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Abstract: Traditional vibration isolation systems, using natural rubber vibration isolators, display
large peaks for the energy flow from the machine source and into the receiving foundation, at
the unavoidable rigid body resonance frequencies. However, tough, doubly cross-linked, single
polymer network hydrogels, with both chemical and physical cross-links, show a high loss factor
over a specific frequency range, due to the intensive adhesion–deadhesion activities of the physical
cross-links. In this study, vibration isolators, made of this tough hydrogel, are theoretically applied in
a realistic vibration isolation system, displaying several rigid body resonances and various energy
flow transmission paths. A simulation model is developed, that includes a suitable stress–strain
model, and shows a significant reduction of the energy flow peaks. In particular, the reduction is
more than 30 times, as compared to the corresponding results using the natural rubber. Finally, it is
shown that a significant reduction is possible, also without any optimization of the frequency for the
maximum physical loss modulus. This is a clear advantage for polyvinyl alcohol hydrogels, that are
somewhat missing the possibility to alter the frequency for the maximum physical loss, due to the
physical cross-link system involved—namely, that of the borate esterification.

Keywords: vibration isolation system; rigid body resonance; single polymer network hydrogel;
chemical cross-link; physical cross-link; high loss factor; adhesion–deadhesion activity; simulation
model; energy flow reduction; polyvinyl alcohol hydrogel

1. Introduction

Noise, vibration and harshness are key quality discriminators while selecting a prod-
uct to acquire—for example, cars, trucks, boats, air vessels and household appliances. Their
impacts are generally even wider than that—for example, the consequences of airplane
vibrations range from negligible through significant passenger disturbances to essential
flight safety concerns. The vibrations are generated at the source and transmitted further
via the surrounding structures, and are eventually radiating as noise. Both the vibration
and the noise are usually perceived as disturbing by the human observers, and thus result
in the subjective impression as unwanted. A simple and effective measure to reduce the
vibrations and noise is to disconnect the source from the receiving structure by vibration
isolators, thereby creating a mechanical mismatch, as vibration isolators are mechanically
soft while the source and receiving structure are in contrary mechanically hard. The sud-
den mechanical mismatch reflects the incoming vibrations back to the source—thus, it
is reducing the transmitted vibrations into the receiving structure and, thereby, is gener-
ally reducing the noise radiated. The inclusion of the damping in the vibration isolators,
an inherent property of such as rubber, diminishes the vibrations by transforming them
into heat at the inevitable rigid body resonances, created by the vibration isolation system
while introducing more degrees-of-freedom to the system [1–3]. In practice, it is generally
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unavoidable to excite some of those rigid body resonances in a real vibration isolation
system. Consequently, the damping in the vibration isolators should be at its maximum
at those frequencies to avoid excess motion amplitudes. On the contrary, the damping
in the vibration isolators should not be excessive at the higher frequencies, well above
the rigid body resonances, as the vibration isolation actually decreases with increased
damping at the higher frequencies, except for the frequencies at and close to the inter-
nal anti-resonances of the vibration isolators, where some damping is necessary [1–3].
In conclusion, the damping in the vibration isolators should be at its maximum in the
low-frequency, rigid body resonance range of the vibration isolation system, while being
substantially smaller, although non-vanishing, at the higher frequencies. Engineering
materials applied in the vibration isolators, such as natural rubber, typically display a low-
to-moderate damping in the low-frequency range and is slightly, to moderately, increasing
with growing frequency. That is, the typical engineering materials applied in vibration
isolators are not meeting the optimal frequency characteristic of their damping. However,
tough hydrogels, essentially consisting of diverse cross-linked network configurations
of macromolecules, while containing hydrophilic functional groups and being profusely
swollen with water, are an interesting and possible vibration isolator material [4,5], al-
though they are typically up to now applied in tissue engineering. It should be noted
that there are also other possible vibration isolator materials, including high damping
visco-elastic materials [6], auxetic cellular materials [7] and thermo-plastic elastomers [8].
However, the tough hydrogel studied in this paper most likely meets the optimal damping
frequency characteristic—displaying a maximum loss factor at the rigid body resonances
while being substantially lower sufficiently outside that frequency range.

In this paper, plausible vibration isolators made of tough, doubly cross-linked, sin-
gle network hydrogels, concurrently accommodating both chemical and physical cross-
links [9–34], are theoretically applied in a more realistic vibration isolation system, as com-
pared to that in the preliminary investigation published at the Medyna 2020 conference [5]
and to the experimental study in Yang et al. [4], the latter using tough hydrogels with vari-
ous multivalent cations. In general, the chemical cross-links consist of covalent bonds, while
the physical cross-links may include hydrogen bonds, van der Waals, hydrophobic, π – π
and ionic; ion–ion, ion–dipole, dipole–dipole interactions, see for example Refs. [17,35–38].
The tough hydrogel generally shows an adjustable maximum physical shear loss modulus
frequency and adjustable low and high frequency shear storage modula [24]. The ad-
justability is a promising property and well worth to investigate whether this plausible
material for the vibration isolators meets the previous desired frequency characteristic of
its damping, in contrast to the natural rubber. The specific tough hydrogel studied is a
doubly cross-linked polyvinyl alcohol, for which constitutive models has been derived, see
for example Refs. [12,15,16,18,28,31,33]. Those constitutive models embrace finite strains
and fractional time power dependencies [12], generalized Stokes–Einstein equation [15],
survivability functions [16,18,28,31] and fractional time derivatives [33]. The latter model
applies only four physically comprehensible material parameters, while still showing an
associative Rouse mode low-frequency response [39]—that is, a shear modulus with a
low-frequency dependence of order 1/2, in addition to a frequency independent part.
Furthermore, the model [33] makes it possible to additively divide into the contributions
from the chemical and the physical cross-links, respectively. It displays results close to
those of the measurements and is the constitutive model applied in this paper. Visco-elastic
fractional time derivative models are regularly applied, see for example Refs. [40–90].
Moreover, fractional time derivatives are, in addition, used for modeling chemical and
physical aging of rubber [91,92], and in more areas, as reviewed by Machado et al. [93].
Although, the constitutive model applied in the energy flow modeling is previously fitted
to the measurement results of the polyvinyl alcohol hydrogels [33], the energy model-
ing results are, nevertheless, applicable for a wider class of tough, doubly cross-linked,
single network hydrogels with chemical and physical cross-links, provided that similar
stress–strain relations are relevant.
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Cylindrical bushings are frequently applied as vibration isolators, due to their axial
and torsional flexibility, in combination with their radial and tilt rigidity. Examples of
static stiffness models of the cylindrical bushings include finite element models [94–98],
principal mode models [99], truncated Fourier and Bessel function models [100] and an-
alytical models [101,102]. Likewise, examples of dynamic stiffness models include finite
element models [64,103,104], combination of finite element and empirical models [105],
analytical models [52,69], waveguide models [59] and equivalent strains and analytical
models [60,62,63]. However, none of the stiffness model investigations mentioned above
have applied tough hydrogel, instead of rubber in their formulas. The simple, straightfor-
ward and analytical, axial dynamic stiffness model for long rubber bushings [52], is applied
in this paper, with the rubber replaced with the tough hydrogel. This model has, further-
more, shown to give the axial stiffness results close to those of the more accurate, yet more
complex and time consuming models—such as the waveguide models [59], for sufficiently
long bushings.

A straightforward and constructive measure to evaluate the vibration isolation achieved,
is to determine the energy flow transmitted through the vibration isolators into the re-
ceiving structure, as it simultaneously includes both the forces and velocities transmitted,
and compare it to the case without the vibration isolators. An early account on the en-
ergy flow through the vibration isolators was performed by Lyon and Maidanik [106],
already in 1962, analyzing the energy (power) flow through a two-stage vibration iso-
lation system, by Goyder and White, in a series of papers [107–109], investigating the
vibration isolation of machines and the energy flow (power transmission) processes in
sub-structures, and by Pinnington and White [110], and Pinnington [111,112], in a series of
papers, investigating the energy (power) flow through the vibration isolators into a seating.
Subsequently, a number of studies have been conducted, including the analysis of the
energy (power) flow from a machine through multiple vibration isolators and into a sup-
porting structure [113], and into a cylindrical shell [114], and studies of the energy (power)
flow through multi-dimensional vibration isolation systems [115]. They also include stud-
ies of the energy (power) flow through vibration isolators during an earthquake [116],
through vibration isolators into a floating panel [117], through magneto-sensitive vibra-
tion isolators [71,85,118–120], through non-linear vibration isolators [121,122] and through
steel springs with distributed mass [123]. Furthermore, they include studies of the energy
(power) flow from a centrifugal turbo blower into a chassis frame [124], in a two-stage non-
linear vibration isolation system [125] and in a two-stage inerter-based vibration isolation
system [126]. Finally, they include calculations and in situ measurements of the energy
(power) flow transmitted through vibration isolators to a seating structure [127,128], in situ
measurements of the energy (power) flow through elastomeric powertrain vibration isola-
tors in a passenger car [129] and investigations of the energy (power) flow transmissibility
as a measure to evaluate the capacity of an isolation system [130]. However, none of the
energy (power) flow investigations, mentioned above, have applied the tough hydrogel
vibration isolators. A literature review on the energy flow studies through interfaces
between interacting structures, is found in Acri [131].

Previously, it has been concluded that this tough hydrogel is a plausible material
in the dynamic vibration absorber springs [34]; in particular, while selecting a not too
small dynamic vibration absorber mass to elude an excess displacement amplitude of
the dynamic vibration absorber spring, where a high loss factor is required [34]. It is
now time to study a more common vibration reduction measure—namely, its suitability in
vibration isolation systems, in particular a more realistic, multi-degree system, as compared
to the initial experimental, one-dimensional study by Yang [4]—the latter using various
multivalent cations. Although dynamic vibration absorbers and vibration isolation find
their applications in the vibration abatement area, they are, nevertheless, poles apart.
Dynamic vibration absorbers work with counter forces, at the desired frequencies, to reduce
the vibrations of the primary vibration system they are attached to, where the damping
is included to increase their effective bandwidth, to dissipate mechanical energy and
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to reduce their sensitivity to design parameter deviations. On the contrary, vibration
isolation work with mechanical mismatches, to reflect the incoming vibrations back to
the source and where the damping is included to convert mechanical energy into heat,
at the rigid body resonances of the vibration isolation system in the low-frequency range
and at the internal resonances/anti-resonances within the vibration isolator spring in the
high-frequency range.

This paper extends the simple, single torsional vibration isolation system presented at
the Medyna 2020 conference [5], showing a single rigid body resonance, into a more realistic
vibration isolation system, with a solid rectangular block excited by a force and a moment,
as the mechanical source, and connected to an infinite foundation, via four tough, single
network hydrogel vibration isolator bushings, simultaneously embodying both chemical
and physical cross-links. This realistic system is displaying several rigid body resonances
and various transmission paths for the energy flow. The numerical investigation carried
out in this paper reveals whether it is possible to achieve an increased reduction of the
energy flow, through the tough hydrogel vibration isolator bushings and to what extent,
in particular at the rigid body resonance frequencies, as compared to the corresponding
results while using the more traditional rubber vibration isolators.

2. Materials and Methods

The mechanical source, in Figure 1, consists of a solid metal block of the dimen-
sions W × L× H, the density ρM, the mass M = ρMWLH, the moments of inertia Jx =
M(L2 + H2)/12 and Jy = M(W2 + H2)/12, around the x- and y-axis, respectively, and is
excited by a force Fexc(t) parallel to the z-axis, on a point at its upper surface, where t is
the time. Its rigid body motion is given in full by the generalized displacement vector
u(t) = (U(t), Wx(t), Wy(t))T, where U(t) is the rectilinear displacement, parallel to the
z-axis, at the center point on the upper surface, Wx(t) and Wy(t) are the rotational displace-
ment around the x- and y-axis, respectively, at the center of gravity, and T denotes the trans-
pose. The time dependent variables are transformed into the corresponding frequency de-
pendent variables through the temporal Fourier transformation (̃·) =

∫ +∞
−∞ (·) exp(−iωt)dt,

where i is the imaginary unit, ω = 2π f is the angular frequency and f is the frequency.
The mechanical source is connected to an infinite foundation of the density ρ f , the Young’s
modulus Yf, the Poisson’s ratio νf and of the thickness h, via four identical vibration isolator
bushings, at its lower surface corners.
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Figure 1. A mechanical source consisting of a solid metal block and excited by a force at a point [n m], n, m = 0, 1, 2.
The mechanical source is connected to an infinite metal foundation via four identical vibration isolator bushings, at its
lower surface corners. The vibration isolator bushings consist of a tough, single network hydrogel, with both chemical and
physical cross-links and are bonded between an inner and outer metal sleeve. First-angle projection applied.

The vibration isolator bushings, in Figure 1, consist of the tough, single network
hydrogel, with chemical and physical cross-links, of the length l and are bonded between
the diameters din and dout, to inner and outer metal sleeves of the mass min and mout,
respectively. The axial dynamic stiffness components are the axial inner dynamic driving
point stiffness

Kin in = 2πrinlkTµ
J1(kTrin)Y0(kTrout)− J0(kTrout)Y1(kTrin)

J0(kTrin)Y0(kTrout)− J0(kTrout)Y0(kTrin)
−ω2min, (1)

the axial dynamic outer driving point stiffness

Kout out = 2πroutlkTµ
J1(kTrout)Y0(kTrin)− J0(kTrin)Y1(kTrout)

J0(kTrin)Y0(kTrout)− J0(kTrout)Y0(kTrin)
−ω2mout (2)

and the axial dynamic transfer stiffness

Kin out = Kout in =
4lµ

J0(kTrin)Y0(kTrout)− J0(kTrout)Y0(kTrin)
, (3)

for sufficiently long bushings (l � dout − din) [52], where the inner radius rin = din/2,
the outer radius rout = dout/2, the Bessel functions of first and second kind and of order p
are Jp and Yp, respectively. Moreover, the transversal wavenumber

kT = ω

√
ρ

µ
, (4)
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the hydrogel density is ρ, the hydrogel shear modulus

µ = µst

[
1 + C

√
iω
]

︸ ︷︷ ︸
µchem

+ µst

4
√

i
ω

ωa|d

1 +

√
i

ω

ωa|d︸ ︷︷ ︸
µphys

, (5)

according to the 4-parameters model in Kari [33], with an additive split into a chemical shear
modulus part µchem and a corresponding physical part µphys, the static shear modulus µst =
limω→0 µ(ω), the angular frequency for the maximum (physical) loss shear modulus is ωa|d
(assuming C = 0), the non-dimensional relaxation intensity4 = limω→∞[µ(ω)/µst]− 1
(assuming C = 0) and the chemical Rouse stress intensity factor C � 1

√
s. Consequently,

the relations between the vibration isolator forces and displacements, in Figure 2, are

f̃in = Kin inũin + Kin outũout (6)

and
f̃out = Kout inũin + Kout outũout, (7)

where f̃in = (F̃in 1, F̃in 2, F̃in 3, F̃in 4)
T, ũin = (Ũin 1, Ũin 2, Ũin 3, Ũin 4)

T, f̃out = (F̃out 1, F̃out 2,
F̃out 3, F̃out 4)

T and ũout = (Ũout 1, Ũout 2, Ũout 3, Ũout 4)
T. Kinematically, the relation between

the isolator displacement vector, at the machine source connection points, and the mechan-
ical source displacement vector is ũin = Aũ, where the kinematic (4× 3) matrix reads

A =


1 − L

2 + rin −W
2 + rin

1 + L
2 − rin −W

2 + rin
1 − L

2 + rin +W
2 − rin

1 + L
2 − rin +W

2 − rin

 (8)

and the inner metal sleeves of the vibration isolator bushings are neatly attached to the
machine source, at its lower surface corners, see Figures 1 and 2.

Figure 2. Displacements, forces and time averaged energy flows at the connecting surfaces to the
mechanical source and to the infinite metal foundation for the vibration isolator bushing j , where
j = 1, 2, 3, 4.
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The compliance relation between the vibration isolator displacement vector, at the
foundation connection points, and the corresponding force vector is ũout = −Hf̃out, where
the compliance (4× 4) matrix reads

H =
1

8iBk2
f

×


1 Π(kf[L−2rin]) Π(kf[W−2rin]) Π

(
kf
√

[W−2rin]2+[L−2rin]2
)

Π(kf[L−2rin]) 1 Π
(

kf
√

[W−2rin]2+[L−2rin]2
)

Π(kf[W−2rin])

Π(kf[W−2rin]) Π
(

kf
√

[W−2rin]2+[L−2rin]2
)

1 Π(kf[L−2rin])

Π
(

kf
√

[W−2rin]2+[L−2rin]2
)

Π(kf[W−2rin]) Π(kf[L−2rin]) 1

, (9)

where the bending stiffness of the foundation B = Yfh3/12(1− ν2
f ), the bending wavenum-

ber of the foundation kf = (ρfhω2/B)1/4, Π(x) = H(2)
0 (x)− 2iK0(x)/π, the Hankel func-

tion of second kind and zero order is H(2)
0 and the modified Bessel function of second kind

and zero order is K0 [85,132].
The excitation force fexc is possible to apply to several points [n m] at the upper surface

of the machine source, according to Figure 1, where the excitation point coordinates are
given by [xexc, yexc] = [n{(W/2)− rin}/2, m{(L/2)− rin}/2] and n, m = 0, 1, 2. Newton’s
second law, applied to the motion of the machine source, reads −ω2Mũ = −Bf̃in + c f̃exc,
where the generalized mass (3× 3) matrix M = diag(M, Jx, Jy), the (3× 4) matrix

B =

 1 1 1 1
− 1

2 (L− 2rin) + 1
2 (L− 2rin) − 1

2 (L− 2rin) + 1
2 (L− 2rin)

− 1
2 (W − 2rin) − 1

2 (W − 2rin) + 1
2 (W − 2rin) + 1

2 (W − 2rin)

 (10)

and the vector

c =

 1
+m

4 (L− 2rin)
− n

4 (W − 2rin)

. (11)

The resulting vibration isolator displacement vector at the foundation reads

ũout = −Kout in
(
1 + Kout outH

)−1HA
[
Kin inBA− K2

out inB
(
1 + Kout outH

)−1HA−ω2M
]−1

c f̃exc (12)

and the corresponding force vector reads

f̃out = Kout in
(
1 + Kout outH

)−1A
[
Kin inBA− K2

out inB
(
1 + Kout outH

)−1HA−ω2M
]−1

c f̃exc, (13)

where the unit (4× 4) matrix 1 = diag(1, 1, 1, 1). Likewise, the resulting vibration isolator
displacement vector at the machine source reads

ũin = A
[
Kin inBA− K2

out inB
(
1 + Kout outH

)−1HA−ω2M
]−1

c f̃exc (14)

and the corresponding force vector reads

f̃in =
[
Kin inA− K2

out in
(
1 + Kout outH

)−1HA
]

×
[
Kin inBA− K2

out inB
(
1 + Kout outH

)−1HA−ω2M
]−1

c f̃exc. (15)

The displacement and force relations, without the vibration isolators and with the
machine source directly connected to the foundation at the former vibration isolator
connection points, are uno

out = −uno
in and fno

out = fno
in , where superscript no stands for no

vibration isolators. The resulting displacement and force vectors read

ũno
out = −A

(
BH−1A−ω2M

)−1c f̃exc (16)
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and
f̃no

out = H−1A
(
BH−1A−ω2M

)−1c f̃exc, (17)

respectively.
The total time averaged energy flow through the vibration isolator bushings into

the foundation, while taking into account the directions of the corresponding forces and
displacements in Figure 2, is

〈Ef〉 = − lim
T→∞

1
T

∫ +T/2

−T/2
fT

out(τ)
d

dτ
[uout(τ)]dτ, (18)

which is the same as the cross correlation function

S(−fout,
d
dt

[uout]) = − lim
T→∞

1
T

∫ +T/2

−T/2
fT

out(τ)
d

dτ
[uout(τ + t)]dτ, (19)

evaluated at t = 0. However, that is also the same as the inverse temporal Fourier transform
of the cross correlation spectral density S̃(−f̃out, iωũout), evaluated at t = 0, [133]

〈Ef〉 =
1

2π

∫ ∞

−∞
S̃(−f̃out, iωũout) exp(iωt)dω|t=0 = −

∫ ∞

−∞
i2π f S̃(̃fout, ũout)d f , (20)

where the cross correlation spectral density between the force and displacement vector is
S̃(̃fout, ũout). Consequently, the total energy flow spectral density [W/Hz], through the
vibration isolator bushings into the foundation, is possible to evaluate by the real part < of
the cross correlation spectral density <[−i4π f S̃(̃fout, ũout)], while faulting the energy flow
spectral densities at the negative frequencies to the corresponding positive frequencies,
using the temporal Fourier transform property +i[− f ]S̃(− f )| f≥0 = −i[+ f ]S̃∗(+ f )| f≥0,
resulting in +i[− f ]S̃(− f )[negative frequency:− f ] + i[+ f ]S̃(+ f )[positive frequency:+ f ] = <[i2 f S̃
(+ f )][positive frequency:+ f ], where the complex conjugate operator (·)∗ = conj(·). That is,
the total time averaged energy flow trough the vibration isolator bushings into the founda-
tion is

〈Ef〉 =
∫ ∞

0

d〈Ef〉
d f

d f = −
∫ ∞

0
<[i4π f S̃(̃fout, ũout)]d f , (21)

ref. [133] while allowing only the positive frequencies. The resulting total energy flow
spectral density, through the vibration isolator bushings into the foundation, reads

d〈Ef〉
d f

= <
{

i4π f |Kout in|2c†
[
Kin inBA− K2

out inB
(
1 + Kout outH

)−1HA− 4π2 f 2M
]−†

×A†(1 + Kout outH
)−†(1 + Kout outH

)−1HA

×
[
Kin inBA− K2

out inB
(
1 + Kout outH

)−1HA− 4π2 f 2M
]−1

c

}
S̃( f̃exc, f̃exc), (22)

by using Equations (12) and (13), where the Hermitian conjugate operator (·)† = conj(·)T,
(·)−† = conj[(·)−1]T and the auto correlation spectral density of the excitation force
S̃( f̃exc, f̃exc) ∈ R+. Likewise, the resulting total energy flow spectral density, from the
machine source into the vibration isolator, bushings reads
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d〈Ein〉
d f

= <
{

i4π f c†
[
Kin inBA− K2

out inB
(
1 + Kout outH

)−1HA− 4π2 f 2M
]−†

×
[
Kin inA− K2

out in
(
1 + Kout outH

)−1HA
]†

×A
[
Kin inBA− K2

out inB
(
1 + Kout outH

)−1HA− 4π2 f 2M
]−1

c

}
S̃( f̃exc, f̃exc), (23)

by using the Equations (14) and (15). Finally, the resulting total energy flow spectral density,
into the foundation without the vibration isolators, reads

d〈Eno
f 〉

d f
= <

[
i4π f c†(BH−1A− 4π2 f 2M

)−†A†H−†A
(
BH−1A− 4π2 f 2M

)−1c
]
S̃( f̃exc, f̃exc), (24)

by using the Equations (16) and (17).
At last, the total energy flow transmissibility spectral density into the foundation

EFT def
=

d〈Ef〉
d f

d〈Eno
f 〉

d f

(25)

and the corresponding total energy in-flow transmissibility spectral density into the vibra-
tion isolator bushings

EFTin
def
=

d〈Ein〉
d f

d〈Eno
f 〉

d f

, (26)

where the nominators and denominators are explicitly given by Equations (22)–(24).

3. Results and Discussion
3.1. Source, Vibration Isolator Bushing, Foundation and Material Parameters

The dimensions, the mechanical and material parameter quantities and values for
the mechanical source, vibration isolator bushings and for the foundation are given in
Table 1. The mechanical source is made of aluminum while the foundation is made of
steel. The chemical Rouse stress intensity factor C is chosen to be the average value of the
materials studied in Kari [33] and with the experiments from Refs. [12,29]. The hydrogel
density ρ is close to that of the water and the static modulus µst is possible to modify by
selecting a suitable chemical cross-link density [24]. Moreover, the relaxation intensity
4 is possible to modify by selecting a suitable physical-to-chemical cross-link density at
the maximum physical cross-link activity [24]. Finally, the frequency for the maximum
physical loss shear modulus fa|d is possible to modify by selecting a suitable metal ion
to rearrange the adhesion–deadhesion activities of the physical cross-links that in turn
result from the alterations in their kinetics and thermodynamics [24]. In passing, borate
esterification is the physical cross-link reaction process for the polyvinyl alcohol hydrogels
and is thereby somewhat restricting the alteration possibility of the physical cross-link
activity [24]. Nonetheless, the energy flow modeling results in this paper are pertinent for
a wider class of tough, doubly cross-linked, single network hydrogels with chemical and
physical cross-links provided that the hydrogel shear modulus model (5) is applicable.
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Table 1. The dimensions, the mechanical and material parameter quantities and values for the mechanical source, vibration
isolator bushings and for the foundation.

Mechanical Source Vibration Isolators Foundation
Quantity Value Quantity Value Quantity Value

Width W 0.200 m Length l 0.100 m Young’s
Length L 0.500 m Inner diameter din 0.040 m modulus Υf 210 GN/m2

Hight H 0.050 m Outer diameter dout 0.050 m Poisson’s
Density ρM 2700 kg/m3 Inner sleeve mass min 0.407 kg ratio: νf 0.300
Mass M 13.50 kg Outer sleeve mass mout 0.111 kg Thickness h 0.010 m
Moment Density ρ 1000 kg/m3 Density ρf 780 kg/m2

of inertia Jx 0.284 kgm2 Static modulus µst 2000 N/m2

Moment Relaxation intensity 4 5.00
of inertia Jy 0.478 kgm2 Chemical Rouse stress intensity factor C 0.0662

√
s

Max physical loss modulus frequency fa|d = ωa|d/2π 50 to 53 Hz

3.2. Hydrogel Shear Modulus

The shear modulus and loss factor versus the frequency, in the range 0.01 to 100 Hz,
are shown in Figure 3 for the studied hydrogel, while applying fa|d = 52.7 Hz. The total
storage modulus <µ, physical storage modulus <µphys and the chemical storage modulus
<µchem, are shown in green solid, green dashed and green dash–dotted lines, respectively.
Likewise, the total loss modulus =µ, physical loss modulus =µphys and the chemical loss
modulus =µchem, where = denotes the imaginary part, are shown in red solid, red dashed
and red dash–dotted lines, respectively. Finally, the total loss factor =µ/<µ, physical loss
factor =µphys/<µ and the chemical loss factor =µchem/<µ, are shown in magenta solid,
magenta dashed and magenta dash–dotted lines, respectively. Clearly, the total storage
modulus displays an increase with increasing frequency throughout the studied frequency
range. It displays a value close to the static modulus µst in the low-frequency end while
being close to [1+4]µst in the high-frequency end. The physical storage modulus displays
an increase with increasing frequency throughout the whole considered frequency range. It
displays an associated Rouse mode behavior with a half order frequency dependence [39]
in the low-frequency range, up to about 1 Hz. The chemical storage modulus displays an
almost constant value close to the static modulus µst in the low-frequency range, up to
about 1 Hz, then it increases slightly with increasing frequency.
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Figure 3. (a) The total, the physical and the chemical storage and loss modulus versus the frequency.
(b) The total, the physical and the chemical loss factor versus the frequency.

The total and physical loss modulus display an associated Rouse mode behavior in the
low-frequency range, up to about 1 Hz. Then they flatten out for even higher frequencies.
However, the total loss modulus continues to increase while the corresponding physical
loss modulus displays a maximum of µst4/2(1 +

√
2) = 2070 N/m2 at fa|d = 52.7 Hz.

The physical loss modulus decreases with increasing frequencies above that frequency
point. The adhesion–deadhesion activities of the physical cross-links are at their maximum
at fa|d, that results in a maximum physical loss modulus. Physically, the time frame for
profoundly lower frequencies f � fa|d is long—thus, allowing for early debonding of
most of the physical cross-links and results in a lower physical loss and storage modulus.
Conversely, the time frame for profoundly higher frequencies f � fa|d is short, thus not
allowing for debonding of most of the physical cross-links and results also in a lower
physical loss modulus. Furthermore, it results in a higher physical storage modulus, since
a majority of the physical cross-links are bonded throughout the whole time frame. More
details of the physical explanations are given in such as Refs. [12,14,24,33], for the interested
reader. The chemical loss modulus is significantly smaller than the corresponding total and
physical loss modula. It displays an associated Rouse mode behavior throughout the whole
studied frequency range. The main contribution of the chemical cross-links is to the storage
modulus, in particular at the low-frequency range, where it is the dominating cross-link
contribution to the total shear modulus. As a result, the total and physical loss modulus are
close to each other up to about 10 Hz, where they start to deviate with increasing frequency.

Likewise, the total and physical loss factors are close to each other up to about 1 Hz,
where they start to deviate with increasing frequency. They display an increase with
increasing frequency in the low-frequency range while showing the opposite in the high-
frequency range. That is, they display a decrease with increasing frequency. As a result, they
show a maximum loss factor in-between those frequency ranges. The total loss factor shows
a maximum of about 0.396 at fmax[η] = 11.0 Hz, while the corresponding maximum physical
loss factor is about 0.339 at fmax[ηphys]

= 7.81 Hz. In passing, the maximum physical loss

factor is 4/[(
√

2 +
√

1 +4)2 − 1] = 0.359 at fmax[ηphys(C=0)] = fa|d/(1 +4) = 8.78 Hz,
while redefining the physical loss factor as =µphys/<µ(C = 0). The chemical loss factor
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displays a slight increase with increasing frequency. It is substantially smaller than the
corresponding total and physical loss factors, up to about 10 Hz, where they begin to
approach each other with increasing frequency.

3.3. Dynamic Stiffness

The absolute value of the axial dynamic stiffness |K| and its phase ∠K, fulfilling K =
|K| exp(i∠K), versus the frequency, in the range 0.01 to 100 Hz, are shown in Figure 4 for
the studied hydrogel vibration isolator bushings, while applying fa|d = 52.7 Hz. The axial
inner dynamic driving point stiffness Kin in, is shown in green solid lines, the axial dynamic
outer driving point stiffness Kout out is shown in red solid lines and the axial dynamic
transfer stiffness Kout in, is shown in magenta solid lines. The corresponding axial inner and
outer dynamic driving point stiffness, while assuming weightless inner and outer metal
sleeves min = mout = 0, are shown in green and red dashed lines, respectively. Clearly,
the inner and outer driving point stiffness and the transfer stiffness almost overlap in the
low-frequency range, up to just over 1 Hz. That overlap holds for both their absolute values
and their phases, respectively. The absolute values increase with increasing frequency
up to about 10 Hz. Then the inner and outer driving point stiffness drop. First the inner
driving point stiffness is dropping into a trough at about 34 Hz, followed by the outer
driving point stiffness that is dropping into a trough at about 64 Hz. Then they rise again
with increasing frequency. The trough location at a lower frequency for the inner driving
point stiffness compared to the trough location for the outer driving point stiffness is due
to a larger inner metal sleeve mass min > mout. The corresponding inner and outer driving
point stiffnesses, with weightless inner and outer metal sleeves, drop at higher frequencies
without showing any trough within the considered frequency range. The transfer stiffness
displays an increase with increasing frequency throughout the whole considered frequency
range, without any drop, nor a trough. The drops and troughs of the inner and outer
driving point stiffness are mainly due to resonances of the spring–mass systems, where the
spring is the hydrogel vibration isolator bushing with weightless inner and outer metal
sleeves, and the mass is the mass of the inner and outer metal sleeves, respectively. That
conclusion is verified by the approximate +180 degree jump of the driving point stiffness
phases around the trough frequencies in Figure 4b. On the contrary, the drops of the inner
and outer driving point stiffness, with weightless inner and outer metal sleeves, at the
higher frequencies are instead due to the wave effects within the hydrogel vibration isolator
bushing, eventually showing internal resonances at even higher frequencies, outside the
considered frequency range. This is verified by the sharp rise of their stiffness phases at the
high-frequency end of the zoomed area in Figure 4c. The conclusion is furthermore verified
by the deviating stiffness phases starting from just over 1 Hz, where in addition the shear
modulus phase, ∠µ is shown in black solid line, fulfilling µ = |µ| exp(i∠µ). Any stiffness
phase deviation from the shear modulus phase indicates either internal wave or mass–
spring effects, eventually leading to internal or mass–spring resonances or anti-resonances.
Finally, the inner and outer driving point phases are thermodynamically required to fulfill
0 ≤ ∠K ≤ π. This requirement is clearly fulfilled within the considered frequency range.
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Figure 4. (a) The absolute value of the axial inner driving point, outer driving point and transfer
dynamic stiffness versus the frequency, with fa|d = 52.7 Hz. (b) The corresponding phase of the axial
inner driving point, outer driving point and transfer dynamic stiffness versus the frequency. (c) The
zoomed in version of the phase of the axial dynamic stiffness in (b) versus the frequency.

3.4. Energy Flow Transmissibility

The energy flow transmissibility spectral density into the foundation versus the fre-
quency, in the range 0.01 to 100 Hz, is shown in Figure 5 for the studied hydrogel vibration
isolation system in Figure 1. The results for all the nine combinations of the force excitation
points [n m], with n, m = 0, 1, 2 , at the upper surface of the machine source, according to
Figure 1, are shown as subplots. The total energy flow transmissibility spectral density into
the foundation EFT, is shown in green solid lines. The individual energy flow transmis-
sibility spectral densities into the foundation EFT j , j = 1, 2, 3, 4 , through the hydrogel
vibration isolator bushing 1 , 2 , 3 and 4 (see Figure 1), are shown in red, blue, magenta
and cyan solid lines, respectively. The relation EFT = EFT 1 + EFT 2 + EFT 3 + EFT 4 holds,
since all the energy flow transmissibility spectral densities are calculated in relation to the
total energy flow spectral density into the foundation, without the vibration isolators. Neg-
ative energy flow transmissibility spectral densities, at reversed energy flows, directed from
the foundation into the vibration isolators, are shown in dotted lines. The excitation force
may excite up to three rigid body resonances of the studied hydrogel vibration isolation
system, with their motions appropriately described by the generalized displacement vector
ũ = (Ũ, W̃x, W̃y)T. The main idea in this paper is to introduce the tough, single network
hydrogel vibration isolator bushings with chemical and physical cross-links to reduce the
energy flow transmissibility into the foundation—in particular, to reduce this transmissibil-
ity at the rigid body resonances of the vibration isolation system. The latter is an essential
challenge and disadvantage for the more traditional vibration isolation systems, while
using such as natural rubber vibration isolators. To this end, the maximum of the energy
flow transmissibility spectral density EFTmax, from Equation (25), should be minimized.
This is performed by finding an optimal frequency for the maximum physical loss shear
modulus f opt

a|d , while using the constrained non-linear multi-variable programming solver

fmincon from MATLABr [134]. The resulting f opt
a|d , for each force excitation point [n m], are

shown in Table 2, with the corresponding minimum value of the maximum energy flow
transmissibility spectral density min[EFTmax] and the frequency for the maximum energy
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flow transmissibility spectral density fmax. Moreover, the maximum value of the energy
in-flow transmissibility spectral density EFTin max (see Section 3.5) and the corresponding
frequency for the maximum energy in-flow transmissibility spectral density fin max, are
shown in Table 2. Furthermore, the resulting frequency for the maximum total loss factor
fmax[η], for each force excitation point [n m], are shown in Table 2, with the corresponding
frequency for the maximum physical loss factor fmax[ηphys]

and, finally, the frequency for
the maximum (redefined) physical loss factor, while using C = 0, in parenthesis.
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Figure 5. The total and individual energy flow transmissibility spectral densities into the foundation versus the frequency,
at the force excitation points [n m], with n, m = 0, 1, 2 .

Table 2. The optimized frequencies for the maximum physical loss factor f opt
a|d in green, with resulting hydrogel vibration

isolation system parameters, for all the nine combinations of the force excitation points [n m], with n, m = 0, 1, 2. The corre-
sponding frequency fmax for the minimum of the maximum energy flow transmissibility spectral density min[EFTmax] and
the frequency fin max for the maximum energy in-flow transmissibility spectral density EFTin max. The frequency fmax[η]
for the maximum total loss factor and the frequency fmax[ηphys] for the maximum physical loss factor. The corresponding
frequency for the maximum physical loss factor using C = 0 is in parenthesis.

[n m] f opt
a|d [Hz] min[EFTmax] fmax [Hz] EFTin max fin max [Hz] fmax[η] [Hz] fmax[ηphys]

[Hz]

[0 0] 52.7 5.09 9.49 25.5 9.75 11.0 7.81 (8.78)
[0 1] 52.2 5.02 9.50 27.7 9.88 10.9 7.75 (8.70)
[0 2] 50.9 4.83 9.55 44.5 15.1 10.6 7.57 (8.49)
[1 0] 52.7 5.08 9.49 29.6 9.99 11.0 7.81 (8.78)
[1 1] 52.2 5.01 9.51 31.8 10.2 10.9 7.74 (8.70)
[1 2] 50.9 4.83 9.55 51.0 14.7 10.6 7.57 (8.49)
[2 0] 52.6 5.06 9.50 50.7 12.8 11.0 7.80 (8.77)
[2 1] 52.1 5.00 9.51 56.4 13.1 10.9 7.74 (8.69)
[2 2] 50.9 4.82 9.56 73.7 13.9 10.6 7.56 (8.48)

Clearly, there are at most three total energy flow transmissibility spectral density peaks
in the subplots of Figure 5—each corresponding to a rigid body resonance of the vibration
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isolation system. The first rigid body resonance at about 9.7 Hz, is linked to the rectilinear
motion Ũ parallel to the z-axis, the second rigid body resonance at about 13 Hz, is linked to
the rotating motion W̃y around the y-axis and the third rigid body resonance at about 15 Hz,
is linked to the rotating motion W̃x around the x-axis. The force excitation at the point [0 0],
results only in a single rigid body resonance excited—namely that linked to the rectilinear
motion Ũ parallel to the z-axis and is due to the double symmetry with respect to both the
x- and y-axis. The number of rigid body resonances excited is increased to two, at the force
excitations at the points [1 0] and [2 0], by including also the rigid body resonance linked to
the rotating motion W̃y around the y-axis, and is due to the symmetry reduction to include
only the symmetry with respect the x-axis. Likewise, the number of rigid body resonances
excited is increased to two at the force excitations at the points [0 1] and [0 2], by including
also the rigid body resonance linked to the rotating motion W̃x around the x-axis, and is due
to the symmetry reduction to include only the symmetry with respect the y-axis. Finally,
the number of rigid body resonances excited is increased to three, at the force excitations at
the points [1 1], [2 1], [1 2] and [2 2], by including also the rigid body resonances linked to
the rotating motions W̃x and W̃y around the x- and y-axis, respectively, and is due to the
symmetry reduction into no symmetry. The dominating rigid body resonance, from the
maximum total energy flow transmissibility spectral density point of view, including all
the force excitation point considered in this study, is the rigid body resonance linked to
the rectilinear motion Ũ parallel to the z-axis, and is displaying the highest peaks in all the
subplots of Figure 5. Furthermore, the increased number of rigid body resonances excited
result in an increased distribution of the total energy flow into more degrees-of-freedom
that, in turn, result in a decreased maximum total energy flow transmissibility spectral
density peaks for the dominating degree-of-freedom. That conclusion is clearly obvious in
the subplots of Figure 5 and, in particular, in the Table 2 that shows that the maximum total
energy flow transmissibility spectral density peak reduces from 5.09 for the excitation force
at [0 0], to 5.06 for the excitation force at [2 0], to 4.83 for the excitation force at [0 2] and
to 4.82 for the excitation force at [2 2]. Moreover, the rigid body resonances are strongly
overlapping due to close rigid body resonance frequencies and due to the high damping of
the tough, doubly cross-linked, single network hydrogel vibration isolator bushings with
chemical and physical cross-links. The strong overlap results in a shift of the frequency
for the maximum energy flow transmissibility spectral density fmax into slightly higher
frequencies. This frequency shift increases with increasing excitation of the rotating rigid
body resonances, as is clearly noticeable in Table 2, where fmax = 9.49 Hz for the excitation
force at [0 0], increases to 9.50 Hz for the excitation force at [2 0], increases to 9.55 Hz for the
excitation force at [0 2] and increases to 9.56 Hz for the excitation force at [2 2]. The latter
excitation force excites both the rotating rigid body resonances, in addition to the rectilinear
rigid body resonance of the vibration isolation system. However, the strong overlap makes
it difficult to visually dissolve all the three peaks simultaneously.

The total energy flow transmissibility spectral density into the foundation EFT, for the
excitation force at [0 0] in Figure 5, displays almost a constant value close to 1 in the low-
frequency range, up to about 1 Hz. Then it rises with increasing frequency and shows a
maximum of EFTmax = 5.09 at fmax = 9.49 Hz. Then it drops with increasing frequency,
displays EFT = 1 at about f = 14.3 Hz and continues to drop with increasing frequency,
displaying EFT = 7.22× 10−4 at the high-frequency end, f = 100 Hz. The conclusion is
that the studied vibration isolation system functions as intended for the frequencies above
14.3 Hz and shows, in addition, a fast vibration isolation improvement with increasing
frequency above that frequency. However, and as already mentioned, the total energy
flow transmissibility spectral density into the foundation at a rigid body resonance of
the vibration isolation system is important since, in practice, it is generally unavoidable
to excite a rigid body resonance in a real vibration isolation system—that is, to avoid
excitation force frequencies below 14.3 Hz. This can happen at the starting up, turning
off and at changing the revolutions per minute of machines, among other circumstances.
The corresponding individual energy flow transmissibility spectral densities into the
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foundation EFT j , j = 1, 2, 3, 4 , are exactly overlapping while showing EFT j = EFT/4.
This is not surprising as the vibration isolation system is displaying a double symmetry
with respect to both the x- and y-axis, for the excitation force at [0 0].

The individual energy flow transmissibility spectral densities into the foundation,
for the excitation force at [1 0] and [2 0] in Figure 5, are grouped into EFT 1 = EFT 2
and EFT 3 = EFT 4 , due to the symmetry with respect to the x-axis. The dominating
individual energy flow transmissibility spectral densities are EFT 1 and EFT 2 , displaying
an almost a constant value of about 0.38 for the excitation force at [1 0] and about 0.50 for the
excitation force at [2 0], in the low-frequency range, up to about 1 Hz. The corresponding
individual energy flow transmissibility spectral densities EFT 3 and EFT 4 display an
almost a constant value of about 0.13 in the low-frequency range, up to about 1 Hz, for the
excitation force at [1 0], while they display a very small value of 2.5× 10−7 at the low-
frequency end, f = 0.01 Hz, for the excitation force at [2 0]. The latter individual energy
flow transmissibility spectral densities increase then fast with increasing frequency and
shows 1.67× 10−3 at f = 1 Hz, for the excitation force at [2 0]. Interestingly, the individual
energy flow transmissibility spectral densities EFT 3 and EFT 4 display also a reversed
energy flow approximately between the frequencies 15.7 and 21.4 Hz, for the excitation
force at [1 0], and from 13.4 Hz to the high-frequency end, f = 100 Hz, for the excitation
force at [2 0].

Likewise, the individual energy flow transmissibility spectral densities into the foun-
dation, for the excitation force at [0 1] and [0 2] in Figure 5, are grouped into EFT 1 = EFT 3
and EFT 2 = EFT 4 , due to the symmetry with respect to the y-axis. The dominating
individual energy flow transmissibility spectral densities are EFT 2 and EFT 4 , displaying
an almost a constant value of about 0.38 for the excitation force at [0 1] and about 0.50
for the excitation force at [0 2], in the low-frequency range, up to about 1 Hz. The corre-
sponding individual energy flow transmissibility spectral densities EFT 1 and EFT 3 display
an almost a constant value of about 0.12 in the low-frequency range, up to about 1 Hz,
for the excitation force at [0 1], while they display a very small value of 3.45× 10−7 at
the low-frequency end, f = 0.01 Hz, for the excitation force at [0 2]. The latter individual
energy flow transmissibility spectral densities increase fast with increasing frequency and
show 2.25× 10−3 at f = 1 Hz, for the excitation force at [0 2]. Furthermore, the individual
energy flow transmissibility spectral densities EFT 1 and EFT 3 display also a reversed
energy flow approximately between the frequencies 20.4 and 50.5 Hz, for the excitation
force at [0 1].

Furthermore, the individual energy flow transmissibility spectral densities into the
foundation, for the excitation force at [2 2] in Figure 5, are fully split into the separate
individual contributions EFT 1 , EFT 2 , EFT 3 and EFT 4 , due to the lacking symmetries
with respect to the x- and y-axis. The dominating individual energy flow transmissibil-
ity spectral density is EFT 2 , displaying an almost a constant value of about 0.75, in the
low-frequency range, up to about 1 Hz. The corresponding individual energy flow trans-
missibility spectral densities EFT 1 and EFT 4 display an almost a constant value of about
0.25 in the low-frequency range, up to about 1 Hz, while the corresponding individual en-
ergy flow transmissibility spectral density EFT 3 is displaying a reversed energy flow with
an almost a constant negative value of about−0.25, in the low-frequency range, up to about
1 Hz. In fact, the reversed, negative individual energy flow transmissibility spectral density
EFT 3 is extended to the frequency of about 8.42 Hz, where it change the sign to a positive
energy flow. Furthermore, the same individual energy flow transmissibility spectral den-
sity EFT 3 displays a second frequency range of a reversed, negative individual energy
flow transmissibility spectral density, approximately between the frequencies 20.1 and
25.3 Hz. At last, the individual energy flow transmissibility spectral density EFT 4 displays
a reversed, negative individual energy flow transmissibility spectral density approximately
between the frequencies 13.0 and 14.0 Hz, while the individual energy flow transmissibility
spectral density EFT 1 displays accordingly a reversed, negative individual energy flow
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transmissibility spectral density approximately from 42.1 Hz to the high-frequency end,
f = 100 Hz.

Finally, the total energy flow transmissibility spectral density into the foundation
is thermodynamically required to be non-negative. This requirement is clearly fulfilled,
within the considered frequency range, for all the force excitation points [n m], n, m = 0, 1, 2 ,
in Figure 5.

3.5. Energy In-Flow Transmissibility

The energy in-flow transmissibility spectral density into the vibration isolator bushings
versus the frequency, in the range 0.01 to 100 Hz, is shown in Figure 6. The results for
all the nine combinations of the force excitation points [n m], with n, m = 0, 1, 2 , are
shown as subplots. The total energy in-flow transmissibility spectral density into the
vibration isolator bushings EFTin, is shown in green solid lines. The individual energy
in-flow transmissibility spectral densities into a single vibration isolator bushing EFTin j ,
j = 1, 2, 3, 4 , for the hydrogel vibration isolator bushing 1 , 2 , 3 and 4 are shown in red,
blue, magenta and cyan solid lines, respectively. The relation EFTin = EFTin 1 + EFTin 2 +
EFTin 3 + EFTin 4 holds since all the energy in-flow transmissibility spectral densities
are calculated in relation to the total energy flow spectral density into the foundation,
without the vibration isolators. Negative energy in-flow transmissibility spectral densities,
at reversed energy flows, directed from the vibration isolator bushings into the mechanical
source, are shown in dotted lines.
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Figure 6. The total and individual energy in-flow transmissibility spectral densities into the vibration isolator bushings
versus the frequency, at the force excitation points [n m], with n, m = 0, 1, 2 .

The total and individual energy in-flow transmissibility spectral densities into the
vibration isolator bushings in Figure 6 show similar frequency dependence as the corre-
sponding energy flow transmissibility spectral densities into the foundation. However,
the maximum total energy in-flow transmissibility spectral densities are showing larger
peak values. For example, the maximum total energy in-flow transmissibility spectral den-
sity into the vibration isolator bushings, for the excitation force at [0 0], is EFTin max = 25.5
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as compared to the corresponding EFTmax = 5.09. That is, part of the energy flow into the
vibration isolator bushings is absorbed in the bushing and transformed into heat, while
the remaining part of the energy flow is conveyed further into the foundation. In other
words, the vibration isolator bushings also act as vibration dampers, transforming the
mechanical energy into heat. In fact, EFTin ≥ EFT holds since the heat produced must be
non-negative from the thermodynamical point of view. The equality relation EFTin = EFT
is only possible for purely elastic vibration isolator materials, without any losses. The corre-
sponding relations hold also for the individual energy flows EFTin j ≥ EFT j , j = 1, 2, 3, 4 .
Moreover, the frequencies for the maximum total energy in-flow transmissibility spec-
tral densities are shifted to slightly higher frequencies in Figure 6, as compared to the
corresponding frequencies for the maximum total energy flow transmissibility spectral
densities in Figure 5, for all the force excitation points [n m], n, m = 0, 1, 2 . For example,
the frequency for the maximum total energy in-flow transmissibility spectral density, for the
excitation force at [0 0], is shifted from fmax = 9.49 Hz to fin max = 9.75 Hz. Furthermore,
the dominating rigid body resonance, from the maximum total energy in-flow transmissi-
bility spectral density point of view, is the rigid body resonance linked to the rectilinear
motion parallel to the z-axis for the excitation force at [0 0], [1 0], [0 1] and [1 1]. The result
corresponds to the results for the dominating total energy flow transmissibility spectral
density. However, the results for the excitation force at [0 2] and [1 2] are mainly linked to
the rotating motion around the x-axis, while the results for the excitation force at [2 0], [2 1]
and [2 2] are mainly linked to the rotating motion around the y-axis. The latter excitation
force point shows, in addition, a strong overlap with the rigid body resonance linked to the
rotating motion around the x-axis.

The total energy in-flow transmissibility spectral density into the vibration isolator
bushings is thermodynamically required to be non-negative. This requirement is clearly
fulfilled within the considered frequency range for all the force excitation points [n m],
n, m = 0, 1, 2 , in Figure 6. However, the individual energy in-flow transmissibility spectral
densities into the vibration isolator bushings are possible to be negative, like the corre-
sponding individual energy flow transmissibility spectral densities into the foundation.
In fact, the individual energy in-flow transmissibility spectral density EFTin 3 , into the
vibration isolator bushing 3 , displays a reversed energy flow from the low-frequency
end, f = 0.01 Hz to 4.77, 4.69 and to 2.08 Hz, for the excitation force at [2 1], [1 2] and [2 2],
respectively. In passing, the thermodynamically grounded individual energy in-flow trans-
missibility spectral density relations imply, among other things, that the energy in-flow is
not possible to be reversed concurrently with a positive energy flow into the foundation,
for each individual vibration isolator bushing. This requirement is clearly fulfilled for all
vibration isolator bushings in Figures 5 and 6.

3.6. Minimum Analysis

The first and second order derivatives of the energy flow transmissibility spectral
density EFT, for the excitation force at [0 0], with respect to the frequency for the maximum
physical loss shear modulus fa|d at its optimum value f opt

a|d = 52.7 Hz, while using the

central finite difference scheme of 8th-order accuracy from Fornberg [135], with a uniform
step-size ∆a|d,

d[EFT( f opt
a|d )]

d f opt
a|d

=
1

∆a|d

[
1

280
EFT( f opt

a|d − 4∆a|d)−
4

105
EFT( f opt

a|d − 3∆a|d) +
1
5

EFT( f opt
a|d − 2∆a|d)

− 4
5

EFT( f opt
a|d − ∆a|d) +

4
5

EFT( f opt
a|d + ∆a|d)−

1
5

EFT( f opt
a|d + 2∆a|d)

+
4

105
EFT( f opt

a|d + 3∆a|d)−
1

280
EFT( f opt

a|d + 4∆a|d)

]
+O(∆8

a|d) (27)
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and

d2[EFT( f opt
a|d )]

[d f opt
a|d ]

2
=

1
∆2

a|d

[
− 1

560
EFT( f opt

a|d − 4∆a|d) +
8

315
EFT( f opt

a|d − 3∆a|d)−
1
5

EFT( f opt
a|d − 2∆a|d)

+
8
5

EFT( f opt
a|d − ∆a|d)−

205
72

EFT( f opt
a|d ) +

8
5

EFT( f opt
a|d − ∆a|d)

− 1
5

EFT( f opt
a|d + 2∆a|d) +

8
315

EFT( f opt
a|d + 3∆a|d)

− 1
560

EFT( f opt
a|d + 4∆a|d)

]
+O(∆8

a|d), (28)

read |d[EFT( f opt
a|d )]/ d f opt

a|d | < 10−5 Hz−1 ≈ 0 and d2[EFT( f opt
a|d )]/(d f opt

a|d )
2 = +3.28 ×

10−4 Hz−2, respectively. That is, the energy flow transmissibility spectral density clearly
displays a minimum at f opt

a|d . A numerical step-size experimentation for this classical
ill-conditioned numerical differentiation try-out reveals that a trade-off between a large
subtraction rounding error, due to an overly small step-size, and large first and second
derivative estimation method errors, due to an overly large step-size, lies approximately
between 10−1 Hz ≤ ∆a|d ≤ 10−4 Hz, while using binary64 (double) precision calculations
according to the IEEE Standard 754-2019 revision for the floating-point arithmetic. In fact,
the maximum energy flow transmissibility spectral density results in Figure 7a, versus the
frequency for the maximum physical loss shear modulus, reveal that the optimum value
f opt
a|d = 52.7 Hz results actually in a minimum of the maximum energy flow transmissibility

spectral density into the foundation.
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Figure 7. (a) The maximum energy flow transmissibility spectral densities versus the frequency for
the maximum physical loss modulus, for the coupled and uncoupled hydrogel vibration isolation
systems. (b) The energy flow and in-flow transmissibility spectral densities versus the frequency,
for the coupled and uncoupled hydrogel vibration isolation systems.
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The frequency for the maximum energy flow transmissibility spectral density fmax,
for all the force excitation points in Table 2, is located close to the frequency for the
maximum loss factor fmax[η], still not exactly at that frequency. For example, the frequency
difference fmax[η]− fmax = 1.50 Hz, for the force excitation at [0 0]. This difference decreases
with increasing number of rigid body resonances excited. For example, the frequency
difference fmax[η]− fmax decreases from 1.50 to 1.47, 1.03 and 1.01 Hz, for the force excitation
at [0 0] to [2 0], [0 2] and [2 2]. The main reasons for the frequency difference decrease are
the decreased frequency for the maximum loss factor and the increased frequency for the
maximum energy flow transmissibility spectral density, with the increasing number of
rigid body resonances excited.

A straightforward method to further explore the minimum obtained for the maximum
energy flow transmissibility spectral density, is to reduce the complexity of the studied
vibration isolation system. To this end, the coupling between the vibration isolator con-
nection points to the foundation is disregarded. That is, the off-diagonal elements of the
compliance matrix H are set to zero in Equation (9). As a result, the uncoupled total energy
flow transmissibility spectral density, for the excitation force at [0 0], reads

EFTuncoupled =

∣∣∣∣∣ Kout in(Kf − π2 f 2M)

(Kin in − π2 f 2M)(Kf + Kout out)− K2
out in

∣∣∣∣∣
2

, (29)

where the uncoupled dynamic stiffness of the foundation Kf = 16iπ f h2
√

Υfρf/12(1− ν2),
being identical to the inverse of the diagonal elements of H in Equation (9). The total energy
flow and energy in-flow transmissibility spectral densities versus the frequency, in the range
0.01 to 100 Hz, are shown in Figure 7b, for both the fully coupled and uncoupled foundation,
while applying f opt

a|d = 52.7 Hz and f opt
a|d uncoupled = 61.4 Hz, respectively. Furthermore,

the maximum total energy flow transmissibility spectral density versus the frequency for
the maximum physical loss shear modulus, is also shown in Figure 7a, for the uncoupled
foundation. Clearly, the optimal value f opt

a|d uncoupled = 61.4 Hz results in a minimum
of the maximum total energy flow transmissibility spectral density into the foundation.
Moreover, the maximum loss factor ηuncoupled = 0.399 at the frequency fmax[ηuncoupled]

=

13.0 Hz. In addition, the maximum total energy flow transmissibility spectral density
EFTmax uncoupled = 6.59 at the frequency fmax uncoupled = 9.41 Hz. Clearly, this frequency is,
as for the fully coupled vibration isolation system, located rather close to the frequency for
the maximum loss factor. The corresponding frequency difference reads fmax[ηuncoupled]

−
fmax uncoupled = 3.62 Hz. Furthermore, the frequency f = f appr

max uncoupled that satisfies

<
{

Kin in( f appr
max uncoupled)− π2

[
f appr
max uncoupled

]2
M
}

= 0, (30)

namely f appr
max uncoupled = 9.51 Hz, is close to the frequency for the maximum total en-

ergy flow transmissibility spectral density into the foundation fmax uncoupled = 9.41 Hz.
The Equation (30) forces the real part of a factor in a term of the denominator in Equation (29)
to vanish. The resulting maximum total energy flow transmissibility spectral density

EFTappr
max uncoupled =

∣∣∣∣∣ Kout in(Kf − π2 f 2M)

i=(Kin in)(Kf + Kout out)− K2
out in

∣∣∣∣∣
2

= 6.58, (31)

at f = f appr
max uncoupled, and is close to the maximum total energy flow transmissibility spectral

density into the foundation EFTmax uncoupled = 6.59 at the frequency fmax uncoupled =

9.41 Hz. Moreover, assume the following relations to hold at f = f appr
max uncoupled, with the

specific value outcomes in brackets:

1. |Kf| � |Kout out| [5.85× 105 N/m2 � 1.41× 104 N/m2]
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2. |=(Kin in)Kf| � |Kout in|2 [3.16× 109 N2/m4 � 2.14× 108 N2/m4]
3. |Kf| � π2 f 2M [5.85× 105 N/m2 � 1.20× 104 N/m2]
4. <(Kout in)� =(Kout in) [1.36× 104 N/m2 � 5.39× 103 N/m2]
5. =(Kin in)/<(Kout in) ≈ η [0.396 ≈ 0.397]

As a result, the maximum total energy flow transmissibility spectral density from
Equation (31) is possible to be approximated as

EFTappr
max uncoupled ≈

1
η2 = 6.34 (32)

and is also close to the maximum total energy flow transmissibility spectral density into
the foundation EFTmax uncoupled = 6.59. This surprisingly simple formula implies that the
minimum value of the maximum of the total energy flow transmissibility spectral density
EFTappr

max uncoupled is attained by maximizing the loss factor at that frequency. This outcome
explains the result of the optimization process for the vibration isolation system studied in
this paper—namely, a frequency for the maximum loss factor that is close to the frequency
for the maximum total energy flow transmissibility spectral density into the foundation.
It also explains that the match is not exact, since the approximations made (1.–5.) are not
fully met. In addition, the studied system is not uncoupled. This is studied next.

The contribution of the off-diagonal elements of the compliance matrix H in Equation (9),
relative to the diagonal elements, reads Π(kf i4 k ), where i4 k (i, k = 1, 2, 3, 4, i 6= k) is
the distance between the connections points to the foundation for the vibration isolator
bushings i and k , respectively. It shows limx→0|∞ Π(x) = 1|0, respectively. In particular,
the extremes |Π(kf[W−2rin])| = 1.00 at f = 0.01 Hz and |Π(kf

√
[W−2rin]2+[L−2rin]2)| =

0.468 at f = 100 Hz. That is, the off-diagonal elements are not small for the studied vibration
isolation system, within the considered frequency range. Physically, the relative wavelength
extremes λ/(W−2rin) = 621 at f = 0.01 Hz and λ/

√
(W − 2rin)2 + (L− 2rin)2 = 2.04 at

f = 100 Hz. That is, the wavelength is not small compared to the distances between
the connection points to the foundation for the vibration isolator bushings, within the
considered frequency range. In fact, the connection points to the foundation for the
vibration isolator bushings are strongly coupled for the studied vibration isolation system,
throughout the considered frequency range.

The coupled and uncoupled total energy flow transmissibility spectral densities into
the foundation are similar in Figure 7b. However, the total energy in-flow transmissibility
spectral density peak is substantially higher for the uncoupled system EFTin max uncoupled =
104, as compared to the corresponding peak for the coupled system EFTin max = 25.5.
The main reason is that the foundation for the uncoupled system is substantially stiffer
than for the coupled system, as seen from the mechanical source side in Figure 1—being
about four times stiffer in the low-frequency range than for the corresponding coupled
vibration isolation system. This stiffness increase results in a higher portion of the energy
flow into the vibration isolator bushings is absorbed in the bushings and transformed
into heat. In theory, the total energy in-flow transmissibility spectral density peak goes to
infinity as the foundation stiffness goes to infinity.

3.7. Comparison with a Natural Rubber Vibration Isolation System

The studied hydrogel vibration isolation system is compared to a more traditional
vibration isolation system, for the excitation force at [0 0]. To this end, natural rubber
vibration isolators are selected, using sulfur cured, unfilled Standard Malaysian Rubber
with ingredients and material processing methods given in Kari et al. [49]. Since this
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material displays a considerably higher storage modulus than the studied hydrogel, it is
possible to assume the dynamic stiffness to be

KNR
in in (min=0) = KNR

out out (mout=0) = KNR
out in = κµNR

st

1 +

4NR

(
i

f
fmax[=(µNR)]

)α

1 +

(
i

f
fmax[=(µNR)]

)α

, (33)

where the static modulus µNR
st = 8.25× 105 N/m2, the relaxation intensity 4NR = 276,

the fractional exponent α = 0.657 and the glass transition frequency fmax[=(µNR)] = 5.41×
107 Hz. The reader is referred to Kari et al. [49] for the details regarding the experiments
and the material properties determination. The dynamic stiffness expression (33) assumes
that the wave effects within the natural rubber vibration isolators are negligible within
the considered frequency range and that the phase of the dynamic stiffness follows the
corresponding phase for the shear modulus. That is, ∠KNR = ∠µNR. This is a plausible
assumption as the absolute value of the shear wavelength |λNR| =

√
µNR/ρNR/ f = 0.293 m

at f = 100 Hz, where ρNR = 984 kg/m3 from Kari et al. [49]. That is, the wavelength is
considerably larger than a typical length of the vibration isolators where shearing takes
place—for example, being rout − rin = 0.005 m for the considered hydrogel vibration
isolators. The scaling factor κ is determined by the same constrained non-linear multi-
variable programming solver fmincon from MATLABr [134], to result in the same frequency
for the maximum total energy flow transmissibility spectral density into the foundation,
as for the hydrogel vibration isolation system, f NR

max = fmax. The resulting scaling factor
κ = 1.43× 10−2 m.

The total energy flow transmissibility spectral density into the foundation versus the
frequency, in the range 0.01 to 100 Hz, is shown in Figure 8a, for the excitation force at
[0 0]. The total energy flow transmissibility spectral density, for the hydrogel vibration
isolation system, is shown in a green solid line, while the corresponding total energy
flow transmissibility spectral density, for the traditional vibration isolation system, is
shown in a red dash–dotted line. Clearly, the traditional vibration isolation system shows
an essentially higher peak value EFTNR

max = 154, at f NR
max = 9.49 Hz, as compared to the

peak EFTmax = 5.09 for the hydrogel vibration isolation system, at the same frequency
fmax = 9.49 Hz. In fact, their ratio4EFTmax = EFTNR

max/EFTmax = 30.2—that is, it is more
than 30 times higher. The total energy flow transmissibility spectral density is only slightly
higher for the hydrogel in the high-frequency end of Figure 8a and is due to a higher loss
factor, as compared to the corresponding for the traditional vibration isolation system. This
is considered next.
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Figure 8. (a) The total energy flow transmissibility spectral densities versus the frequency, for the
hydrogel vibration isolation system and the more traditional, natural rubber vibration isolation
system. (b) The loss factors for the tough, single network hydrogel, with both chemical and physical
cross-links and for the natural rubber, versus an extended frequency range covering thoroughly the
audible frequency range. (c) The maximum total energy flow transmissibility spectral densities versus
the frequency for the maximum physical loss modulus, for the singe network, doubly cross-linked
polyvinyl alcohol hydrogels A and B.

The loss factors for the hydrogel and the traditional vibration isolator materials are
shown in Figure 8b for an extended frequency range, from 0.01 Hz to 20,000 Hz—thus,
well covering the audible frequency range. The loss factor, for the hydrogel vibration
isolator material, is shown in a green solid line while the corresponding loss factor, for the
traditional vibration isolator material, is shown in a red dash–dotted line. Clearly, the hy-
drogel vibration isolator material shows a high loss factor throughout the typical frequency
range for rigid body resonances of vibration isolation systems, while the corresponding
traditional vibration isolator material shows a surprisingly low loss factor, within the same
frequency range. The prodigious loss factor difference explains the large variation obtained
for the total energy flow transmissibility spectral densities into the foundation. On the
contrary, the hydrogel vibration isolator material shows a moderate to non-vanishing loss
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factor in the high frequency range, where some damping is needed to decrease the total
energy flow transmissibility spectral density peaks into the foundation due to possible
internal anti-resonances, within the vibration isolators that most likely will occur within
the audible frequency range. On the other hand, the damping is not supposed to be overly
high since that generally will increase the total energy flow transmissibility spectral densi-
ties. This is exactly what is happening in the high-frequency range end for the traditional
vibration isolator material in Figure 8b, where the loss factor is 0.50 and more. It should
be noted that the extrapolation of the hydrogel loss factor into the high-frequency part
of the audible frequency range in Figure 8b, should be interpreted with caution since the
stress–strain model in Kari [33] is experimentally validated up to 100 rad/s—that is, up to
16 Hz. However, the hydrogel stress–strain model is experimentally validated at the rigid
body frequency range of the vibration isolation system. Likewise, the stress–strain model
for the natural rubber is experimentally validated throughout the considered frequency
range [49].

Finally, two special cases of singe network, doubly cross-linked polyvinyl alcohol
hydrogels vibration isolation systems are studied, for the excitation force at [0 0]. Namely,
the materials with the measurement results fitted to the constitutive model developed in
Kari [33] and with the measurement and material details from Mayumi et al. [12] (Hydrogel
A) and Zhao et al. [29] (Hydrogel B). Chemical cross-link densities are supposed to be
scalable to result in an equivalent static modulus as in this study—namely, µst = 2000 N/m2.
Moreover, the maximally active physical-to-chemical cross-link density ratios are supposed
to be scalable to result in an equivalent relaxation intensity as in this study—namely,
4 = 5. Furthermore, the hydrogel densities are supposed to be the same as in this study,
ρ = 1000 kg/m3. Lastly, the chemical part of hydrogel shear modulus in Equation (5)
applies the chemical Rouse stress intensity factors CA = 0.0628

√
s and CB = 0.0696

√
s [5],

while the frequencies for the maximum physical loss modulus are fixed to f A
a|d = 0.6/2π Hz

and f B
a|d = 5.0/2π Hz [33]. The maximum total energy flow transmissibility spectral

densities into the foundation versus the frequency for the maximum physical loss modulus,
in the extended range 0.01 to 100 Hz, are shown in Figure 8c, where the frequency for the
maximum physical loss modulus is admitted to vary. The result for the hydrogel A is in a
magenta solid line while the corresponding result for the hydrogel B is in a blue solid line.
The fixed values of the frequencies for the maximum physical loss modulus are marked
with arrows. Clearly, the hydrogel A and B lines are almost overlapping, with hydrogel
A showing a slightly higher value throughout the whole considered frequency range.
They start in the low-frequency limit, at fa|d = 0.01 Hz, from just below 40. Then they

decrease with increasing frequency to minimum values min[EFTA
max] = 5.12 at f A opt

a|d =

52.3 Hz and min[EFTB
max] = 5.05 at f B opt

a|d = 53.1 Hz, respectively. Finally, they increase
slightly with increasing frequency above those minima. The corresponding minimum
min[EFTmax] = 5.09 at f opt

a|d = 52.7 Hz for the excitation force at [0 0] (from the Table 2)
lies in between those minima. Not surprisingly, as the chemical Rouse stress intensity
factor C is the average of hydrogels A and B and lies in between those factors CA < C <
CB. Finally, the maximum total energy flow transmissibility spectral densities into the
foundation read EFTA

max = 27.8, at the frequency for maximum physical loss modulus
fa|d = f A

a|d = 0.6/2π Hz and EFTB
max = 15.2 at fa|d = f B

a|d = 5.0/2π Hz. The resulting

ratios read 4EFTA
max = EFTNR

max/EFTA
max = 5.55 and 4EFTB

max = EFTNR
max/EFTB

max =
10.2, respectively. Surprisingly, the hydrogels A and B show, as such and without any
optimization of the frequency for the maximum physical loss modulus, a clear advantage
in reducing the maximum of the total energy flow transmissibility spectral density into the
foundation, as compared to the traditional vibration isolation materials, such as natural
rubber. Clearly, it is an advantage for the polyvinyl alcohol hydrogels that are missing,
to a moderate extent, the possibility to vary the kinetics and thermodynamics of the
adhesion–deadhesion activities of the physical borate esterification cross-links in order to
alter the frequency for the maximum physical loss modulus [24].
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4. Conclusions

A simulation model is developed for the energy flow transmissibility from the machine
source and into the receiving foundation for a realistic vibration isolation system, displaying
several rigid body resonances and various energy flow transmission paths. It shows that a
significant peak energy flow transmissibility reduction is possible while using materials
typically applied in tissue engineering—namely, tough, doubly cross-linked, single polymer
network hydrogels, with both chemical and physical cross-links, as vibration isolator
material, instead of more traditional materials, such as natural rubber. The physical reason
to the substantial peak reduction is the intensive adhesion–deadhesion activities of the
physical cross-links, resulting in a high loss factor. This loss factor peak is possible to set
close to the energy flow peaks for the vibration isolation system. Moreover, it is shown that
a considerable reduction is also possible without any optimization of the loss factor peak
position—a clear advantage for polyvinyl alcohol hydrogels that are somewhat missing
the possibility to alter the frequency for the maximum physical loss [24]. An interesting
continuation of the work performed is to investigate the practical aspects of the tough
hydrogel, multi-degree-of-freedom vibration isolation systems, including their durability,
aging, economical aspects and a thorough energy flow measurement. Those aspects involve
a great deal of work and are beyond the scope of the present paper.
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