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Abstract: The microstructure and properties of laser welding lap joints with different assembly gap
sizes are experimentally investigated. The laser weld joint is composed of γ-austenite and δ-ferrite,
and the strip ferrite phase is mainly distributed at the austenite grain boundary. The weld metal
presents the austenitic-ferritic (AF) solidification mode. When there is a gap between the two plates,
a triangular region composed of similar equiaxed crystals can be found, and the size of the cellular
crystals in this region decreases significantly. When the assembly gap size increases from 0.1 mm to
0.4 mm, the weld penetration state of the joint changes from full penetration to semi-penetration, and
the surface collapse increases. The excessive size of the gap leads to a decrease in the tensile-shear
force and fatigue strength of laser welded joints. In order to ensure that the surface morphology and
properties of the welded joint meet the quality standard and requirement, the assembly gap should
be less than 0.1mm.

Keywords: laser welding; assembly gap; fatigue property; tensile property

1. Introduction

The light weight and corrosion resistance of the body are becoming promising direc-
tions for both high-speed trains and urban rail vehicles [1]. SUS301L stainless steel (SS)
has been applied in the manufacturing of components for automotive and shipbuilding
industries for its excellent corrosion resistance and overall performance. In the manufac-
turing of the body of high-speed trains and urban rail vehicles, the overall weight and
strength of the divided side walls determine that the welded joints are of unequal thick-
ness, the commonly used welding method is the resistance spot welding of the stainless
steel lap joint, because the welding mechanism is simple and easy to automate in robot
production [2]. However, many studies [3–6] have shown that laser keyhole welding has
more advantages in the welding of overlap joints of plants, such as localized heating, small
welding deformation, and high penetration depth. Laser keyhole welding has gradually
replaced resistance spot welding in automobile and rail vehicle manufacturing. At present,
more and more high-speed train and urban rail vehicle manufacturers are adopting laser
welding to produce a stainless steel body. Stainless-steel sheets can be connected by laser
lap welding, which can minimize the welding deformation with high efficiency.

It is found that the assembly gap is inevitable in the welding process of the car body,
especially in the manufacturing process of the large-size components such as the side
walls of the vehicle body. In general, the existence of the assembly gap hinders the energy
transfer, reduces the melting rate, and weakens the keyhole effects of laser deep penetration
welding. Moreover, laser welding defects are sensitive to the assembly gap size, which have
significant impacts on the welding structure, such as leakage welding, virtual welding,
cracks, and pores [7]. An excessive gap will lead to quality problems, such as a lack of
fusion, poor surface forming, and perforated defects that are harmful to the static strength
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and fatigue strength of the weld. The quality of welded joints is mainly evaluated by the
surface quality and tensile-shear force of weld joints. Therefore, the acceptable range of
the assembly gap should be evaluated from a safety perspective [8], and the research on
how the gap affects the welding structure and how to evaluate the gaps between adjacent
plates has important implications for industrial production. The study of the effect of
the gap size on morphologies and mechanical properties of laser overlap welded joints is
very important in determining the precision of mechanical pretreatment and the assembly
of laser welding panel samples in railway vehicles, the shipbuilding industry, and other
heavy engineering industry. A lot of different experimental researches have been done in
this area. G. Turichin et al. [9] conducted a study on the laser arc hybrid laser welding of
RS E36 steel, indicating that the joint without external defects and the formation were the
best when the gap widths were within the range of 0 mm~0.3 mm. Li et al. [10] studied the
effect of gap width on the laser-arc hybrid welding(HLAW) of commercial pure titanium,
and the research results showed that the surface of welded joints was well formed at the
gap width range of 0 mm~0.4 mm. K. Oussaid et al. [11] experimentally investigated the
laser welding joint of galvanized steel and reported that the gap width between the plates
had a limited effect on the weld quality. Mei et al. [12] found that within the range of an
appropriate inter-sheet gap, the variation of the gap size had little effect on the quality of
the laser welded joints of galvanized steel, and when the gap was too large or too small,
welding defects occurred.

In this paper, an experimental study on a SUS301L stainless steel laser lap joint is
carried out. The effects of the various gap sizes on the microstructures and mechanical
properties and fracture modes are researched with gap width sizes from 0 mm to 0.4 mm.

2. Materials and Experimental Methods

SUS301L austenitic stainless steel plates with different thickness were used as the base
metal, the dimension of the plates was 150 mm (length) × 50 mm (width), the upper plate
thickness was 1.0 mm, and the lower plate was 0.6 mm. The chemical compositions of
SUS301L stainless steel provided by the supplier are presented in Table 1. The stainless
steel laser lap joints with different assembly gap widths were obtained by adding gaskets
with different thicknesses of 0.1 mm, 0.2 mm, 0.3 mm, and 0.4 mm between two plates.
The surfaces of the stainless steel plates were polished with silicon carbide waterproof
sandpaper from mesh 240 to 600 to remove the greasy dirt and oxides, and then both sides
of the welding sample were pressed tightly with a pressing plate and screwed tightly with
a self-made clamp. In order to prevent weld deformation, additional steel bars were added
to compress the samples.

Table 1. Chemical compositions of SUS301L austenitic stainless steel (wt%).

C Si Mn P S Ni Cr N Fe

0.03 1.00 2.00 0.045 0.030 7.00 17.00 0.10 Bal.

A continuous wave (CW) IPG laser (Trudisk 4002) was used with the power adjustment
range of 0.4 kW to 4 kW and the light spot diameter of 0.6mm. Through actual production
experience and in the literature [13], it is verified that the use of argon or compressed air
as the welding protective atmosphere has no obvious effect on weld forming. Therefore,
dry compressed air with a flow rate of 30 L/min was used as the sheltering gas from the
perspective of cost saving. After welding, the weld was cut along the cross section to
prepare metallographic samples. Then, the specimens were ground with silicon carbide
waterproof sandpaper from 240 mesh to 2000 mesh, followed by polishing, and etched
with the corrosive liquid (5 mL HNO3 + 1 mL HF + 44 mL H2O). The macrostructure of the
welds was measured by optical microscope (OM; ZEISS, Germany). The microstructure
and the fracture morphology were measured by the scanning electron microscope (SEM;
TESCAN VEGA3) with energy dispersive spectroscopy (EDS; Link-ISIS, Britain). The phase
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compositions were determined by X-ray diffraction (XRD; D/Max 2500PC, Japan). Electron
back-scattered diffraction (EBSD) was used to identify the crystal orientation of the weld.
The transmission electron microscope (TEM; JEM-2100F, Japan) was applied to observe the
highly magnified microstructure of the weld.

In this work, the laser welding parameters were set as: laser power (LP) 1.45 kW,
welding speed (WS) 2.54 m/min, and focusing distance (FD) 0 mm. In the single-factor test,
the width of the gap width varied with the thickness of the added gasket. The MTS-810
electro hydraulic-servo testing machine was used for the tensile-shear test of the lap joints,
and each tensile-shear load was calculated by the average value of three retests. The fatigue
test was performed by the JPL-20E fatigue machine with the cyclic stress ratio (R) at 0.1 at
room temperature by the pull-pull loading method. The microhardness test of the welded
joint was performed by Vickers hardness tester (MH-3, china) at a load of 200 g and a dwell
time of 15 s.

3. Results and Discussion
3.1. Microstructure and Phase Composition of Laser Welded Joint

The typical microstructure of the laser overlap weld with no gap is depicted in Figure 1.
As shown in Figure 1a, the weld geometry is “cup-shaped” and the penetration state of
the joint is full penetration. The cross-sectional microstructure of the lap joint can be
proximately divided into three regions: laser welding zone (LWZ), heat affected zone
(HAZ), and base metal (BM). Due to the characteristics of the high energy density and
low thermal input [14], the width of the HAZ of the laser welding joint is very narrow
(about 0.2 mm). Comparing Figure 1b,e, the microstructure of the base material area is
polygonal and the grain size is relatively large, but in the laser welding zone there are
columnar crystals and dendrites with different orientations and the grain size is fine. The
high magnification morphology of the center of the laser welding zone (Figure 1b) indicates
that the crystal solidified microstructure is dendrite and the dendrite microstructures are a
larger size in the middle of the weld. The grain size decreases as it gets closer to the edge
of the weld, and the crystal solidified microstructure becomes a cellular dendritic crystal
and columnar crystal (Figure 1c). The crystals growth orientations are approximately
perpendicular to the fusion line. Comparing the microstructures of the HAZ with that of
BM (Figure 1d,e), the grain size in the HAZ is obviously increased.

According to the X-ray diffraction analysis results of the base metal and the weld zone
(Figure 2), the base metal is mainly composed of austenite phase (PDF#52-0513) and a small
amount of ferrite (PDF#85-1410) and martensite. The laser welding zone is composed of
austenite phase and ferrite, and no martensite was detected after laser welding. This is
mainly due to the martensite being decomposed by the laser high temperature heating,
and the stability of austenite and ferrite was increased because of alloying elements during
the cooling process. Besides, there is no cold deformation treatment after laser welding, so
martensite disappears in the LWZ.

Figure 3 illustrates the transmission electron microscope analysis results of the base
metal. Figure 3a shows the TEM bright field image of the base metal, which is composed
of white block structures and black flake structures distributed along the rolling direction
and attached to the white structure grain boundary. According to the selected area electron
diffraction (SAED) results, the ferrite phase in the base material of stainless steel is mainly
precipitated at the austenite grain boundary. The SAED results further prove that the base
metal of stainless steel is mainly made up with the austenitic phase and a small amount of
ferrite and martensite, as shown in Figure 3b–d.



Materials 2021, 14, 996 4 of 15

Materials 2021, 14, x FOR PEER REVIEW 3 of 15 
 

 

In this work, the laser welding parameters were set as: laser power (LP) 1.45 kW, 
welding speed (WS) 2.54 m/min, and focusing distance (FD) 0 mm. In the single-factor 
test, the width of the gap width varied with the thickness of the added gasket. The MTS-
810 electro hydraulic-servo testing machine was used for the tensile-shear test of the lap 
joints, and each tensile-shear load was calculated by the average value of three retests. The 
fatigue test was performed by the JPL-20E fatigue machine with the cyclic stress ratio (R) 
at 0.1 at room temperature by the pull-pull loading method. The microhardness test of the 
welded joint was performed by Vickers hardness tester (MH-3, china) at a load of 200 g 
and a dwell time of 15 s. 

Table 1. Chemical compositions of SUS301L austenitic stainless steel (wt%). 

C Si Mn P S Ni Cr N Fe 
0.03 1.00 2.00 0.045 0.030 7.00 17.00 0.10 Bal. 

3. Results and Discussion 
3.1. Microstructure and Phase Composition of Laser Welded Joint 

The typical microstructure of the laser overlap weld with no gap is depicted in Figure 
1. As shown in Figure 1a, the weld geometry is “cup-shaped” and the penetration state of 
the joint is full penetration. The cross-sectional microstructure of the lap joint can be prox-
imately divided into three regions: laser welding zone (LWZ), heat affected zone (HAZ), 
and base metal (BM). Due to the characteristics of the high energy density and low thermal 
input [14], the width of the HAZ of the laser welding joint is very narrow (about 0.2 mm). 
Comparing Figure 1b,e, the microstructure of the base material area is polygonal and the 
grain size is relatively large, but in the laser welding zone there are columnar crystals and 
dendrites with different orientations and the grain size is fine. The high magnification 
morphology of the center of the laser welding zone (Figure 1b) indicates that the crystal 
solidified microstructure is dendrite and the dendrite microstructures are a larger size in 
the middle of the weld. The grain size decreases as it gets closer to the edge of the weld, 
and the crystal solidified microstructure becomes a cellular dendritic crystal and colum-
nar crystal (Figure 1c). The crystals growth orientations are approximately perpendicular 
to the fusion line. Comparing the microstructures of the HAZ with that of BM (Figure 
1d,e), the grain size in the HAZ is obviously increased. 

According to the X-ray diffraction analysis results of the base metal and the weld 
zone (Figure 2), the base metal is mainly composed of austenite phase (PDF#52-0513) and 
a small amount of ferrite (PDF#85-1410) and martensite. The laser welding zone is com-
posed of austenite phase and ferrite, and no martensite was detected after laser welding. 
This is mainly due to the martensite being decomposed by the laser high temperature 
heating, and the stability of austenite and ferrite was increased because of alloying ele-
ments during the cooling process. Besides, there is no cold deformation treatment after 
laser welding, so martensite disappears in the LWZ.  

  

Materials 2021, 14, x FOR PEER REVIEW 4 of 15 
 

 

  

 

 

Figure 1. Microstructures of the overlap laser weld: (a) cross-sectional appearance; (b) weld center; (c) weld edge; (d) heat 
affected zone (HAZ); (e) base metal. 

 
Figure 2. Micro-area X-ray diagrams of (a) base metal and (b) laser welded joint. 

Figure 3 illustrates the transmission electron microscope analysis results of the base 
metal. Figure 3a shows the TEM bright field image of the base metal, which is composed 
of white block structures and black flake structures distributed along the rolling direction 
and attached to the white structure grain boundary. According to the selected area elec-
tron diffraction (SAED) results, the ferrite phase in the base material of stainless steel is 
mainly precipitated at the austenite grain boundary. The SAED results further prove that 
the base metal of stainless steel is mainly made up with the austenitic phase and a small 
amount of ferrite and martensite, as shown in Figure 3b–d. 

Figure 1. Microstructures of the overlap laser weld: (a) cross-sectional appearance; (b) weld center; (c) weld edge; (d) heat
affected zone (HAZ); (e) base metal.

Materials 2021, 14, x FOR PEER REVIEW 4 of 15 
 

 

  

 

 

Figure 1. Microstructures of the overlap laser weld: (a) cross-sectional appearance; (b) weld center; (c) weld edge; (d) heat 
affected zone (HAZ); (e) base metal. 

 
Figure 2. Micro-area X-ray diagrams of (a) base metal and (b) laser welded joint. 

Figure 3 illustrates the transmission electron microscope analysis results of the base 
metal. Figure 3a shows the TEM bright field image of the base metal, which is composed 
of white block structures and black flake structures distributed along the rolling direction 
and attached to the white structure grain boundary. According to the selected area elec-
tron diffraction (SAED) results, the ferrite phase in the base material of stainless steel is 
mainly precipitated at the austenite grain boundary. The SAED results further prove that 
the base metal of stainless steel is mainly made up with the austenitic phase and a small 
amount of ferrite and martensite, as shown in Figure 3b–d. 

Figure 2. Micro-area X-ray diagrams of (a) base metal and (b) laser welded joint.



Materials 2021, 14, 996 5 of 15
Materials 2021, 14, x FOR PEER REVIEW 5 of 15 
 

 

 

 
Figure 3. Transmission electron microscope (TEM) image of the base metal: (a) TEM bright field 
image of the base metal; (b) SAED pattern of austenite; (c) SAED pattern of ferrite; (d) SAED pat-
tern of martensite. 

Figure 4a is the EBSD image of the stainless steel laser weld. The grains were colored 
according to the crystallographic orientation. As shown in Figure 4a, the laser welding 
seam is mainly composed of austenite (red grains) and ferrite (blue grains). The crystal 
morphology of the base metal is an equiaxed grain structure and the grains of various 
colors are uniformly distributed in the base metal, so the base metal has no obvious pre-
ferred orientation. The grain orientation in the HAZ is the same as that of the base metal, 
but the grain size increases due to recrystallization. The shape of grains in the base metal 
and the HAZ is a polygon and the grains in LWZ changes to the shape of the skeleton 
with a certain direction. Figure 4b shows the grain boundary distribution of austenite and 
ferrite in the welded joint. It can be seen that ferrite is mainly distributed at a small angle 
grain boundary, while austenite is distributed at a large angle grain boundary. The polar 
diagram figures of the closed-packed planes of austenite and ferrite are shown in Figure 
4c, and the red circles mark the closed-packed planes. As can be seen, the {111} closed-
packed plane of austenite is parallel to the {110} closed-packed plane of ferrite in the laser 
weld. It can be found that the austenite and ferrite in the weld had a specific orientation 
relationship (K-S relationship). 

Figure 3. Transmission electron microscope (TEM) image of the base metal: (a) TEM bright field
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Figure 4a is the EBSD image of the stainless steel laser weld. The grains were colored
according to the crystallographic orientation. As shown in Figure 4a, the laser welding
seam is mainly composed of austenite (red grains) and ferrite (blue grains). The crystal
morphology of the base metal is an equiaxed grain structure and the grains of various colors
are uniformly distributed in the base metal, so the base metal has no obvious preferred
orientation. The grain orientation in the HAZ is the same as that of the base metal, but
the grain size increases due to recrystallization. The shape of grains in the base metal and
the HAZ is a polygon and the grains in LWZ changes to the shape of the skeleton with a
certain direction. Figure 4b shows the grain boundary distribution of austenite and ferrite
in the welded joint. It can be seen that ferrite is mainly distributed at a small angle grain
boundary, while austenite is distributed at a large angle grain boundary. The polar diagram
figures of the closed-packed planes of austenite and ferrite are shown in Figure 4c, and the
red circles mark the closed-packed planes. As can be seen, the {111} closed-packed plane of
austenite is parallel to the {110} closed-packed plane of ferrite in the laser weld. It can be
found that the austenite and ferrite in the weld had a specific orientation relationship (K-S
relationship).

Figure 5 illustrate the TEM image of the laser weld. Figure 5a is the bright field image
of the welded joint, showing that the ferrite phase in weld was precipitated mainly at
the austenite grain boundary, and the ferrite phase was precipitated inside the austenite
grain. The results further prove that austenite and ferrite present a K-S relationship:
(011)δ//(111)γ, [111]δ//[011]γ.
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According to the chemical composition of SUS301L stainless steel and the pseudo-
binary phase diagram of Fe–Cr–Ni [15], the microstructure of the base metal should be a
mixture of austenite and ferrite. The existence of martensite in the rolled base metal is due
to the austenite matrix producing dislocation, stratification, and a stratification beam after
cold deformation, and a large number of parallel and interlacing shear bands are formed
by the accumulation of the deformation. The strain-induced martensite was nucleated at
the intersections of these shear zones, and even in a single shear zone, and distributed
on the austenite matrix, which had a certain strengthening effect on the matrix. With the
increase of the deformation, martensite nucleates and grows, and finally joins together to
form lathy martensite.
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The solidification and solid phase transition of austenitic stainless steel laser weld
metal can be deduced by combining the Scheffler diagram and the pseudo-binary sections
of the Fe-Cr-Ni ternary system [16]. At the same time, the composition segregation in the
process of non-equilibrium solidification at a rapid cooling rate also has an effect on the
solidification mode and microstructure of the weld [17]. In this study, if the burning loss
of elements during laser welding is ignored, the values of the equivalent contents (wt %)
of Creq and Nieq. could be calculated from the compositions of the base metal and the
solidification mode and microstructure could be confirmed by the values. The calculation
formulas are as follows [18]:

Crep=%Cr+%Mo+1.5%Si+0.5%Nb (1)

Niep=%Ni+30%C +0.5%Mn. (2)

According to the calculation results, the Creq and Nieq in the laser weld joint is about
18.5% and 8.9%, respectively. Accordingly, the Creq/Nieq ratio is about 2.08, the primary
phase of the weld during equilibrium solidification should be the δ- ferrite phase (F mode).
However, because the cooling rate and solidification rate of the laser welding weld are very
fast, the solidification mode of the laser weld should be the austenitic (A) or austenitic-
ferritic (AF) mode at the condition of non-equilibrium solidification. The research results
of the microstructures of the weld have shown that the laser weld is composed of austenite
and ferrite phases, so the weld metal solidification process exhibits the austenitic-ferritic
(AF) solidification mode. That is, austenite was first formed during solidification, and some
ferrite was formed through the eutectic reaction before the end of solidification. The AF
solidification pattern occurs mainly because sufficient ferrite forming elements (Cr and Mo)
are concentrated at the sub-grain boundary during solidification to induce the formation of
ferrite. The solidification reaction can be expressed as L→L+A→L+A+(F+A) eutectic→A+F.
The ferrite in the weld after solidification exists in the cellular crystal boundary and the
dendrite boundary that is consistent with the TEM analysis results.
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3.2. Influence of Assembly Gap Size on the Morphologic Observation of Joint
3.2.1. Influence of Assembly Gap Size on the Surface Appearance and Cross-Sectional
Macro Morphology of Joint

The cross-sectional macro morphologies of the weld joints with different assembly gap
sizes are shown in Figure 6. The welding quality is determined by the penetration depth,
the weld width, the forming quality of the weld surface, and so on [19]. The surface collapse
amount, interface fusion width, and weld penetration in the lower plate are marked in
Figure 6a. With the increase of the gap size from 0.1 mm to 0.4 mm, the penetration state
of the joint changes from full penetration to semi-penetration, and the surface collapse
occurs, which is due to the lack of filler weld metal caused by too large gap size (Figure 6b).
Figure 6c,d shows that the surface collapses become more serious. In addition, the growth
of cellular crystals of the weld in the lower plate changes from lateral growth to upward
growth with the increase of the assembly gap size.
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metal vapor generated by the laser radiation at the bottom of the hole was weakened, 
leading to the decline of the weld penetration depth. It is found that the size of gap has 
little effect on the interface fusion width. It could be deduced that as more liquid metal 
flows into the gap and melts the side wall, the loss of plasma in the gap results in the 
decrease of the plasma absorption on the laser, showing that the weld width is no differ-
ent. With the increase of the gap from 0.1 mm to 0.4 mm, the surface collapse amounts are 
0.1 mm, 0.16 mm, 0.28 mm, and 0.32 mm, respectively. The weld metal is not enough to 
fill the gap because of the excessive gap width, leading to a gradual increase of the collapse 
amount of the weld surface. According to the PRC National Standard GB/T 22085.1 of the 
electron and laser-welded joints guidance on quality levels for imperfections [20], the sur-
face collapse amount of a weld should not exceed 10% of the upper plate thickness (0.1 
mm), so the assembly gap should be controlled less than 0.1mm in order to ensure the 
surface quality of welded joint when complying with the PRC National Standard. 
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Figure 7 shows the curves of the interface fusion width, weld penetration depth in
the lower plate, and the surface collapse amount with the the change of gaps in the same
welding parameters. When the gap increased from 0.1 to 0.4 mm, the weld penetration
depth in the lower plate decreased from 0.58 mm to 0.13 mm. This was mainly due to the
loss of laser energy at the gap with the increase of the gap, and the excavation effect of
the metal vapor generated by the laser radiation at the bottom of the hole was weakened,
leading to the decline of the weld penetration depth. It is found that the size of gap has
little effect on the interface fusion width. It could be deduced that as more liquid metal
flows into the gap and melts the side wall, the loss of plasma in the gap results in the
decrease of the plasma absorption on the laser, showing that the weld width is no different.
With the increase of the gap from 0.1 mm to 0.4 mm, the surface collapse amounts are
0.1 mm, 0.16 mm, 0.28 mm, and 0.32 mm, respectively. The weld metal is not enough to fill
the gap because of the excessive gap width, leading to a gradual increase of the collapse
amount of the weld surface. According to the PRC National Standard GB/T 22085.1 of
the electron and laser-welded joints guidance on quality levels for imperfections [20], the
surface collapse amount of a weld should not exceed 10% of the upper plate thickness



Materials 2021, 14, 996 9 of 15

(0.1 mm), so the assembly gap should be controlled less than 0.1mm in order to ensure the
surface quality of welded joint when complying with the PRC National Standard.
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3.2.2. Microstructure Analysis of Typical Defective Weld Joints

In order to study the influence of the assembly gap on the microstructure of the weld,
the cross-sectional microstructures of the joint with a gap of 0.2 mm is shown in Figure 8.
In Figure 8a, the surface of the weld is severely collapsed because of the gap being too large
to lead to insufficient filler metal. The microstructure of the LWZ has some differences
from that of a joint without a gap. Five regions were characterized in the LWZ according to
the different crystal microstructures and orientations, marked as region I to V, as seen in
Figure 8a. The cooling rate has an effect on the crystal morphology and direction, and the
faster cooling rate promoted the formation of columnar crystals, while the general cooling
rate promoted the formation of dendrites [21]. Figure 8b is the magnified morphology
of region I, there is a thin layer of the columnar crystal structure that crystallizes from
the outside to the inside along the direction of the thermal diffusion at the surface of the
weld because that is where the cooling rate is the fastest. At the middle of laser weld zone
(Figure 8c,d), the grains preferentially form dendrites, and the direction of crystallization is
from the edge of the weld to the center. This is because the heat diffuses from the weld
center to the base metal on both sides in region I and II, and the degree of supercooling
is relatively gentle. Suutala [22] believed that the cooling rate of the molten pool has an
effect on ferrite morphology. Figure 8e is the magnified morphology of region IV, it can be
seen that some fine columnar dendrites show obvious directionality because of the rapid
cooling rate caused by the gap. When there is a gap between the two plates, the condition
of the molten pool metal growing perpendicular to the fusion surface was destroyed, and a
triangular region composed of similar equiaxed crystals can be found, which is composed
of three points: the junction point of the two plate gaps with the upper plate fusion line
and the weld metal, the junction point of the two plate gaps with the lower plate fusion line
and the weld metal, and the junction point of the crystallization growth line of the upper
and lower weld metal (Figure 8e). The size of the cellular crystals in region IV decreased
significantly. In region V (Figure 8f), the columnar grains were radially distributed from
the edge of the weld to the center.
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3.3. Influence of Assembly Gap Size on the Properties of Joints
3.3.1. Influence of Assembly Gap Size on Tensile-Shear Force of Joints

Figure 9 shows the effect of the assembly gap size on the joint tensile and shear forces.
As shown in Figure 9a, when the assembly gap is less than 0.3 mm, the tensile specimens
are in a continuous transition during the tensile test, showing relatively obvious elastic
and plastic stages. In the elastic stage, the four curves with a gap of 0–0.3 mm almost
coincide, indicating that the gap size has no significant effect on the tensile-shear force
of the weld when the gap is less than 0.3 mm. However, the curves separate and the
fracture displacement changes obviously in the plastic stage. When the assembly gap is
0.4 mm, a step can be seen in the curve, which is due to the influence of the torque in the
process of drawing and shearing, due to the large gap size. From Figure 9b it can be seen
that the tensile-shear force of stainless steel weld joints decreased with the increase of the
assembly gap size. The existence of the assembly gap intensifies the stress concentration
and produces torsion and results in the decline of the mechanical properties of the joints.
With the gap increasing from 0 mm to 0.4 mm, the minimum tensile-shear load of the joints
decreased from 16.2 kN to 8.1 kN. The weld near the gap is more likely to cause stress
concentration, which greatly worsens the mechanical properties of the weld. The above
results indicate that the excessive size of the gap leads to the reduced tensile-shear force of
the welded joints. The quality standard of the rail vehicle production enterprise requires
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that the tensile-shear force of the joint should not be less than 11 kN, so the assembly gap
should be kept less than 0.3 mm in view of the tensile and shear performance of the weld.
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The tensile fracture of the lap joint is the result of the joint action of tensile stress and
shear stress. There are two kinds of shear fracture modes for stainless steel laser welds:
the heat affected zone fracture and interface fracture [23,24]. In Figure 9a, the black curve
shows the fracture curve of specimen with no gap fracturing at the HAZ of the joint. The
fracture mode of the joint is related to the microstructure and the hardness of the base
metal and weld. According to the results of hardness testing, the average microhardness of
the base metal is about 300 HV, and the average microhardness of the laser welding zone is
about 240 HV. Because the microhardness of the cold-rolled plate is greater than that of the
weld, the tensile and bending deformation are concentrated near the HAZ. The grains in
the HAZ become coarse because the HAZ is kept at a high temperature for a long time,
and it is the weakest area of the whole joint. Eventually it breaks along the fusion line—the
HAZ fracture. The green tensile shear force-displacement curve in Figure 9a shows the
specimen with a 0.4 mm gap fracturing at the interface of the welded joint. When the gap
increases to 0.4 mm, the tensile-shear force of the joint decreases to 8.1 kN, which is 50%
lower than that of the non-gap joint. The fracture mode changes from the fracture in the
HAZ to the fracture in the interface. This is mainly due to the large assembly gap causing
the torque generated in the tensile process and the increase of the non-uniformity of the
welded joint strength.

The fracture surface morphologies of laser welded joints with gap widths of 0 mm
and 0.4 mm are illustrated in Figure 10. Figure 10a shows the HAZ fracture surface
morphologies of the weld with no gap. It can be seen that some equiaxed dimples vary in
size formed under tensile normal stress exhibits obviously tensile fracture characteristics.
The larger the dimple size, the better the plasticity it is. When the welded joint breaks
at the HAZ, it shows that the bearing capacity of the weld is strong enough to meet the
production. Figure 10b shows the interface fracture surface morphologies of the welded
joint with a 0.4 mm gap, which shows obvious characteristics of the shear fracture. The
dimples elongate to form obvious shear lips and tearing ridges by the shear stress. When
the welded joint breaks at the interface, it shows that the bearing capacity of the weld is
insufficient. Therefore, the interfacial fracture mode should be avoided as much as possible.

3.3.2. Influence of Assembly Gap Size on the Fatigue Performance of Joints

The fatigue strength of stainless steel laser welded joints is an important property that
affects the performance of the stainless steel railway vehicle. In the manufacturing process
of the side wall structure of the railway vehicle body, the frame and skin are connected by
overlapped joints. The overlapped weld zones have obvious stress concentration under
the action of cyclic loading. The other main factors causing stress concentration is the
assembly gap, which will increase the non-uniformity of welded joint strength and lead
to the decrease of the fatigue performance of welded structures. The above study shows
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that when the assembly gap reached 0.3 mm or more, the laser welding joints did not meet
the quality standards because the surface collapse amount of the weld exceeded 0.1 mm
and the tensile-shear force of the weld was less than 11 kN. Therefore, only the fatigue
properties of joints with gap sizes less than 0.2 need to be studied. The fatigue performance
of joints was tested at room temperature with a cyclic stress ratio r = 0.1 and pull-pull
loading. The tensile and shear fatigue load without cracking during 107 cycles is defined
as the conditional fatigue load. Figure 11 shows the fatigue curve drawn by the maximum
tension shear load (Fmax) and cycle number (Nf). As shown in Figure 11, the assembly
gap has a certain impact on fatigue performance. When the assembly gap sizes increased
from 0 mm to 0.2 mm, the fatigue limit of the weld joints decreased from 822 N to 760 N.
Based on the least squares method, specimen with a 0 mm gap illustrate a higher fatigue
performance compared with specimens with a 0.2 mm gap but illustrate a similar fatigue
performance compared with specimens with a 0.1 mm gap. Therefore, the assembly gap
should be controlled less than 0.1 mm in order to ensure the fatigue performance of the
joint.

Materials 2021, 14, x FOR PEER REVIEW 12 of 15 
 

 

  
Figure 10. Fracture surface morphologies of joints with gap sizes of (a) 0 mm and (b) 0.4 mm. 

3.3.2. Influence of Assembly Gap Size on the Fatigue Performance of Joints 
The fatigue strength of stainless steel laser welded joints is an important property 

that affects the performance of the stainless steel railway vehicle. In the manufacturing 
process of the side wall structure of the railway vehicle body, the frame and skin are con-
nected by overlapped joints. The overlapped weld zones have obvious stress concentra-
tion under the action of cyclic loading. The other main factors causing stress concentration 
is the assembly gap, which will increase the non-uniformity of welded joint strength and 
lead to the decrease of the fatigue performance of welded structures. The above study 
shows that when the assembly gap reached 0.3 mm or more, the laser welding joints did 
not meet the quality standards because the surface collapse amount of the weld exceeded 
0.1 mm and the tensile-shear force of the weld was less than 11 kN. Therefore, only the 
fatigue properties of joints with gap sizes less than 0.2 need to be studied. The fatigue 
performance of joints was tested at room temperature with a cyclic stress ratio r = 0.1 and 
pull-pull loading. The tensile and shear fatigue load without cracking during 107 cycles is 
defined as the conditional fatigue load. Figure 11 shows the fatigue curve drawn by the 
maximum tension shear load (Fmax) and cycle number (Nf). As shown in Figure 11, the 
assembly gap has a certain impact on fatigue performance. When the assembly gap sizes 
increased from 0 mm to 0.2 mm, the fatigue limit of the weld joints decreased from 822 N 
to 760 N. Based on the least squares method, specimen with a 0 mm gap illustrate a higher 
fatigue performance compared with specimens with a 0.2 mm gap but illustrate a similar 
fatigue performance compared with specimens with a 0.1 mm gap. Therefore, the assem-
bly gap should be controlled less than 0.1 mm in order to ensure the fatigue performance 
of the joint.  

 
Figure 11. Fatigue curves of the different assembly gap. 

Figure 10. Fracture surface morphologies of joints with gap sizes of (a) 0 mm and (b) 0.4 mm.

Materials 2021, 14, x FOR PEER REVIEW 12 of 15 
 

 

  
Figure 10. Fracture surface morphologies of joints with gap sizes of (a) 0 mm and (b) 0.4 mm. 

3.3.2. Influence of Assembly Gap Size on the Fatigue Performance of Joints 
The fatigue strength of stainless steel laser welded joints is an important property 

that affects the performance of the stainless steel railway vehicle. In the manufacturing 
process of the side wall structure of the railway vehicle body, the frame and skin are con-
nected by overlapped joints. The overlapped weld zones have obvious stress concentra-
tion under the action of cyclic loading. The other main factors causing stress concentration 
is the assembly gap, which will increase the non-uniformity of welded joint strength and 
lead to the decrease of the fatigue performance of welded structures. The above study 
shows that when the assembly gap reached 0.3 mm or more, the laser welding joints did 
not meet the quality standards because the surface collapse amount of the weld exceeded 
0.1 mm and the tensile-shear force of the weld was less than 11 kN. Therefore, only the 
fatigue properties of joints with gap sizes less than 0.2 need to be studied. The fatigue 
performance of joints was tested at room temperature with a cyclic stress ratio r = 0.1 and 
pull-pull loading. The tensile and shear fatigue load without cracking during 107 cycles is 
defined as the conditional fatigue load. Figure 11 shows the fatigue curve drawn by the 
maximum tension shear load (Fmax) and cycle number (Nf). As shown in Figure 11, the 
assembly gap has a certain impact on fatigue performance. When the assembly gap sizes 
increased from 0 mm to 0.2 mm, the fatigue limit of the weld joints decreased from 822 N 
to 760 N. Based on the least squares method, specimen with a 0 mm gap illustrate a higher 
fatigue performance compared with specimens with a 0.2 mm gap but illustrate a similar 
fatigue performance compared with specimens with a 0.1 mm gap. Therefore, the assem-
bly gap should be controlled less than 0.1 mm in order to ensure the fatigue performance 
of the joint.  

 
Figure 11. Fatigue curves of the different assembly gap. Figure 11. Fatigue curves of the different assembly gap.

The failure positions of the welded joints with an assembly gap from 0 to 0.2 mm are
all at the edge of the joints on the lower plates. Figure 12 shows the fatigue fractography of
laser welded joints with a 0 mm and 0.2 mm gap. As shown in Figure 12a,c, the surfaces
of the fatigue crack propagation zones are rough, and the width of the fatigue striation of
the specimen with a 0 mm gap was larger than that of the specimen with a 0.2 mm gap,
indicating that the growth rate of the fatigue crack was faster. The morphology of the final
fracture zone of the specimen with a 0 mm gap was rough and formed an obvious shear
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lip, showing obvious plastic fracture characteristics (Figure 12b). The morphology of the
final fracture zone of the specimen with a 0.2 mm gap was crystalline, showing obvious
brittle fracture characteristics (Figure 12d).
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4. Conclusions

(1) The microstructure of a SUS301L stainless steel laser welded joint consists of austenite
and strip ferrite, and the ferrite phase mainly is precipitated at the austenite grain
boundary. The ferrite and austenite phases in the weld present the K-S relationship.
The weld metal solidification mode is called AF, which means austenite formed firstly
during solidification, and some ferrite was formed in the cellular crystal boundary
and the dendrite boundary through eutectic reaction before the end of solidification.

(2) The assembly gap has obvious influence on the morphology of the welded joints. With
the increase of the gap size from 0.1 mm to 0.4 mm, the weld penetration state of the
joint changes from full penetration to semi-penetration, and the surface subsidence
occurs, which is due to the lack of filler metal caused by a too large gap size, and
the growth of the cellular crystals changes from lateral growth to upward growth
from the lower plate. When there is a gap between the two plates, a triangular region
composed of similar equiaxed crystals can be found, and the size of the cellular
crystals in this region decreases significantly.

(3) The excessive size of the gap will lead to a decrease in the tensile-shear force and
fatigue strength of joints. With the gap size increasing from 0 mm to 0.4 mm, the
minimum tensile-shear load of the joints decreased from 16.2 kN to 8.1 kN and
the fracture mode changed from the heat-affected fracture (shear fracture) to the
interfacial fracture. The assembly gap had a certain impact on fatigue performance. In
order to ensure that the surface morphology and mechanical properties of the welded
joint can meet the quality standards and requirements, the assembly gap should be
less than 0.1 mm.
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