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Abstract: In this study, a rigorous analytical solution to the thermal nonlinear Klein–Gordon equation
in the Kozłowski version is provided. The Klein–Gordon heat equation is solved via the Zhukovsky
“state-of-the-art” mathematical techniques. Our study can be regarded as an initial approximation
of attosecond laser–particle interaction when the prevalent phenomenon is photon–electron inter-
action. The electrons interact with the laser beam, which means that the nucleus does not play
a significant role in temperature distribution. The particle is supposed to be homogenous with
respect to thermophysical properties. This theoretical approach could prove useful for the study of
metallic nano-/micro-particles interacting with attosecond laser pulses. Specific applications for Au
“nano” particles with a 50 nm radius and “micro” particles with 110, 130, 150, and 1000 nm radii
under 100 attosecond laser pulse irradiation are considered. First, the cross-section is supposed to
be proportional to the area of the particle, which is assumed to be a perfect sphere of radius R or a
rotation ellipsoid. Second, the absorption coefficient is calculated using a semiclassical approach,
taking into account the number of atoms per unit volume, the classical electron radius, the laser
wavelength, and the atomic scattering factor (10 in case of Au), which cover all the basic aspects
for the interaction between the attosecond laser and a nanoparticle. The model is applicable within
the 100–2000 nm range. The main conclusion of the model is that for a range inferior to 1000 nm,
a competition between ballistic and thermal phenomena occurs. For values in excess of 1000 nm,
our study suggests that the thermal phenomena are dominant. Contrastingly, during the irradiation
with fs pulses, this value is of the order of 100 nm. This theoretical model’s predictions could be
soon confirmed with the new EU-ELI facilities in progress, which will generate pulses of 100 as at a
30 nm wavelength.

Keywords: attosecond laser pulses; generalized Lambert–Beer law; Klein–Gordon heat equation in
Kozłowski version; Au nano-/micro-particles; Zhukovsky mathematical formulation; ballistic versus
thermal phenomena

1. Introduction

During interactions between ultrashort laser pulses and metals, the heat transfer
process can be observed in two steps. Firstly, energy absorption occurs via photon–electron
interactions, followed by the return of excited electrons to the initial state in a few femtosec-
onds. Next, the energy is redistributed from the electrons to the lattice by electron–phonon
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interactions within a few picoseconds. Thermalization follows, i.e., the heat is dissipated,
and the lattice reaches the thermal equilibrium [1–3]. For micro- and nano-particle inter-
actions with ultrashort laser pulses, the mechanism is more intricate, particularly in the
case of attosecond pulses, where the laser pulse duration is inferior to the electron–phonon
relaxation time. To study this process, quantum theory must be applied. Nowadays,
a wavelength with a value of 0.15 nm can be effectively reached. Attosecond optics is
considered today a subcategory of ultrafast optics and strong-field physics.

There are very few well-established methods to solve the heat equation. For example,
the integral transform technique was successfully applied ten years ago. The attempt to
apply the mentioned formalism to the ultrashort scale (distance or time) did not provide
impressive results. Hence, in this study, a novel, semiclassical technique is developed and
applied for the interaction between nano-/micro-Au particles and ultrafast laser radiation.

2. Kozłowski Thermal Model

In the present section, we briefly refer to the Kozłowski thermal model, proposed
in [4,5]. The study of transport mechanisms at the nano-/micro-scale is of huge impor-
tance nowadays. In particular, nanoparticles and nanotubes demonstrate critical physical
applications for nanoscale heat transfer [6,7]. There exist a number of models developed
in a simple manner to point-like particles. The progress of ultrashort pulses presents
new opportunities to investigate the dynamics of electrons in nanoscale systems: carbon
nanotubes and nanoparticles. In the case of attosecond laser pulses, the pulse duration is
shorter than the electrons’ relaxation time. Consequently, transport equations consist of the
second-order partial derivative concerning time. The nonlinear Klein–Gordon equation
for mass and thermal energy transport at the nanoscale is considered in [4]. In [5], in the
case of ultrashort laser pulses, heat transport is described by the hyperbolic heat transport
equation (2-dimensional space (r,z)):

τ
∂2T
∂t2 +

∂T
∂t

= D
(

∂2T
∂r2 +

∂2T
∂z2

)
(1)

T denotes the temperature variation of the electron gas in nanoparticles, τ is the atomic
relaxation time, D is the thermal diffusivity, r is the radial component of the target, and
z is the laser direction propagation normal to the surface of the radial component plane.
R ≤ r ≤ R and −R ≤ z ≤ R can be obtained because the origin of spatial coordinates are
placed in the center of the target for convenience. The relaxation time is defined as

τ =
h̄

mv2 (2)

where v is the thermal pulse propagation speed. In the case of relativistic electron scattering,
c is the speed of light in a vacuum, while m is the electron mass.

Thus,

τ =
h̄

mc2 (3)

The number of electrons, N, inside a Au particle (a sphere with a radius R or a rotation
ellipsoid) can be expressed as

N =

4πR3

3
µ

ρAZ ∝ R3 (4)

N =

4πabc
3
µ

ρAZ (5)

where ρ is the density of nano-/micro-particles; A is the Avogadro number; µ is the
molecular mass of the Au atoms in grams; a, b, and c are semiaxes for the ellipsoid shape
of the particle; Z is the number of electrons in a single Au atom. It is worth mentioning that
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a, b, and c should be at least of the same order of magnitude; that is, the Au nano-/micro-
particle contains N/Z Au atoms. According to the Kozłowski approach [4,5], the relaxation
time τ for nano-/micro-particle consisting of N electrons is

τN ∝ R3τ (6)

The thermal relaxation process in nanoparticles, which implies N light scatters points,
can be described on the basis of the “atomic” parameter τ.

The following “correspondences” are used from [5] to transform the classical heat
equation to a quantum heat equation:

τ→ R3τ (7)

D→ h̄
m

(8)

By applying Equations (7) and (8) to Equation (1), the heat equation becomes

R3τ
∂2T
∂t2 +

∂T
∂t

=
h̄
m

(
∂2T
∂r2 +

∂2T
∂z2

)
(9)

Equation (9) is the linear-damped Klein–Gordon equation, and for nanotechnological
applications, it is solved using the nonlinear d’Alembert equation [4].

Our approach uses the Zhukovsky’s mathematical model to solve Equation (9). As a
relevant example, calculations were made with Au particles. However, they can be easily
converted to any other noble metal.

3. Zhukovsky Mathematical Model

The thermal Klein–Gordon equation in the Zhukovsky model [8,9] explicitly includes
the heat and thermal wave equations. If Equation (1) is solved according to [9], the
following solution (see Appendix A) can be obtained:

T(r, z, t) = ℮ −
t
2 · t

4
√
π

∞∫
0

dξ
ξ
√
ξ
· ℮−

t2
16 ξ − ξ2 (2)ŜrŜZ f(r, z) (10)

where:
f(r, z) ≡ T (r, z, 0) (11)

f(r, z), defined as an initial temperature, serves in the Zhukovsky model as a source
term. Consequently, the Zhukovsky model becomes more adequate the shorter the pulse
irradiation time is. In Equation (10) ε = 1/τ, and ξ is a real positive increment factor. The
heat operator can be further defined as

Ŝi = ℮ −4 D
τ ξ∂2

i f(i), where i = r, z. (12)

4. The Generalized Lambert–Beer Law

Since we work with ultrashort laser pulses (which mostly affect the nanoparticle
surface), and the target is small (in nm regime), it is reasonable to assume the following
approximation for Equation (11) (see Appendix B)—the generalized Lambert–Beer law:

f(r, z) = T (r, z, 0) ∝ Ioe−αzπr2 (13)

To obtain Equation (13), we used the approximation in which the cross-section is
proportional to the area of the nanoparticle [10], and we calculated the absorption coefficient
via a semiclassical approach [11]. Here, Io is the laser beam intensity and α is the absorption
coefficient. In this case, the electron temperature variation of a nano-/micro-particle under
ultrashort laser pulse irradiation is [8,9]
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T(r, z, t) = e−
t

2τ
t

4
√
π

∫ ∞

0

dξ
ξ
√
ξ

e−
t2

16ξ−
ξ

τ2 ŜrŜzf(r, z) (14)

It was taken into account that the spatial shape of the laser beam is a flat top-hat
propagating along the z-axis. We have (Appendix A)

Ŝr

(
r2
)
= 4r2 − 2 (15)

and
Ŝze−αz = e−αz (16)

The final formula for the electrons temperature is a result of Equations (12)–(16):

T(r, z, t) = I0·e−
t

2τ ·
t·
(
4r2 − 2

)
(4
√
π)
·

∞∫
0

dξ/(ξ
√
ξ)·e

−t2
16ξ −

ξ

τ2 ·e−4·α·z ·Dτ ·ξ (17)

It should be noted that ξ is the increment from Equation (12), and τ is given by
Equation (7). α is the absorption coefficient calculated in Appendix B. The absorption
coefficient of a Au particle irradiated by a 100 as laser pulse is [11]

α(λ) = Nσ(λ) = N2reλf2 (18)

where N is the number of atoms per unit volume, re is the classical electron radius
(2.82 × 10−15 m), and λ is the laser wavelength (30 nm), while f2 is an atomic scatter-
ing factor for Au [12]. Irradiation with a single pulse is considered, which is a reasonable
assumption [11].

5. Simulations Based on the Thermal Klein–Gordon Equation

The simulations were conducted for Au nanoparticles with a 50 nm radius, as well as
for microparticles with 110, 130, 150, and 1000 nm radii, respectively, submitted to 100 as
laser pulse irradiation under the liquid (water). This regime is currently described in the
literature as pulsed laser irradiation under liquid (PLIL) [13]. The modeling can be easily
extended to other materials under different liquid environments by appropriately changing
the calculation parameters. Water was chosen as an environment because its heat transfer
coefficient is suitable for studying gold nano- and micro-particles’ thermal properties under
laser irradiation [13]. Indeed, the water heat transfer coefficient allows the avoidance of
the thermal runaway and preserves the interaction process’s actual thermal properties. We
developed a theoretical model different from the usual ones [14–16].

Figure 1 schematically depicts the geometry of our studies. The laser beam propagates
along the z-axis, and the center of the coordinate’s axes coincides with the center of the
irradiated configuration.

Figure 1. Geometry of the computational method: a sphere versus a rotation ellipsoid.

Figure 2 shows a comparison of electron temperature in the case of an ellipsoid
and a spherical Au nanoparticle, respectively. It can be seen that the ellipsoid electron
temperature is inferior to that of the spherical particle. This is due to the fact that the
ellipsoid interaction area (800 nm2) is smaller than the spherical area (900 nm2).
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Figure 2. Electron temperature versus time and z during 1 fs simulation after irradiation with a 100 as laser pulse applied to
an Au nanoparticle: (a) 40 × 20 × 30 nm3 rotation ellipsoid; (b) 30 nm radius sphere.

The following figures, Figures 3–7, correspond to spherical nanoparticles of different
sizes, while Figures 8–10 were computed for different simulation times.

The temperature field is presented in Figure 3 for a simulation time of 1 fs simulation
after irradiation with a 100 as laser pulse applied to a Au nanoparticle with a 50 nm radius.
The temperature gradient is minimal (≤2.8 K), which leads to the conclusion that ballistic
phenomena still play a significant role.

Figure 3. Electron temperature versus time and z during 1 fs simulation after irradiation with a
100 as laser pulse applied to an Au nanoparticle with a 50 nm radius.

Figures 4–7 show the variation of the electron temperature during the 1 fs simulation
of Au microparticles with radii of 110, 130, 150, and 1000 nm, respectively, after irradiation
with a 100 as laser pulse.

According to Figures 4–7, the particle size (radius) plays a crucial role in determining
the temperature variation in the volume of the spherical particle: the larger the radius is, the
higher the electron temperature variation results. This is because the laser beam–particle
interaction is proportional to the geometrical cross-section of the particle: σ ∼ πR2 [10].
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Figure 4. Electron temperature versus time and z during 1 fs simulation after irradiation with a
100 as laser pulse applied to an Au microparticle with a 110 nm radius.

Figure 5. Electron temperature versus time and z during 1 fs simulation after irradiation with a
100 as laser pulse applied to an Au microparticle with a 130 nm radius.
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Figure 6. Electron temperature versus time and z during 1 fs simulation after irradiation with a
100 as laser pulse applied to an Au microparticle with a 150 nm radius.

Figure 7. Electron temperature versus time and z during 1 fs simulation after irradiation with a
100 as laser pulse applied to an Au microparticle with a 1000 nm radius.

From Figures 4–7, it can be observed that the real transitions from ballistic to thermal
behavior takes place between 260 nm (Figure 6) and 2000 nm (Figure 7).

The electron temperatures in Figures 4–7 are consistently superior to those in Figure 3.
They are ≤13.4 K for a 110 nm radius, ≤18.7 K for a 130 nm radius, and ≤24.8 K for a
150 nm radius, eventually becoming≤1108 K for a 1000 nm radius. The jump is of one order
of magnitude in the first three cases, rising to about 500 times in the case of the 1000 nm
radius. This, in our opinion, is the effect of the significant decrease in the curvature degree
and is in full accordance with the modification from nano to micro status (at about 50 nm
radius, i.e., a 100 nm diameter), in the last four cases as compared to the first ones (Figure 3).
On the other hand, the estimated maximum temperature (1108 K) stays inferior to the Au
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melting point (1337 K). This warrants the application of the Klein–Gordon equation in the
Kozłovski–Zhukovsky form in our simulations when no phase transition from solid to
liquid is induced.

One may conclude that the Au particle size overwhelmingly determines the tempera-
ture variation (increase) inside the target volume to be irradiated to a more considerable
extent in the micro case than in the nano case.

Next, we studied the correlation between the Au particle electron temperature field
interacting with the laser and the increasing computation time. The results are given in
Figure 8, Figure 9, Figure 10 for simulation times of 1 fs, 1 ms, and 10 ms, respectively. A
drastic decrease in temperature with the increase in the time range can be observed.

Figure 8. Electron temperature versus radius during 1 fs simulation after irradiation with a 100 as
laser pulse applied to an Au particle.

Figure 9. Electron temperature versus radius during 1 ms simulation after irradiation with a 100 as
laser pulse applied to an Au particle.
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Figure 10. Electron temperature versus radius during 0.01 s simulation after irradiation with a
100-laser pulse applied to an Au particle.

6. Conclusion

This study combines two “state-of the-art” issues and provides a powerful model of
nano-/micro-particle heating and attosecond laser pulse irradiation.

1. For demonstration, the analysis was conducted for Au particles in the nano (100 nm) to
micro (220–2000) nm range. A computational system with the following specifications
was used to plot electron temperature profiles: core i7, 4th generation, 16 Gb Ram.
The electron temperature graphics were generated after 1 min of simulation.

2. The results show that the electron temperature variation strongly depends on particle
size, both in nano- and micro-regimes. Thus, the larger the particle size, the larger the
maximum temperature value spreading inside the particle.

3. Longer simulation times (a few to tens of fs) allowed for a more accurate thermal field
prediction after a longer thermalization time.

4. The simulations were conducted for nanoparticles under 100 attosecond pulse laser
irradiation. We attempted to develop a coherent approach using (i) the Kozłowski
theoretical models [4,5] to take into account quantum effects, (ii) the Zhukovsky
mathematical apparatus [8,9] to be able to consider the minimal time of irradiation
(100 as), and (iii) the Zavestovskaya–Kanavin hypothesis to generalize the Lambert–
Beer law as close to reality as possible [10].

5. The main physical conclusion at the nanoscale is that we observed a dominant ballistic
phenomenon, while for values higher than 500 nm, the two mechanisms (ballistic
and thermal) compete. The shorter the target and irradiation time, the higher the
presence of ballistic phenomena [17]. Compared to fs-scale irradiation, where the
two phenomena are present at 100 nm [18], the same behavior within the range of
500–1000 nm can be observed. Our study suggests that the thermal field becomes
dominant in the range exceeding 1000 nm.
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Appendix A

Using the mathematical approach in [9] and considering Ŝ the heat operator, eγxxk

the source term, v a parameter from generalized hyperbolic heat equation (set at 0, to be in
concordance with our heat equation), H the Hermite function of two variables, and r the
radius of nano-/micro-particle [9], the following can be obtained:

Ŝeγxxk = eη∂2
x xkeγx = eγx+γ2vHk(x + 2γv, v), k ε Integers, γ ε Reals, (A1){

γ = 0
k = 2

(A2)

Ŝ r2
= H2(r, v) = 4r2 − 2 + 4v (A3){

γ = −α
k = 0

(A4)

and
Ŝ e−αz

= e−αz+α2vH0(z, 0); H0(z, 0) = 1 (A5)

Equation (A1) explains the generalized working of heat operators, which was solved
for two particular cases when (a) γ = 0 and k = 2, and (b) γ = −α and k = 0 with the
solutions provided in Equations (A3) and (A5), respectively.

Appendix B

The absorption coefficient of a Au particle irradiated by a 100 as laser pulse is as
follows [11]:

α(λ) = Nσ(λ) = N2reλf2 (A6)

where N is the number of atoms per unit volume, re is the classical electron radius
(2.82× 10−15 m), λ is the laser wavelength (30 nm), and f2 is an atomic scattering fac-
tor for Au. Since the photon energy for the 30 nm wavelength is 41.3608 eV, it can be
assumed that f2 = 10 [12]. Following the calculations, α = 20.196

(
mm−1) can be otained.
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