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Abstract: This paper presents a comparative assessment of Cu(acac)2 and {[Cu(µ-O,O′-NO3)
(L-arg)(2,2′-bpy)]·NO3}n as potential precursors for the electroless metallization of laser activated
polymer materials. Coatings consisting of polyurethane resin, one of the two mentioned precursor
compounds, and antimony oxide (Sb2O3), as a compound strongly absorbing infrared radiation,
were applied on the polycarbonate substrate. The coatings were activated with infrared Nd: YAG
laser radiation (λ = 1064 nm) and electroless metallized. It was found that after laser irradiation, a
micro-rough surface structure of the coatings was formed, on which copper was present in various
oxidation states, as well as in its metallic form. For selected parameters of laser irradiation, it was pos-
sible to deposit a copper layer on the coating containing Cu(acac)2 and Sb2O3, which is characterized
by high adhesion strength. It was also found that the {[Cu(µ-O,O′-NO3) (L-arg)(2,2′-bpy)]·NO3}n

complex was not an effective precursor for the electroless metallization of Nd:YAG laser activated
coatings. An attempt was made to determine the influence of the precursor chemical structure on the
obtained metallization effects.

Keywords: infrared lasers; surface activation; electroless metallization; organometallic complex

1. Introduction

In recent years, many methods of selective electroless metallization for non-conductive
polymer materials have been developed. Extensive research was aimed especially at
designing new coatings containing various electroless metallization precursors, suitable for
applications in electronics [1–4]. Chemical surface activation is used to the greatest extent
in industrial practice. It consists of immersing the entire sample in an SnCl2 solution and
then in PdCl2 in a two-stage process, or directly in a SnCl2/PdCl2 solution in a one-stage
process. In the last step, the activated samples are placed in an appropriate electroless
plating bath. Despite the simplicity of the electroless metallization process, it also has
some disadvantages. Some of them are the lack of selective surface activation and the poor
adhesive strength between the deposited copper layer and the polymer substrate. The first
disadvantage is an especially significant drawback in electronic applications.

The use of lasers enables selective surface activation and subsequent electroless met-
allization. Laser surface activation can be performed in two main approaches. In the
first approach, indirect laser modification is performed, which later requires the chemical
activation of the irradiated surface [5–7]. Indirect activation can take place in a liquid [5]
or an atmospheric [6,7] environment by modifying the surface of the polymeric material
to enable the implementation of catalysts in the next stage, e.g., palladium, and thus to
obtain a fully active surface [8,9]. In the direct method of surface activation, the material
can be simultaneously modified and metallized. However, this requires the use of appro-
priate compounds named metallization precursors, added at the processing stage to the
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polymer material [10,11]. The precursors may be added to the total volume of the mate-
rial (e.g., during the extrusion and injection molding) or be present in polymeric coatings
which cover the substrate. The method of such activation is often known as laser direct
structuring (LDS).In the LDS method, laser radiation causes the ablation of the material
surface layer, mainly the organic part, causing the precipitation of metal on the surface,
which forms active catalytic centers. LDS is an innovative technology with great potential
for the production of metallized patterns on non-conductive materials with design flexi-
bility and high precision. This method can be used to manufacture molded interconnect
devices (MIDs) combining mechanical and electronic functions in one injected element.

The precursors used in the LDS method can be divided into inorganic and organometal-
lic compounds. In recent years, research has been conducted on the application of
organometallic complexes that can act as precursors in the metallization processes of poly-
mer products. The information about palladium, copper or nickel acetates, acetylacetonates
or copper complexes used as effective precursors of electroless metallization can be found
in the literature [1,12–17]. Inorganic metal compounds such as copper, chromium in the
form of CuO·Cr2O3 [18] oxide or hydrogen phosphate Cu2(OH)PO4] [19] were also used.
Beside copper compounds, antimony-doped tin oxide [20] or multi-wall MWCNT/PP
carbon nanotubes [21] were added to the polymer matrix.

In this work, a comparative assessment of Cu(acac)2 and {[Cu(µ-O,O′-NO3) (L-arg)
(2,2′-bpy)]·NO3}n as potential precursors for laser activated electroless metallization of
polymeric materials were made. Antimony(III) oxide Sb2O3, as an additional component of
the coatings was used as an absorber of infrared radiation. The main goal of the work was
to determine the compounds’ abilities to be effective precursors for electroless metallization,
leading to the formation of a copper layer on the surface of laser irradiated coatings.

An additional goal of the research was to determine the effect of Sb2O3, as a compound
that absorbs infrared radiation very well, on the effects of surface activation [22,23]. It
was assumed that the presence of Sb2O3 in the coating can increase the amount of locally
precipitated copper active catalytic sites. Finally, as two precursors with various chemical
structures were tested, it can facilitate a more appropriate selection of a new precursor in
the future.

2. Materials and Methods
2.1. Materials

The following materials were used in the research:

• Polinitrate(V) complex of [(2-amino-5-guanidine-pentane) (mi-O,O′-nitrate(V)) (2,2’-dipyridile)
copper (II)]{[Cu(µ-O,O′-NO3)(L-arg)(2,2′-bpy)]·NO3}n designated as compound A;

• copper (II) acetylacetonate Cu(acac)2 (Sigma Aldrich, Saint Louis, MO, USA), desig-
nated as compound B;

• antimony (III) oxide Sb2O3 (particle size < 250 nm) (Sigma Aldrich, Saint Louis, MO, USA);
• polyurethane resin B4060 (Haering, Bubsheim, Germany);
• polycarbonate (PC) Xantar 19 UR (DSM Engineering Plastics, Nancy van Heesewijk, Netherlands);
• autocatalytic copper metallization bath M-Copper-85 (MacDermid- Poland, Łysomice, Poland);
• formaldehyde 36%, HCHO (POCH, Gliwice, Poland), molecular weight 30.03 gmol−1;
• two-compound adhesive Araldite 2011 (Huntsman, Basel, Switzerland).

Complex A is not commercially available and has been synthesized in a crystalline
form. More information on the compound is provided in the patent [24].

The total content of the additives used in the coating, including complex A or B and
Sb2O3 was 20 wt%. The coating symbols and their composition are listed in Table 1.
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Table 1. Coatings compositions and designation of coatings.

Coating Symbol The Content of Compounds in the Coating: (wt%)

Complex A Complex B Sb2O3

A1 20 – –
A2 10 – 10
A3 15 – 5
A4 16.67 – 3.33
B1 – 20 –
B2 – 10 10
B3 – 15 5
B4 – 16.67 3.33

The coating components were mechanically mixed with a polyurethane resin, and
then evenly applied by pouring onto PC substrate. The PC samples were made by injection
molding. The thickness of the obtained coatings was from 300 to 700 µm.

2.2. Laser Modification and Metallization

The coatings were treated with laser radiation ata wavelength of λ = 1064 nm and a
maximum laser power of 20 W. The Nd:YAG TS-20W laser (Techsol, Bielsko-Biała, Poland)
was used in this research. The applied power was 4 W, whereas the irradiated surface areas
were scanned repeatedly 18 times, at a scanning speed of 800 mm/s. The coatings were
irradiated at room temperature. The selection of laser irradiation parameters was carried
out on the basis of experimental preliminary tests and visible optical effects on the surface
of the coatings.

After laser irradiation, the coatings were immersed in a M-Copper 85 (MacDermid-
Poland, Łysomice, Poland) electroless copper plating bath with formaldehyde as the
reducing agent. The coatings were metallized for 60 min at a temperature of 48 ◦C. The pH
of the metallization bath was 12.8.

2.3. Methodology

The thermal degradation of the investigated copper complexes was carried out using
the Q500 thermogravimetric analyzer (TGA) (TA Instruments, New Castle, DE, USA).
The tests were carried out in a nitrogen atmosphere under nitrogen flow rate of about
90 mL/min. The samples were heated at 5 ◦C/min over a temperature range from 30 ◦C to
1000 ◦C. In addition to the dependence of the mass change of the sample on the temperature
(TG), its first derivative was also determined (DTG).

The surface topography of the coatings was examined with a scanning electron mi-
croscope (SEM) SU8010 (Hitachi, Tokyo, Japan) equipped with a dispersive X-ray detector
(EDX). Prior to high-resolution surface topography analysis, a thin conductive gold layer
was deposited onto the coatings in a vacuum chamber. In the case of the elemental analysis
of the coatings, their surface was not coated with gold.

X-ray photoelectron spectroscopy (XPS) experiments were carried out using an R3000
spectrometer (VG Scienta, Sweden) equipped with an Al anode emitting X-ray photons
with an energy of 1486.6 eV. The main purpose of this study was to detect and determine
the degree of copper oxidation in the surface layer after laser irradiation. In this work,
the vector fitting method was used, allowing one to distinguish Cu(0) metallic copper
from the Cu2O oxide form, which are difficult to distinguish because their photoelectron
emission bands overlap. The vector fitting method consists of determining the reference
spectra of each form of copper (Cu(0), Cu2O, CuO and Cu (OH)2), and subsequent mutual
overlapping and adjusting their intensity so that their superposition corresponds as closely
as possible to the spectrum recorded from the tested coatings. Details of this fitting
technique can be found in previous papers [25–27]. In the Cu2p band, with the binding
energy range from 960 to 930 eV, beside peaks derived from various forms of copper, a Sb3s
peak associated with the presence of Sb2O3 in the coatings was also recorded. The shape,
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area and position of this peak were determined from a reference measurement of Sb2O3 in
powder form. In the performed analysis, the area of the Sb3s peak is proportional (“rigidly”
bound) to the Sb3d3/2 peak. This peak is not included in the quantitative analysis, but it is
necessary for the correct model of the Cu2p band and for the correct quantitative analysis
of the copper elements.

The adhesive strength of polyurethane coatings as well as the deposited copper layer
were carried out by peeling off the glued stamp. It was performed using the Instron
3367 testing machine ((Instron, Norwood, MA, USA). A metal stamp was attached to the
copper layer with Araldite 2011 (Huntsman, Basel Switzerland) adhesive. After 48 h, the
sample with a metal stamp was mounted in specially constructed clamps of the testing
machine (Figure 1).
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Figure 1. The clamps for testing the adhesive strength of coatings and deposited copper layers; the
tested sample was mounted between the fixed base (1) and the cover (2) by clamping with screws (4),
with a hole for a punch (4) in the cover (2).

The measurements were carried out at a tensile speed of 2 mm/min. The adhesive
strength was calculated as the maximum force per stamp surface area which adhered to
the surface of polyurethane coating or copper layer. The surface area of the stamp was
130 mm2 (6.5 mm × 20 mm).

3. Results

Thermogravimetric analysis of the complex compounds was performed to determine
their thermal degradation characteristics. This study canreflect the susceptibility of the
tested compounds to thermal decomposition during laser ablation. Figure 2 shows the TG
curves of compounds A and B.
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Figure 2. Thermogravimetric (TG) curves for: (a) compound A; (b) compound B.

The onset of weight loss for compound A begins at about 244 ◦C. The process of rapid
weight loss lasts up to about 270 ◦C with the fastest weight loss at about 255 ◦C. In the
case of compound B, the onset of weight loss occurs at about 185 ◦C and the mass rapidly
decreases up to about 257 ◦C. The fastest weight loss of compound B occurs at 245 ◦C.

Comparing the two compounds, compound B turns out to be less thermally stable,
which can result in its faster decomposition during laser irradiation and precipitation of a
larger amount of metallic copper on the surface. Compound B, already at a temperature
of about 260 ◦C, completely decomposes, while in the case of compound A, complete
decomposition does not occur even at temperatures up to 1000 ◦C, resulting in residue
within 20% of its original weight. Therefore, it can be expected that compound B can
contribute to a higher ablation rate and precipitation of copper on the coating’s surface, as
compared to compound A.

Thermogravimetric analysis was also applied to coatings A and B, as shown in Figure 3.
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The onset of the weight loss of coating A starts at a temperature of about 244 ◦Cwith
the fastest weight loss at 254 ◦C.In the case of the coating B, the onset of weight loss
occurred at about 190 ◦C, with the fastest weight loss at 244 ◦C. The total weight loss in
coatings A and B was about 90% of the initial weight.

The thermogravimetric curves of the tested coatings containing complexes A and B
also show that the more Sb2O3 in the coatings, the lower the total weight loss observed
during the test. This is due to the fact that, of all the coating components, Sb2O3 is the one
with the highest thermal resistance to degradation, as its melting point is 656 ◦C.

Based on the TG research, it can be assumed that due to the significant lylower degra-
dation temperature of coatings containing compound B, the application of this compound
can be a more effective way to enable electroless metallization compared to coatings with
compound A. As a result of a more intensive ablation process of coatings with compound
B, the amount of precipitated copper in the coating’s surface layer should be greater than in
the case of coatings with compound A. A larger amount of precipitated copper should result
in better effects of the metallization process, i.e., higher deposition rate and better-quality
of deposited copper layers. The possibility of using TGA analysis to initially estimate the
degree of degradation induced by laser radiation has been the subject of more extensive
discussion in another study [28].

In order to verify the assumptions made on the basis of the TG test, the coatings
containing the tested complexes were laser irradiated and subjected to the metallization
process. The coatings were irradiated using a Nd:YAG laser infrared radiation with a
wavelength of 1064nm. The power of the generated beam was 4W, with 18 multiplications
of the scans of the coating surface with the laser beam.

The effects of the metallization process showed that if only the A or B complex
compounds are present in the coating, it is not enough for the metal layer to deposit on
the surface. The addition of Sb2O3 did not allow the deposition of a copper layer in all
cases. In the case of coatings containing compounds A or B and Sb2O3, the copper layer
was deposited only in the case of coatings with compound B. The best metallization effects
were obtained for coating B2 with the highest Sb2O3 content, and with the decrease in the
oxygen content in the coating, the metallizing effects deteriorated significantly (Figure 4).
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Figure 4. Images of irradiated and electroless metallized coatings.

As one can see, regardless of the coating’s composition containing compound A,
it was not possible to deposit a copper layer. On the other hand, the copper layer was
deposited on the B2 and B3 coatings. The copper layer on the B2 coating deposited on
the entire laser-irradiated surface. A smaller amount of copper (visual assessment) was
deposited on the B3 coating, while on the coating B4 copper was not visible without the
instrumental analysis.

The preliminary visual assessment of the metallized coatings has shown that the type
of the applied complex has a significant impact on the effects of the metallization process,
and thus the possibility of its use as a metallization precursor. In addition, it was found that
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the presence of Sb2O3 had a positive effect on the metallization of coatings with compound
B (the best results were obtained with the highest content of this compound).

To determine the cause of the positive effect of Sb2O3 on the electroless metallization
results, changes in the surface structure resulting from the laser modification were investi-
gated and analyzed. In order to illustrate the changes after laser irradiation, SEM images
were taken, which are presented in Figure 5.
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Figure 5. SEM images of laser irradiated coatings (coatings designation in Table 1).

The smallest changes in the structure are visible on the A1 and B1 coatings. The higher
the Sb2O3 content in the coatings, the more diverse is the topography of the irradiated coat-
ings. The most changed surface can be observed for the B2 and B3 coatings, where Sb2O3
content is the highest. In addition, in the case of coatings with a high content of Sb2O3,
the difference in the effects of laser irradiation between coatings with compounds A or B
is clearly visible. Laser radiation caused much greater changes on the surface of coatings
containing compound B. The reason for this can be the significant lylower degradation
temperature of the compound B, which was determined based on TG measurements.
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From the presented SEM images, it can be concluded that as a result of laser radiation,
the coatings with the compound B are more prone to ablation, which results in a more
changed surface morphology.

The addition of Sb2O3 to the coatings significantly changes the effects of laser irradia-
tion manifested by the fragments of this compound present on the surface of the coating,
which was confirmed by the EDX analysis. However, again, due to the lower degradation
temperature of complex B, the observed changes were more intense for coatings with this
complex. The much more changed surface structure of the coatings A2 and B2 compared
to samples A1 and B1 is the result of the higher content of Sb2O3.

One can expect that the Sb2O3 contained in the coatings, characterized by a significant
absorption of infrared radiation [23], leads to a much greater increase in the temperature of
the coating surface layer and thus a much more intensive process of thermal laser ablation.
An additional effect of intensified ablation process is the formation of an extremely micro-
rough structure on the surface of the coatings, which may lead to greater adhesive strength
of the deposited metallic layers.

The intensity of the observed changes in the surface structure decreased with the
decrease in the Sb2O3 content. The surface structure of irradiated A4 and B4 coatings, i.e.,
samples with the coatings with the lowest Sb2O3 content, was very similar to the modified
structure of coatings without this additive. The main differences in the coatings after laser
irradiation with the lowest and highest Sb2O3 content are visible in the smaller number of
voids formed and more exposed Sb2O3 particles. The analysis of changes in the structure of
the irradiated samples showed that the presence of Sb2O3 in the coatings had a significant
impact on the effects of the ablation processes.

To explain why, despite similar changes in the surface structure of irradiated coatings
A and B, metallic copper layers were not obtained in the case of the first complex, photo-
electron spectroscopy (XPS) studies were carried out to determine changes in the chemical
structure of irradiated coatings. In the XPS method, photoelectrons are emitted from the
surface layer with a maximum thickness of about 10 nm [29]. This is important information
as only the outer nanoscopic layer of the modified coatings is analyzed.

Table 2 presents the quantitative results of XPS of the irradiated coatings, which lists
the elements present in the surface layer of the tested coatings. It has been found that in
the coatings with compound B (coatings B2, B3 and B4) the O/C values were lower as
compared to coatings with compound A (coatings A2, A3 and A4).

Table 2. Content of copper, oxygen, carbon and antimony in coatings.

Cu (at%) O (at%) C (at%) Sb (at%) O/C

A1 0.19 29.86 69.97 0.00 0.43

A2 1.15 39.47 52.08 7.29 0.76

A3 1.96 38.12 54.66 5.25 0.70

A4 1.84 31.30 62.37 4.49 0.50

B1 6.69 28.00 65.30 0.00 0.43

B2 4.37 31.98 59.74 3.91 0.54

B3 7.18 29.41 60.06 3.34 0.49

B4 7.10 29.10 61.88 1.92 0.47

Significant differences in the content of copper atoms in the tested coatings can also
be noticed. The coatings containing compound B have a much higher copper content than
the coatings with compound A. The difference may result from the chemical structure of
the copper complexes and most probably relates to the amount (ratio) of copper atoms to
total molecular weight of complex. The percentage of copper in complex A is less than
10%, while in complex B it is over 24%. Such a difference in the content of copper could
have an impact on the amount of precipitated copper after laser irradiation coatings. It can
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be assumed that the higher content of copper in the surface layer of the B complex coatings
results in better metallization effects.

The XPS technique also determined the forms of copper precipitated on the surface
of the coatings after laser irradiation (Table 3, Figure 6). It can be concluded that the
amount of copper precipitated after laser irradiation had the crucial influence on the
metallization effects.

Table 3. Percentage share of various forms of copper in irradiated coatings.

Coating Cu (0) (%)
(EB = 932.7 eV)

CuO (%)
(EB = 933.9 eV)

Cu2O
(%) (EB = 932.4 eV)

Cu(OH)2 (%)
(EB = 935.0 eV)

A2 40.87 56.52 0.87 1.74

A3 11.73 3.57 63.78 20.92

B2 44.39 49.20 6.18 0.23

B3 37.19 39.97 22.84 0.00
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Despite the significantly higher content of copper atoms in the surface layer of coating
B3, the metallization effects of this coating were definitely worse than in coating B2. The
crucial influence on the effects of metallization had probably the form in which the copper
was present in the surface layer of the material, as well as the amount of the Sb2O3, which
was responsible for absorbing infrared radiation. The largest amount of copper in metallic
form was precipitated on the surface of the coating B2. In coatings with B compound, more
than 50% of the precipitated copper was in the form of Cu (I) and Cu (II), which most likely
improved the effects of electroless metallization (Table 3).

The surface of coatings after the electroless metallization is similar to the surface
structure of the coatings after laser irradiation (Figure 7).
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Figure 7. SEM images of coatings after electroless metallization.

On the coatings where the copper layer has been obtained, the surface structure of the
deposited layer is strongly developed, and to some extent reflects the structure obtained
after laser irradiation. The Sb2O3 particles exposed as a result of laser irradiation after the
metallization process were covered with a copper layer (B2 and B3 coatings) (Figure 8).
In the case of samples where the electroless metallization process was not successful, the
surface structure reflected the structure after the laser irradiation process.
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The irradiated and metallized B2 coating (Figures 7 and 8) was practically completely
covered with a copper layer, except for the characteristic depressions where the matrix of
the coating was not subjected to thermal ablation. The EDX analysis of metallized coatings
showed 46.5 at% and 13 at% of copper on the B2 and B3 coating, respectively. On other
coatings, including those with complex A, no copper was detected with this technique after
the metallization process.

In the previous work [15], similar studies were carried out using complex B, how-
ever, the surface modification was performer with an ArF excimer laser generating UV
radiation (λ = 193nm). The surface obtained as a result of irradiation was characterized
by a completely different topography than in the case of the samples presented in this
article. After the coatings were irradiated with the ArF excimer laser, their surface had a
conical structure, where copper precipitation occurred at the tips of the cones as a result
of the degradation of the complex. Copper was also present in the lower parts of cones
but in a much smaller amount. After metallization, the surface structure of the deposited
copper layer mirrored the surface structure of the substrate after laser activation. The entire
surface of the cones was covered with a layer of copper, but the tops of the cones were
rounded, due to a significantly large amount of deposited copper. The same effects were
obtained when using another copper (II) L-tyrosine complex [17]. Thus, the effects of laser
modification and electroless metallization were definitely different from those presented in
this work, where copper was mainly precipitated on Sb2O3 particles.

In order to check the adhesive strength of the deposited copper layers, the adhesive
strength tests were carried out using tensile machine by pulling off the glued stamps. The
copper layer did not peel from the polymer coating in any of the samples, because the
cracking of the adhesive joint occurred at the substrate interface (polycarbonate/coating)or
inside the polyurethane coating (cohesive breakout) (Figure 9). Therefore, based on the
results, it can only be stated that the adhesive strength of deposited copper to coatings is
greater than that values obtained in the research tests.
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Figure 9. Sample photos of metallized coatings with compound B and stamps after the pull off test.

The adhesive strength of the polyurethane coating formed on the PC substrate was
approximately 2.0 ± 0.3 MPa. The adhesive strength of the deposited copper layer, taking
into account the visual evaluation of the joints after the test described above, should be
greater. It is assumed that such a high adhesive strength of the copper layer is due to the
specific structure formed under the influence of laser irradiation, characterized by a large
surface area development caused by ablation of the matrix and irregularly shaped Sb2O3
particles. The developed surface area of the laser irradiated coatings enables the very good
anchoring of the copper layer. In addition, a very rough copper layer provides a large
contact area with the adhesive through which the stamp was attached, which prevented
cracking of the adhesive joint at the interface between the copper layer and the adhesive.

4. Conclusions

The paper presents a comparison of two complex compounds as potential precursors
of electroless metallization. The influence of the addition of Sb2O3 on the laser activation
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of the surface of the coatings containing the tested complexes was also assessed. Laser
activation was performed using a Nd:YAG laser. Based on the conducted experimental
studies, it was found that the complex B turned out to be an effective precursor of electroless
metallization. The study also showed that adding Sb2O3 to the coatings resulted in greater
changes in the surface topography of the coatings under the influence of infrared laser
radiation.SEM images showed that in the irradiated areas, a rough surface structure was
formed, especially on the coatings B2 and B3 as well as A2 and A3. Additionally, copper
was precipitated on the irradiated coatings B2 and B3, which acted as active catalytic
centers for electroless metallization. On the laser-activated surfaces of the coatings with
complex B, the protruding fragments of the coatings were Sb2O3 particles on which copper
had been precipitated. It was proved using the XPS technique that after laser irradiation of
coatings with compound B, copper in the form of Cu, CuO, Cu2O and to a small extent
in the form of Cu(OH)2 was precipitated. Most likely, in the coatingB2, the form in which
the copper was present in the surface layer of the material had a crucial influence on the
metallization effects. The addition of Sb2O3, which was responsible for absorbing infrared
radiation, led to better metallization effects. The obtained copper layers (on B2 and B3
coatings) were characterized by a very good adhesive strength, exceeding 2MPa (coating
and substrate adhesive strength).

Author Contributions: Conceptualization, research management, data analysis, writing (original
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assessment of coatings ability to be metalized. J. Therm. Anal. Calorim. 2017, 127, 381–387. [CrossRef]

29. Watts, J.; Wolstenholme, J. An Introduction to Surface Analysis by XPS and AES; Wiley: West Sussex, UK, 2003; ISBN 0-470-84712-3.

http://doi.org/10.1016/j.compositesb.2016.11.041
http://doi.org/10.14314/polimery.2018.9.4
http://doi.org/10.1016/j.surfcoat.2005.05.006
http://doi.org/10.1016/j.surfcoat.2005.07.061
http://doi.org/10.1016/j.surfcoat.2011.04.105
http://doi.org/10.1016/j.electacta.2011.12.006
http://doi.org/10.1016/j.apsusc.2019.144429
http://doi.org/10.1021/acsami.6b15828
http://www.ncbi.nlm.nih.gov/pubmed/28218517
http://doi.org/10.1021/acsami.6b11305
http://doi.org/10.1039/C8RA04813D
http://doi.org/10.1002/admi.201700937
http://doi.org/10.1016/j.polymdegradstab.2017.11.015
http://doi.org/10.1016/j.polymdegradstab.2018.05.031
http://doi.org/10.1021/jp076981k
http://doi.org/10.1016/j.carbon.2015.06.017
http://doi.org/10.1016/j.apsusc.2014.11.077
http://doi.org/10.1007/s10973-016-5878-8

	Introduction 
	Materials and Methods 
	Materials 
	Laser Modification and Metallization 
	Methodology 

	Results 
	Conclusions 
	References

