Figure 1a. Figure 8
shows a typical complete AE waveform generated by crack growth of 2.25Cr1Mo0.25V
steel. Numerous AE descriptors available to characterize the mechanical properties and
microstructural changes can be extracted from each AE waveform. The commonly used
descriptors include peak amplitude, count, energy, rise time, duration, entropy and so
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forth [28,43]. In particular, the energy represents the measured area of the waveform en-
velop, which can be calculated by integrating the transient voltage of the recorded acoustic
event over the period of time. This descriptor has been regarded as the primary attribute of
AE waveform for detecting critical damages and discriminating different damage modes
because it is able to reflect the intensity and activity of AE source. Moreover, the energy
is less dependent on the selected threshold, which is predetermined by researchers for
de-nosing before collecting AE signals [16]. Therefore, in the present study, the energy
was mainly used to characterize the FCG behaviors of different specimens. In addition, it
has been reported that the count and peak amplitude are two important descriptors for
characterizing the damage intensity during crack growth in various materials [16,18,21].
Specifically, the count is defined as the number of times within the duration, when the
transient voltages exceed the threshold. While the peak amplitude represents the largest
voltage peak in the recorded waveform. Thus, the count and peak amplitude were also
calculated from the waveforms to provide supporting information for AE results.

Materials 2021, 14, x FOR PEER REVIEW 12 of 17 
 

 

commonly used descriptors include peak amplitude, count, energy, rise time, duration, 
entropy and so forth [28,43]. In particular, the energy represents the measured area of the 
waveform envelop, which can be calculated by integrating the transient voltage of the 
recorded acoustic event over the period of time. This descriptor has been regarded as the 
primary attribute of AE waveform for detecting critical damages and discriminating dif-
ferent damage modes because it is able to reflect the intensity and activity of AE source. 
Moreover, the energy is less dependent on the selected threshold, which is predetermined 
by researchers for de-nosing before collecting AE signals [16]. Therefore, in the present 
study, the energy was mainly used to characterize the FCG behaviors of different speci-
mens. In addition, it has been reported that the count and peak amplitude are two im-
portant descriptors for characterizing the damage intensity during crack growth in vari-
ous materials [16,18,21]. Specifically, the count is defined as the number of times within 
the duration, when the transient voltages exceed the threshold. While the peak amplitude 
represents the largest voltage peak in the recorded waveform. Thus, the count and peak 
amplitude were also calculated from the waveforms to provide supporting information 
for AE results. 

 
Figure 8. A typical acoustic emission (AE) waveform collected at fatigue loading time of 4284 s 
from FCG process of BM specimen. The energy and peak amplitude were calculated as 18 aJ and 
61 dB, respectively. 

The evolutions of energy with respect to fatigue loading time for different specimens 
were presented in Figure 9a–c. It is apparent from these figures that two damage stages 
can be easily discriminated. At the beginning of stage 1, signals with low energies occur 
due to extensive plastic deformation caused by stress concentration at the notch tip of CT 
specimens. Subsequently, a sudden increase of signals with high energies emerge, which 
is related to physical micro-crack initiation. The energy values in this stage are much 
higher than those in other fatigue loading time, and can be as high as 1200 aJ, as shown in 
Figure 9a for BM specimen. Several researchers have reported that the intensities of AE 
signals generated from crack initiation are much larger than those caused by plastic de-
formation and stable crack growth [16,44,45], which is consistent with our results. In stage 
2, the variation of energy become constant and most of the energy values are below 200 
aJ. This stage is reasonable related to stable crack growth stage, where the relationship 
between the FCGR and ΔK follows the Paris law. It is also worth noting that an increase 
of energy occurs again at the end of stage 2, which is due to the rapid crack growth at high 
ΔK. However, this sudden increase behavior is not very obvious as that caused by the 
crack initiation in stage 1. Based on above analyses, one can conclude that AE energy is 
successful in discriminating two damage stages during FCG process of the 
2.25Cr1Mo0.25V steel welded joint. The first stage corresponds to crack initiation, and the 
second stage is related to stable and rapid crack growth. 

Figure 8. A typical acoustic emission (AE) waveform collected at fatigue loading time of 4284 s
from FCG process of BM specimen. The energy and peak amplitude were calculated as 18 aJ and
61 dB, respectively.

The evolutions of energy with respect to fatigue loading time for different specimens
were presented in Figure 9a–c. It is apparent from these figures that two damage stages
can be easily discriminated. At the beginning of stage 1, signals with low energies occur
due to extensive plastic deformation caused by stress concentration at the notch tip of CT
specimens. Subsequently, a sudden increase of signals with high energies emerge, which is
related to physical micro-crack initiation. The energy values in this stage are much higher
than those in other fatigue loading time, and can be as high as 1200 aJ, as shown in Figure 9a
for BM specimen. Several researchers have reported that the intensities of AE signals
generated from crack initiation are much larger than those caused by plastic deformation
and stable crack growth [16,44,45], which is consistent with our results. In stage 2, the
variation of energy become constant and most of the energy values are below 200 aJ.
This stage is reasonable related to stable crack growth stage, where the relationship between
the FCGR and ∆K follows the Paris law. It is also worth noting that an increase of energy
occurs again at the end of stage 2, which is due to the rapid crack growth at high ∆K.
However, this sudden increase behavior is not very obvious as that caused by the crack
initiation in stage 1. Based on above analyses, one can conclude that AE energy is successful
in discriminating two damage stages during FCG process of the 2.25Cr1Mo0.25V steel
welded joint. The first stage corresponds to crack initiation, and the second stage is related
to stable and rapid crack growth.
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Figure 9d shows the evolution of cumulative energy with respect to time for different
specimens. It is obvious that the WM specimen possesses the largest cumulative energy
in most of the fatigue life, while the BM specimen shows the lowest energy value despite
its longest fatigue life among the three specimens. To further investigate the difference
in AE signals of the three specimens, the statistical calculation of energy distribution was
carried out, and the result is shown in Figure 10. It can be seen that more than 70 % of AE
energies for BM and HAZ specimens are below 100 aJ, while AE energies of WM specimen
distributes in much greater values. In particular, more than 60 % of AE energies are
greater than 100 aJ, leading to the largest value of cumulative energy for WM. This means
that the FCG of the WM specimen is able to generate AE signals with high energy. It is
important to note that the fracture surface of WM specimen shows a significantly larger
density of secondary cracks with larger size, compared to those of BM and HAZ specimens.
The initiation and propagation of secondary cracks would consume additional energy of
crack tip during FCG, thus generating AE signals with high energy. Han et al. [21] reported
that the inclusions in the weld specimen of a micro-alloyed steel promoted the formation
of micro-voids and micro-cracks, resulting in higher AE counts rate in weld specimen,
which is consistent with our results. Therefore, the significantly enhanced AE energy in
the WM specimen is mainly attributed to the formation and propagation of numerous
secondary cracks.
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Figure 10. The statistical results of energy distribution of different specimens.

It can be also obtained from Figure 10 that the most of the AE energies in the BM
specimen distributes in lower values than those in HAZ and WM specimens. This indicates
that the fine equiaxed microstructures in the BM specimen are prone to generate AE
signals with low energy, while the coarse heterogeneous microstructures would generate
signals with high energy. Previous studies [18,19,46] have reported that the coarse-grained
microstructures in various metallic materials can cause an important increase in the activity
and intensity of AE signals during FCG, which agrees with the present results. This is
probably due to the fact that the finer grain size with larger area of grain boundaries would
impede the dislocation motion, which leads to a decrease of AE energy in the BM specimen.
Figure 11 shows the evolutions of cumulative amplitude and cumulative count for different
specimens, presenting similar result with that of cumulative energy. This indicates that
AE is able to successfully characterize microstructural changes during FCG by extracting
proper descriptors from AE waveforms.
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In brief, this study investigated the FCG behaviors and fatigue fracture mechanisms
of different zones in the 2.25Cr1Mo0.25V steel welded joint by compact tension tests
combined with AE monitoring. The coarse-grained WM specimen shows lower fatigue
life but higher AE intensity than BM. The HAZ specimen also shows higher AE intensity
than that of BM despite the fact that HAZ possesses the poorest fatigue life and similar
fracture surface features with BM. Therefore, further studies need to be performed to
comprehensively investigate the effect of microstructures, especially the grain size, on
FCGR and the corresponding AE behaviors.
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4. Conclusions

In this study, the fatigue crack growth behavior and fatigue fracture mechanism of
the 2.25Cr1Mo0.25V steel welded joint were investigated. Fatigue tests were performed
on CT specimens with notches in BM, HAZ and WM. Moreover, the AE signals generated
from FCG processes were monitored simultaneously and investigated to gain insights into
damage identification and microstructural effects of the 2.25Cr1Mo0.25V steel welded joint.
Major conclusions of this study are stated as follows:

1. The microstructure of BM is fine granular bainite, while the WM shows coarser bainite
grains. The HAZ exhibits the most significantly inhomogeneity, with large dispersion
of grain size.

2. The FCGRs of HAZ specimen are approximately two times higher at low ∆K values
than those of BM and WM, which could be attributed to non-uniform microstructure
with much coarser grains. The BM shows the most superior fatigue resistance, which
is due to the fine equiaxed bainite grains. The relationship between FCGR and ∆K
follows the Paris law.

3. SEM analyses reveal the transgranular fracture with fatigue striations as the dominant
fracture mechanism for all specimens. Moreover, the fracture surface of the WM
specimen shows a significantly larger density of secondary cracks with large size
compared to BM and HAZ specimens.

4. The FCG in the WM specimen generates more AE activity with higher energy values
of AE signals compared to BM and HAZ specimens. This is attributed to the com-
bined influence of the formation of numerous secondary cracks and coarse-grained
microstructures.
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