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Abstract: Green concrete (GC) was developed for realizing sustainable development, recycling waste
materials, and reducing environmental pollution. For the practical use of GC, various harmful
materials must blocked from entering its cracks and pores; and its strength and durability must be
improved. The use of an inorganic coating material (ICM) for GC effectively prevents the intrusion
of harmful materials and repairs the concrete. ICMs can reduce the permeability and increase the
durability of concrete. This study investigated GC, construction waste, and ICMs and used recycled
sand and gravel as well as construction waste as substitutes for cement. The results indicate that the
coarse aggregate substitution, water-binder ratio, and recycled fine aggregate substitution must be
controlled suitably in GC. Furthermore, the coating layer, fine aggregate substitution, and aging of
the ICM mut be controlled suitably. GC with an ICM showed poorer performance than conventional
concrete, mainly because of the high porosity. Nonetheless, the ICM somewhate reduces the porosity
and resists the penetration of chloride ions, thereby promoting concrete quality.

Keywords: inorganic coating material; green concrete

1. Introduction

Reinforced concrete is the main material used in construction projects [1,2]. Cement
is an important binding material for concrete. However, the cement industry has consid-
erable energy consumption, and large amounts of carbon dioxide are emitted. Therefore,
effectively reducing cement consumption will help reduce energy consumption and carbon
dioxide emissions. Toward this end, cementitious materials with low energy consumption
and low pollution must be developed to replace ordinary Portland cement. For realiz-
ing sustainable development, green materials have been incorporated into conventional
concrete [3–8]. Green materials reduce the environmental impact and even improve the
performance of concrete [9–11]. The use of recycled aggregates or waste in concrete can
effectively transform waste into resources. Therefore, a robust recycling mechanism must
be established for realizing sustainable development. Doing so will satisfy the basic require-
ments of construction projects in terms of economic benefits, environmental protection, and
energy conservation; reduce environmental impact and damage; and realize sustainable
development.

After the waste concrete was broken, sieved, and processed, the recycled aggregate,
can be divided into recycled coarse aggregates and recycled fine aggregates. The influence
of recycled coarse-grained materials on the properties of concrete was reported by previous
studies [12–20], which show that recycled coarse-grained materials can replace natural
coarse-grained materials to mix concrete. This kind of concrete has good properties,
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and can be used as structural materials. Many countries have also formulated relevant
specifications for the use of recycled coarse-grained materials to manufacture concrete,
which have been widely used in construction projects. Research on recycled fine-grained
materials generally use recycled fine-grained materials of different proportions to replace
natural fine-grained materials, and then make concrete for various tests to explore the
influence of recycled fine-grained materials on concrete properties [21–25]. The results
show that the fine recycled material with better quality can replace the fine natural material
in a higher proportion of concrete.

The aim of the present study is to achieve the sustainable use of various waste materials
and reduce environmental pollution caused by waste materials [26–30]. Green concrete
(GC) is a kind of environmental protection material. Compared with ordinary concrete, it
has better recycling and reduces the emission of harmful substances. It can not only slow
down environmental pollution, but also maintain the balance of ecology and nature. It has
important significance in energy saving, the engineering economy, and environment. The
green definition aims to show that in order to save resources and not damage the ecological
environment, it is more conducive to the sustainable development of the environment, it
not only meet the needs of users, but also does not harm the ecology and environment; the
cost of waste treatment is omitted. In GC, to prevent harmful substances from invading the
surface layer and damaging the reinforcement, a suitable coating material must be used to
provide a barrier effect to ensure the performance of concrete and prolong the service life
of the structure [31,32].

Although various coating materials are available, most are harmful to the environment
or the human body [33]. Further, with time, coatings can age and peel off, thus resulting in
the loss of their concrete protection function. This study examined whether the combination
of GC, industrial waste, and an inorganic coating material (ICM) can overcome this problem
and achieve a sustainable protection function [34–39]. ICM is inorganic in nature and does
not contain any organic chemical materials or solvents. In the production and application
period, it is odorless, has acid resistant characteristics, is good for the environment and
ecology, so it belongs to green materials.

There are many types of concrete surface treatments from different angles or require-
ments [40], including chemical composition—silane, siloxane, silicate, silicone, acrylic,
epoxy, urethane, or cementation. In addition, functional properties such as beauty, blocking
liquid penetration, or gas penetration. Additionally, the mechanism action, such as coating,
pore hydrophobic treatment, pore plugging treatment, or coating. Further, the external
environment such as chemical erosion environment, chlorpyrifos erosion environment,
or humid environment [41]. Addittionally, the appearance such as powder, liquid, and
coil, etc. ICM belongs to coating. The coating is mainly made of a thick layer of water
material, which produces a physical additional barrier to prevent harmful substances from
entering the concrete. The cement mortar can be modified by latex polymer to provide a
dense impermeable barrier and enhance the adhesion to the substrate, or the cement-based
crystalline coating material can be combined with chemical substances to provide pore
plugging and produce a protective thick film on the outer layer [42]

Specifically, waste is used to replace a part of the cement, and concrete filling materials
are replaced with recycled coarse and fine aggregates. Then, the protective effect of an ICM
on the GC surface is discussed.

2. Materials and Methods
2.1. Materials
2.1.1. Solar Photovoltaic Glass Powder

Solar photovoltaic glass powder provided by Zunhong Environmental Protection Co.,
Ltd. (Keelung, Taiwan) is made by self-breaking and grinding by ball mill. Table 1 lists
the chemical composition analysis results of the solar photovoltaic glass powder used in
this study; its main components were SiO2 (76%), Na2O (9%), and CaO (6%) by X-ray
diffraction (XRD) spectral analysis provided by panalytical x’pert Pro MPD in Malvern
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Panalytical Ltd. (Malvern, UK). The compressive strengths of a mortar prepared with a
20% solar photovoltaic glass powder substitution for cement on a mass basis are compared
to those of a control mortar according to ASTM C311 [43]. The results showed that the
activity index was 88%, 80%, and 85% at 7, 28, and 56 days of age. The strength activity
index was 75% higher than that of OPC (control group), which met the requirements of
ASTM C618 [44]. In this study, solar photovoltaic glass powder was used to replace part of
the cement in the production of concrete specimens.

Table 1. Chemical constituents of solar photovoltaic glass powder.

Composition Percentage (wt.%)

Silicon dioxide (SiO2) 75.92
Sodium oxide (Na2O) 8.84
Calcium oxide (CaO) 6.06
Ferric oxide (Fe2O3) 0.29

Aluminum oxide (Al2O3) 0.11
Magnesium oxide (MgO) 2.74

Sulfur trioxide (SO3) 2.3
Potassium oxide (K2O) —

2.1.2. ICM

Inorganic coating material (ICM) came from XYPEX Chemical Corporation (Vancouver,
BC, Canada). Table 2 lists the constitutents of the ICM used in this study. This material
was a gray powder consisting of cement, silica sand, and other compounds [45]. The ICM
was mixed with water to form a thick paste, and this paste was then evenly brushed on the
substrate surface to form a ~1.5-mm-thick layer.

Table 2. Chemical constituents of ICM (Inorganic coating material).

Composition Percentage (wt.%)

Silicon dioxide (SiO2) 15.4
Sodium oxide (Na2O) 3.33
Calcium oxide (CaO) 64.8
Ferric oxide (Fe2O3) 3.74

Aluminum oxide (Al2O3) 3.26
Magnesium oxide (MgO) 6.51

Sulfur trioxide (SO3) 2.16
Potassium oxide (K2O) 0.25

other 0.55

2.1.3. Natural Coarse and Fine Aggregate

The fine-grained material is used for river sand from Lanyang River. The basic
physical properties and gradation distribution of the fine-grained material are shown in
Tables 3 and 4.

Table 3. Physical properties of natural fine aggregate.

Test Type Value Referenced Standards

fineness modulus (F.M.) 2.8 ASTM C33 [46]
the specific gravity (SSD) 2.56 ASTM C128 [47]
the water absorption (%) 1.85 ASTM C128 [47]
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Table 4. Gradation distribution of natural fine aggregate.

Sieve Number Mesh Size (mm) Percentage of Stay
(%)

Cumulative
Percentage (%)

#4 4.75 0.4 0.4
#8 2.38 16.8 17.2

#16 1.18 20.5 37.7
#30 0.60 20.2 57.9
#50 0.30 18.4 76.3
#100 0.15 13.5 89.8

chassis — 10.2 —

This study uses the coarse-grained materials produced in Lanyang River. The physical
properties including specific gravity, water absorption, and maximum particle size are
shown in Tables 5 and 6. The appearance of natural coarse-grained and fine-grained
materials is shown in Figure 1.

Table 5. Physical properties of natural coarse aggregate.

Test Type Value Referenced Standards

the specific gravity (SSD) 2.53 ASTM C127 [48]
the water absorption (%) 1.68 ASTM C127 [48]

maximum diameter (mm) 19.05 ASTM C127 [48]

Table 6. Gradation distribution of natural coarse aggregate.

Sieve Number Mesh Size (mm) Percentage of Stay
(%)

Cumulative
Percentage (%)

1 1/2 37.5 0 0
1 25 0 0

1/2 12.5 47.98 47.98
#4 4.75 41.94 89.92
#8 2.38 10.08 100
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Figure 1. Appearance of natural coarse aggregate.

2.1.4. Recycled Coarse and Fine Aggregate

The recycled fine aggregate used in this research institute is provided by Zunhong
Environmental Protection Co., Ltd. (Keelung, Taiwan) and produced by the equipment
of the Jilong sand and stone plant (Yilan, Taiwan). The design strength of the self-made
concrete block in the sand and gravel plant is 280 kgf/cm2 because the sand and gravel
plant can only deal with the natural river bed soil and stone and cannot use construction
waste for processing. After curing for 56 days, it was disintegrated to make recycled pellets.
The basic properties of the granular materials, including specific gravity, water absorption,
maximum diameter, and fineness modulus, are shown in Tables 7 and 8. The passing
percentage of the granular materials conforms to ASTM C33 [47].
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Table 7. Physical properties of recycled fine aggregate.

Test Type Value Referenced Standards

the specific gravity (SSD) 2.42 ASTM C128 [46]
the water absorption (%) 6.16 ASTM C128 [46]
fineness modulus (F.M.) 2.43 ASTM C33 [47]

Table 8. Gradation distribution of recycled fine aggregate.

Sieve Number Mesh Size (mm) Percentage of Stay
(%)

Cumulative
Percentage (%)

3/8” 9.53 0.0 0.0
#4 4.75 0.0 0.0
#8 2.38 1.8 1.8

#16 1.18 26.6 28.4
#30 0.60 23.8 52.2
#50 0.30 20.8 73.0
#100 0.15 15.0 88.0
#200 0.075 12.0 100.0

The recycled coarse aggregate used in this study is provided by Rongmin Engineering
Co., Ltd. (Keelung, Taiwan) and produced by the equipment of the Luodong sand and
gravel plant (Yilan, Taiwan). Due to the current regulations of the sand and gravel plant,
only natural river bed soil and stone can be processed and construction waste can not
be used for processing. This study made concrete blocks in the sand and gravel plant,
and made recycled aggregate after 56 days of curing, including specific gravity, water
absorption, and maximum diameter, as shown in Tables 9 and 10. The appearance of
recycled coarse and fine materials is shown in Figure 2. The particle size distribution curve
of natural and recycled fine aggregate is shown in Figure 3. The particle size distribution
curve of natural and recycled coarse aggregate is shown in Figure 4.

Table 9. Physical properties of recycled coarse aggregate.

Test Type Value Referenced Standards

the specific gravity (SSD) 2.47 ASTM C127 [48]
the water absorption (%) 4.88 ASTM C127 [48]

maximum diameter (mm) 19.00 ASTM C127 [48]

Table 10. Gradation distribution of recycled coarse aggregate.

Sieve Number Mesh Size (mm) Percentage of Stay
(%)

Cumulative
Percentage (%)

1 1/2 37.5 0 0
1 25 4 4

1/2 12.5 58 62
#4 4.75 36.26 98.26
#8 2.38 1.74 100
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2.2. Mix Design and Test Methods

This study explored the performance of the ICM on a GC substrate. Table 11 shows
relevant parameters.

The ACI-211 mix design method was adopted for designing the concrete base material
mix, as shown in Table 12. At least three specimens were prepared for each test, and
relevant tests were conducted at 7, 28, and 56 days.
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Table 11. Concrete test variables.

Type
Control
Group
(OPC)

Green Concrete
(GC)

Coating
(Control Group)

(OPCC)

Green Concrete
(Including Coating)

(GCC)

Replace cement — Photoelectric glass powder 5% — Photoelectric glass powder 5%
Replace coarse

aggregate — Recycled coarse aggregate 20% — Recycled coarse aggregate 20%

Replace fine aggregate — Recycled fine aggregate 15% — Recycled fine aggregate 15%
Paint type — — ICM1 ICM1

Coating material
proportion — — 5:2 5:2

Number of coating
layers — — 2 layers 2 layers

Age of coating
materials — — Day 1 coating Day 1 coating

Table 12. Concrete mix design (kg/m3).

Mix No. w/c Water Cement

Solar
Photovoltaic

Glass
Powder

Coarse
Aggregates

Fine
Aggregates

Replace
Cement

Replace
Coarse

Aggregate

Replace
Fine

Aggregate

OPC 0.6 240 396 0 1096 890 0 0 0
OPCC 0.6 240 396 0 1096 890 0 0 0

GC 0.6 240 376 18.8 876 756 20 220 134
GCC 0.6 240 376 18.8 876 756 20 220 134

The important factors in the selection of the GC and ICM include the replacing cement,
replacing coarse-grained material, replacing fine-grained material, coating type, coating
material proportion, coating layer number, and coating material age. A water:cement
ratio of 0.6 was used to test the physical properties, permeability, and microstructure of
the concrete substrate. The effectiveness of GC coated with an ICM was discussed, and
comparisons with a control group were performed. Table 13 shows the test items and
referenced standards. Three specimens of each mixture are required for each test in this
study.

Table 13. Test items and referenced standards.

Test Type Test Method
Specimen

Dimensions(cm) and
Types

Referenced
Standards

Mechanical
properties Compressive strength test φ 10×20 (concrete) ASTM C39m-12 [49]

Permeability
Absorption test φ 10×5 (concrete) ASTM C642-13 [50]

Four pole resistance test φ 10×20 (concrete) ASTM C876 [51]
Accelerated chloride

migration test φ 10×5 (concrete) ASTM C1202-12 [52]

Characterization

Mercury intrusion
porosimetry 1×1×1 (concrete) ASTM D4404-10 [53]

Scanning electron
microscope 1×1×1 (mortar) ASTM C1723 [54]

XRD spectrum analysis Powders ASTM C1365 [55]
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3. Results and Discussion
3.1. Compressive Strength

Tests were conducted according to ASTM C39M-12 [49]. The universal material
testing machine used in this study is made by Shimadzu Corporation. It is controlled by
the hydraulic system and can be used to test the compressive and flexural properties of
concrete. The maximum allowable load of the instrument is 1000 kni, and the minimum
reading value is 50 kg. The speed and data are automatically controlled by computer
software. Figure 5 shows the development trend of the compressive strength of GC and
OPC as well as GC and OPC with an ICM (GCC and OPCC, respectively) at 7, 14, 28, and
56 days. The detailed data of the compression strength are shown in Table 14.
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Table 14. The detailed data of the compression strength.

Mix No. 7 Day Standard
Deviations 14 Day Standard

Deviations 28 Day Standard
Deviations 56 Day Standard

Deviations

OPC 11.87 1.86 23.25 1.56 29.45 1.94 32.41 2.20
OPCC 10.76 2.05 18.56 1.62 30.77 1.95 33.12 2.15

GC 9.71 2.18 15.48 1.99 26.46 2.72 30.57 1.98
GCC 9.48 1.96 15.02 2.31 26.98 1.78 32.28 1.87

The compressive strength development curves of OPC and GC at 7, 14, 28, and
56 days show that the strength of GC was 2–8 MPa lower than that of OPC at each age.
The compressive strength of recycled coarse and fine particles and photoelectric glass
powder may be lower because of incomplete hydration that results from replacing general
aggregates or cement. However, the compressive strength of GC at 56 days was only
6% lower than that of OPC. The hydration of GC tends to become more complete with
age. The compressive strengths of OPCC and GCC are higher than those of OPC and GC,
respectively, at 28 and 56 days. It is speculated that the ICM blocks the pores owing to a
chemical reaction with the concrete substrate, resulting in a slight increase in compressive
strength. The compressive strength of GCC at 56 days was slightly higher than that of GC,
indicating that the ICM has a certain protective effect. In a base material with large pores,
it is suitable to plug these pores to improve the concrete quality.
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3.2. Absorption Test and Initial Surface Absorption Test

An absorption test was performed according to ASTM C642-13 [50]. Further, an initial
surface absorption test was performed according to BS 1881-208 [56]. The compactness of
pores in the concrete substrate and the protective effect of the ICM were evaluated. Figure 6
shows the absorption tests of GC and GCC as well as OPC and OPCC at 7, 14, 28, and 56 days.
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The results show that the absorption rate of all groups decreased with time. The
hydration reaction in the sample tended to become more complete with time, making
the pores more compact [7]. The absorption rate of GC was higher than that of OPC.
The compactness of recycled coarse and fine particles was lower than that of natural fine
particles, leading to high absorption and high porosity. The high compactness should be
caused by the old paste being attached to the recycled particles. For GC, the decrease in
absorption rate with age was not obvious. Further, the absorption rates of OPCC and GCC
are lower than those of OPC and GC, respectively, at 14, 28, and 56 days. It is speculated
that because GCC has a high porosity, it is easier for it to penetrate the pores of the base
material to block its connectivity or reduce the pore size, indicating that the ICM has a
certain protective effect.

When external water enters the specimen, it must penetrate the surface and internal
capillary pores. When the pores are small or have poor connectivity, the absorption rate of
the sample decrease with age. Table 15 and Figure 7 show the initial surface absorption
tests of GC and GCC as well as OPC and OPCC at 7, 14, 28, and 56 days.

Table 15. Initial surface absorption of concrete (ml/m2s).

Mix
No.

7 Day 14 Day 28 Day 56 Day

10
min

30
min

60
min

10
min

30
min

60
min

10
min

30
min

60
min

10
min

30
min

60
min

OPC 0.089 0.071 0.04 0.096 0.059 0.047 0.09 0.05 0.043 0.077 0.056 0.043
OPCC 0.107 0.076 0.039 0.082 0.053 0.042 0.082 0.049 0.033 0.073 0.043 0.038

GC 0.118 0.086 0.056 0.1 0.076 0.061 0.095 0.061 0.051 0.087 0.055 0.05
GCC 0.11 0.072 0.044 0.089 0.065 0.051 0.089 0.054 0.044 0.074 0.046 0.035
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Figure 7. Comparison of the absorption rate of concrete.

The experimental results showed that the absorption rate of each group decreased
with age. In this experiment, GC had a high absorption rate owing to the high porosity
of the recycled coarse and fine particles. However, GCC had a lower absorption rate,
indicating that the ICM could adequately block the interior of the substrate. Because the
ICM was easy to penetrate into the pores, resulting in obvious blocking effect, effectively
reducing the water absorption [31,32,57,58].

3.3. Four-Pole Resistance Test

In this study, the concrete quadrupole resistance meter manufactured by Swiss proceq
company was used to test. The resistance of the equipment is 10 mΩ, the rated current is
180 µA, the frequency is 72 Hz, the measurement range is 0~99 KΩ cm, and the accuracy
is ± 1 Ω cm. The appearance of the instrument is shown in Figure 8, which conforms to
AASHTO standard (38 mm probe distance). Figure 9 shows the development trend of the
resistivity values of GC and GCC as well as OPC and OPCC at 7, 14, 28, and 56 days.
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Figure 9. Comparison of concrete resistivity.

When the resistivity value becomes high, it can be inferred that the concrete substrate
is relatively dense and the conductive path is blocked. Then, the permeability of the base
material is evaluated. The results show that GC has lower resistivity than OPC at all ages.
However, GCC shows increased resistivity. OPC and OPCC had the same trend. ICM can
prevent the resistance from penetrating through the pores of the substrate, it caused that
the OPCC and GCC specimens were shown increased resistivity.

3.4. Accelerated Chloride Migration Test

An accelerated chloride migration test was conducted according to ASTM C1202-
12 [52]. The test equipment is divided into two parts: vacuum equipment and current
measurement equipment. The vacuum equipment includes a vacuum pump, a vacuum
gauge, and a vacuum tank. The current measuring equipment includes Rapid Chloride
Permeability Test (RCPT) cell, digital galvanometer, and DC power supply, as shown in
Figure 10. The voltmeter is connected by a circuit, and the applied voltage is 60 V to
measure its current value, the current measurement range is 0.1~1000 mA, and the voltage
measurement range is 0.1~100 V. The current value of concrete was measured, and the total
electricity passing through within 6 h was obtained to evaluate the ability of concrete to
resist chloride ion penetration. When the total charge is lower, chloride ion penetration is
judged to be low. By contrast, a high total charge indicates high penetration of chloride
ions and a relatively low densification path. Figure 11 shows the accelerated chloride
penetration values of GC and GCC as well as OPC and OPCC at 28 and 56 days.

The test results show that OPC has lower chloride ion penetration than GC at 28 and
56 days. When recycled coarse and fine particles and photoelectric glass powder are used
to replace general aggregates or cement, incomplete hydration causes low compactness of
the substrate, resulting in high chloride ion penetration [59]. However, an ICM can block
external chloride ion penetration and substrate pores. OPCC and GCC had lower chloride
ion penetration than OPC and GC, respectively. The infiltration also had a blocking effect.
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3.5. Mercury Intrusion Porosimetry

A mercury intrusion porosimetry (MIP) test was conducted according to ASTM
D4404-10 [53]. The mercury porosimeter in this study uses autopore IV 9500 produced by
micromeritics company. The pore volume, pore distribution, porosity, and compactness can
be obtained by the conversion of injected mercury. The pore measurement range can reach
0.003~360 µM. The test can be divided into two parts: high pressure and low pressure.
During the low pressure analysis, the system will be pressurized to 30 psi, and then put
into the high pressure tank for high pressure analysis. The maximum pressure can be
pressurized to 60,000 psi. MIP can be used to determine the pore structure of the base
material. The pore volume of a cement-based material can be calculated from the residual
mercury volume after being pressed into the test body. In this study, porosity was defined
for a 10 nm reference value. The colloidal pore structure was defined as a pore diameter
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less than 10 nm, and the capillary pore structure was defined as a pore diameter greater
than 10 nm. The total pore content is equal to the sum of the capillary and colloidal pores.

In this study, an MIP was performed at 28 days to investigate the effects of GC and
ICM on the pore structure of the substrate. Figures 6 and 7 show the measurement results of
the capillary and colloidal pore volumes of the substrate. The results show that the porosity
of GC was higher than that of OPC owing to the use of recycled particles. However, OPCC
and GCC had decreased porosity. In Figure 12, the pore distribution changed markedly
from 100 to 10,000 nm, and GCC had a better effect. It is speculated that owing to the
large intrinsic pores in GCC, it is easy for it to penetrate the pores and produce an obvious
blocking effect. As shown in Figure 13, the decrease of capillary pores with pore size
greater than 10 nm is more obvious; because of its small pore size, harmful substances may
not be able to penetrate the colloidal pores.
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3.6. Scanning Electron Microscopy 

The scanning electron microscope s-4800 made by Hitachi company of Japan (Hi-
tachi, Tokyo, Japan) was used to observe the microstructure. The maximum magnifica-
tion of the instrument can reach 100000 times. The principle of the instrument is to use 
the electron gun to emit high-energy electron light to impact the specimen, then use the 
bias signal collector to detect the excited signal, and transmit it to the cathode mapping 
tube through the signal amplifier. As shown in Figure 14, SEM observations revealed 
needle-like structures 5 mm below the substrate surface. These are speculated to be 
produced by the chemical reaction between the ICM and the substrate. XRD composition 
analysis suggests that the needle-like substance should comprise C-S-H colloid or cal-
cium carbonate. As shown in Figure 15, no needle-like structures were observed 20 mm 
below the coating layer, suggesting that the needle-like structures decrease with depth. 
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3.6. Scanning Electron Microscopy

The scanning electron microscope s-4800 made by Hitachi company of Japan (Hitachi,
Tokyo, Japan) was used to observe the microstructure. The maximum magnification of
the instrument can reach 100,000 times. The principle of the instrument is to use the
electron gun to emit high-energy electron light to impact the specimen, then use the bias
signal collector to detect the excited signal, and transmit it to the cathode mapping tube
through the signal amplifier. As shown in Figure 14, SEM observations revealed needle-like
structures 5 mm below the substrate surface. These are speculated to be produced by the
chemical reaction between the ICM and the substrate. XRD composition analysis suggests
that the needle-like substance should comprise C-S-H colloid or calcium carbonate. As
shown in Figure 15, no needle-like structures were observed 20 mm below the coating
layer, suggesting that the needle-like structures decrease with depth.
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3.7. XRD Spectral Analysis

The X-ray diffraction analyzer used in this study is panalytical x’pert Pro MPD. The
principle of X-ray diffraction analysis is to irradiate the sample with monochromatic
X-ray, and the diffracted X-ray will radiate along the conical surface at an angle of 2θ
with the incident angle. By recording the diffraction intensity at different angles, the 2θ
intensity diagram can be drawn. The appearance of the instrument is shown in Figure 16.
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The ICM has been proven to have a protective effect. Specifically, the ICM components
penetrate the base material and produce needle-like substances in the pores that improve
the compactness and protect the concrete [60,61]. Therefore, an XRD spectral analysis was
performed 5 and 20 mm below the coating layer (Figures 17 and 18, respectively) to clarify
the chemical composition of the samples.
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Figure 18. Checmical composition of pure cement substrate 20 mm below the coating, as determined
through XRD.

Compared with Figure 18, the cement-based compounds in Figure 17 are mainly silica,
calcium hydroxide, C3S, and C2S. It can be inferred that the ICM does not penetrate 20 mm
below the coating layer to cause a reaction. It is speculated that if the coating material does
not penetrate the sealing layer to a depth of 5 mm, crystallization occurs under the sealing
layer owing to the different chemical compositions. It can be inferred that ICMs can react
to form crystals by penetrating the concrete, thereby improving the protective efficiency of
the substrate.

4. Conclusions

The physical properties of GC coated with an ICM show that when recycled coarse
and fine particles and photoelectric glass powder are used to replace ordinary particles or
cement, the porosity may become higher owing to incomplete hydration, resulting in lower
compressive strength and a higher absorption value. However, when the ICM is coated on
the base material, the performance of the base material improves slightly. It is speculated
that the ICM reduces the porosity of the base material to improve the quality of concrete.

Permeability tests show that GC had lower permeability than OPC at 28 and 56 days,
indicating that the low compactness of the GC substrate resulted in high chloride pene-
tration. However, an ICM can block chloride ion penetration and block the pores of the
substrate.

SEM revealed that the microstructure of GCC had needle-like structures 5 mm below
the substrate surface but not 20 mm below the substrate surface. It is speculated that the
ICMs are permeable and produced a chemical composition with the substrate, resulting in
the obvious presence of needle-like structures 5 mm below the coating layer.
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