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Abstract: Machine learning techniques are widely used algorithms for predicting the mechanical
properties of concrete. This study is based on the comparison of algorithms between individuals
and ensemble approaches, such as bagging. Optimization for bagging is done by making 20 sub-
models to depict the accurate one. Variables like cement content, fine and coarse aggregate, water,
binder-to-water ratio, fly-ash, and superplasticizer are used for modeling. Model performance is
evaluated by various statistical indicators like mean absolute error (MAE), mean square error (MSE),
and root mean square error (RMSE). Individual algorithms show a moderate bias result. However,
the ensemble model gives a better result with R2 = 0.911 compared to the decision tree (DT) and
gene expression programming (GEP). K-fold cross-validation confirms the model’s accuracy and is
done by R2, MAE, MSE, and RMSE. Statistical checks reveal that the decision tree with ensemble
provides 25%, 121%, and 49% enhancement for errors like MAE, MSE, and RMSE between the target
and outcome response.

Keywords: concrete compressive strength; fly ash waste; ensemble modeling; decision tree; DT-
bagging regression; cross-validation python

1. Introduction

Carbon dioxide produced from the cement industry has a malignant adamant effect
on environmental conditions [1]. Its utilization and excessive use in modern construction
around the world produces greenhouse gases (GHG) [2]. Moreover, countless amounts of
gases are emitted during the production of cement due to the burning of natural resources
and fossil fuels [3]. Annually, 4 billion tons of Portland cement (PC) is being produced
and approximately one ton of cement generates one ton of CO2 gas [4]. This huge amount
of carbon dioxide is a serious threat to the environment. The report shows that a 1.6%
increment (3.4% to 5%) of global CO2 gas discharge was observed from the year 2000 to
2006. The cement industry contributes 18% of industrial greenhouse gases (GHG to the
environment. This is due to the direct process-related activity, energy-related combustion,
and remaining use of electricity, which is termed as indirect energy [5]. To overcome the
above-mentioned issue, a process of replacing the cement material with an alternative
binder is of great research interest [6].

The supplementary cementation materials (SCMs) can be used for many purposes,
especially in the concrete industry. Their utilization in concrete gives a benignant effect
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by reducing the percentage of CO2 gas emitted. SCMs used in the cement industry can be
industrial and agricultural waste products, which includes olive oil, bagasse ash, sugarcane,
rice husk ash, palm oil fuel ash, etc. However, commonly adopted and used in the con-
struction industry are silica fume, fly ash, and ground granulated blast furnace slag [7–9].
Their utilization in concrete reduces the malignant effect on the environment [10]. The
replacement of cement in concrete with the waste material helps both in the utilization
of the wastes and fulfills the increasing demand for the concrete. What is more, it has
been observed that the use of waste materials as pozzolanic in high-strength concrete
improves its strength and durability. This alternately helps minimize the impending
environmental degradation [11].

Concrete is stated as the second-highest used material after water in the world [12].
This is due to the intensive use of concrete in the construction industries and the field of
civil engineering. Concrete requires a comprehensive technique to produce. It is a mixture
of multiple materials like coarse aggregate, fine aggregate, water, binder, admixtures,
and supplementary raw materials [13]. The concrete matrix is the random distribution
of the previously mentioned variables [14]. The extensive use of it can be seen as a
building material around the globe. For the effective evaluation of the performance of
concrete according to the advanced design technologies, its mechanical properties must
be examined [14]. One of its supreme mechanical properties is its compressive strength,
which is alternately the sign of structural safety throughout life [15]. This remarkable
property of concrete can be affected by numerous factors, like particle size, water-to-
cement ratio, waste composition, and use of chemicals. However, casting concrete by
using the proper techniques in the laboratory and conducting experimental tests to find
the mechanical properties after the setting is quite a time-consuming task [14]. Moreover,
using the previously mentioned technique in the recent and modern period of life is quite
uneconomical. Thus, the modern methodologies of machine learning techniques can be
adapted to predict the desired result in advance [16]. The prediction of variables can be
done from regressions and machine learning models. These algorithm-based techniques
give a precise relation and predict the accurate model by the use of input variables [17].

Machine learning approaches are raising trends in the domain of civil engineering.
They are extensively used in forecasting the mechanical properties of concrete [18–21].
These techniques use extensive data to build a precise model. Their prediction accuracy is
dependent upon the data sample used in experimental work during casting of the specimen
or upon the literature study. Researchers use these algorithms for the prediction of the
mechanical properties of concrete. Javed et al. [22] predict the compressive strength of sug-
arcane bagasse ash (SCBA) concrete using gene expression programming (GEP). The author
used the experimental test for calibration and validation of the model. Similarly, Aslam
et al. [23] predict the compressive strength of high-strength concrete (HSC) by employing
GEP. The author used 357 data points and reported an adamant relationship between
the target and predicted values. Hosein et al. [24] forecast the mechanical properties of
recycled concrete (REC) by using an artificial neural network (ANN). Correspondingly,
Getahun et al. [25] forecast the strength of concrete incorporating waste materials using
ANN. The author concluded that ANN gives adamant relation with fewer errors. Similarly,
Qing et al. [26] predict the diffusion capability of chloride in reinforced concrete structures
with ANN. The result indicates better prediction by employing an individual algorithm
based on 653 data samples. Farooq et al. [15] predict the compressive nature of HSC by
developing two models with random forest (RF) and GEP. RF gives a robust performance
with precise correlation with strong predicted values. That machine learning algorithm is
not limited to predict only the compressive or tensile nature of concrete but can be used to
forecast any response in any engineering or data sciences domain. In turn, Ahmad et al. [27]
employ supervised machine learning (ML) algorithms to predict energy in the distinct
buildings. Similarly, Wang et al. [28] predict the COVID-19 response by employing different
ML-based algorithms. Cladera et al. [29] predict the response of a structural beam with
and without stirrups by using ANN. The author achieved a better response from modeled
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than empirical relations. Similarly, Onyari et al. [30] reveal robust performance by utilizing
ANN to predict the flexural and compressive strength of modified mortar. Previously
mentioned examples show the overwhelming response of individual algorithms.

Recently, application of ensemble modeling is perceived as a chance for enhancement
of the model’s overall efficiency. It can be achieved due to taking a weak leaner to build
strong, predictive learners than individual learners [31]. Feng et al. [32] use ensemble
algorithm techniques for the prediction of failure mode classification and bearing capacity
of reinforced concrete (RC) structural element (column). Both models give robust perfor-
mance. However, bearing capacity is characterized by better correlation than failure mode
classification. Bui et al. [33] employed a modified firefly algorithm with ANN on high
performance concrete (HPC) and reported better performance of the model. Moreover,
Salamai et al. [34] report good accuracy of R2 = 0.9867 by using the RF algorithm. In turn,
Cai et al. [35] use various supervised machine ensemble algorithms for the prediction
of chloride penetration in the RC structure situated in a marine environment. Ensem-
ble models outclass individual algorithms to predict chloride penetration in RC. Hacer
et al. [36] present the comparative assessment of bagging as the ensemble approach for
high-performance concrete mix slump flow. Ensemble models with bagging were found to
be superior with regard to standalone approaches. Halil et al. [37] predict the strength of
HPC by employing three ensemble modeling approaches. The author used the decision
tree as a base learner for other models and found that the hybrid model outperforms with
the output result of R2 = 0.9368 among the several proposed models. Kermani et al. [38]
represents the performance of five soft, computing base learners for predicting concrete
corrosion in sewers. The author used both tree-based and network-based learners and
reported that RF ensemble learners give a better result with R2 = 0.872. These ensemble
approaches give an enhanced effect with robust performance of the overall models.

Taking the above into consideration, it may seem that ensemble learning models
have more favorable features and give better results than individual learning models. The
difference between individual and ensemble model is illustrated in Figure 1.
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2. Research Significance

The aim of this study is to use the machine-learning algorithm with ensemble modeling
using Anaconda Python to predict the compressive strength of fly-ash-based concrete using
different algorithms. A decision tree with a bagging algorithm is used and optimization is
done by making 20 sub-models to give a strong outcome. A comparison is made with the
individual, ensemble algorithms, and with gene expression programming to give the best
model. Moreover, K-fold cross-validation and a statistical check are applied to evaluate the
model performance.

3. Data Description

The efficiency of the model is completely dependent upon the variables and the num-
ber of data samples used. The parameters used in models preparation in order to predict
the strength of concrete were taken from published literature [39] and are summarized
in Appendix A. Eight variables concerning composition of the concrete mixture and in-
cluding cement, fine and coarse aggregate, superplasticizer, water, waste material, age,
and a water-to-binder ratio were taken into analysis. The overall distribution in terms
of the relative frequency distribution is illustrated in Figure 2. The range of variables of
each parameter used in the study, with a minimum and maximum value, is illustrated
in Figure 3. Statistical descriptive analysis for the variables in terms of strength is listed
in Table 1.
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Table 1. Statistical measures on variables.

Statistics Cem * FASH * W * SP * CA * FA * Age * W/B *

Mean 361.39 28.15 184.15 3.68 996.90 775.93 53.31 0.53
Standard Error 5.20 2.94 1.17 0.36 4.70 4.86 4.63 0.01

Median 336.25 0.00 189.00 0.00 987.80 781.95 28.00 0.58
Mode 349.00 0.00 192.00 0.00 1125.00 613.00 28.00 0.58

Standard Deviation 85.49 48.35 19.29 5.95 77.26 79.92 76.06 0.11
Sample Variance 7309.14 2337.79 372.16 35.39 5969.32 6387.59 5784.50 0.01

Kurtosis −0.50 −0.44 0.29 3.52 −0.19 −0.07 7.01 −0.04
Skewness 0.83 1.20 −0.38 1.77 −0.26 −0.67 2.62 −0.92

Range 293.20 142.00 88.00 28.20 324.00 305.80 364.00 0.43
Minimum 246.80 0.00 140.00 0.00 801.00 594.00 1.00 0.27
Maximum 540.00 142.00 228.00 28.20 1125.00 899.80 365.00 0.70

Sum 97,574.60 7601.70 49,720.30 993.40 269,163.90 209,502.40 14,394.00 143.89
Count 270.00 270.00 270.00 270.00 270.00 270.00 270.00 270.00

* CEM = Cement (kg/m3), FASH = Fly ash (kg/m3), W = Water (kg/m3), SP = Super plasticizer (kg/m3), CA = Coarse aggregate (kg/m3),
FA = Fine aggregate (kg/m3), and W/B = Water to binder.

4. Methodology

Individual and ensemble model techniques used to predict the properties in a limited
time that are of great interest. The accuracy level between the actual and prediction level is
typically obtained from the R2 value (ranges from 0–0.99). A high R2 value indicates the
satisfactory results of the selected technique. This study uses three approaches to predict
the compressive strength of concrete with waste material. A decision tree with ensemble
algorithms such as bagging with a learning rate of 0.9 and gene expression programming
is used. These techniques are selected due to their popularity among other algorithms.
The overall machine learning model methodology in the form of a diagram is illustrated
in Figure 4.
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4.1. Decision Tree

The decision tree is one of the supervised learning techniques used for categorizing
regression problems but is also commonly used for classification problems [40]. There are
classes inside the tree. However, if there is no class, then the regression technique can
predict the outcome by independent variables [37]. A decision tree is a tree-structured
classifier in which the inner nodes reflect the attribute of a database. Branches indicate the
conclusion rules, and every leaf node constitutes the outcome. The decision tree consists
of two nodes known as a decision node and a leaf node. Decision nodes have multiple
branches with the capability to make any decision, while leaf nodes do not have branches
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and are considered as the output of the decisions. It is known as a decision tree because it
has a similar nature to a tree that starts with the root node and distributes in the number of
branches, and reflects a tree-like structure [41]. The decision tree splits the data samples at
various points. The executed algorithm finds the error between the target and predicted
value at every divided point. The errors are calculated at every divided point, and the
variable with the least value for the fitness function is selected as a split point, and the
same procedure is repeated again.

4.2. Ensemble Bagging Approach

The ensemble technique is the concept of machine learning used to train numerous
models by applying a similar learning algorithm [42]. The ensemble involves a substantial
group of methods known as multi-classifiers. The group of hundreds or thousands of
learners with a common intent are joined together to fix the problem. Bagging is a parallel
type ensemble method that explains the variance of the prediction model by producing
supplementary data in the stage of training. This production is from irregular sampling
including substituting from the real set of data. Some of the observations can be repeated
by sampling with replacement in every new training data set. In bagging, every component
has an equal chance to appear in the new dataset. The force of prediction cannot be
enhanced by increasing the size of the training set. The variance can also be reduced
narrowly by tuning the forecast to an anticipated outcome. All these numbers of sets of the
given data are normally used to train other numbers of models. This ensemble of different
models uses the average of all the predictions from the other various models. In regression,
the prediction may be the mean or average of the predictions taken from the different
models [43]. The decision tree with bagging is tuned with 20 sub-models to obtain the
optimized value that gives an adamant output result.

4.3. Gene Expression Programming

Gene expression programming (GEP) is a computer programming-based algorithm
used to develop different models [44]. GEP, which is initially introduced by Ferreira [45], is
considered to be a natural development of genetic programming (GP). Multiple numbers
of genetic operators that are being used in genetic algorithms (GAs) can also be used in
GEP with the help of a few recommended changes. There are five main components of
GEP, namely, function set, terminal set, fitness function, control variables, and termination
condition. GEP works as a fixed length of character twine to explain the problems, which
are next defined as tree-like structures with different dimensions. This type of tree is known
as the GEP expression tree (ETs). Selection of individual chromosomes takes place and
then they are copied into the next generation, as per the fitness by roulette wheel sampling
with elitism [23]. This ensures the durability and replication of the best individual to the
next generation. Fluctuation in the population is shown by applying one or more genetic
operators (mutation, crossover, or rotation) on the given chromosomes. Among the number
of advantages of GEP, the formation of genetic diversity is remarkably simplified because
of the working of genetic operators at the chromosome level. This multi-genic approach of
GEP permits the natural selection of other complicated and complex programs composed
of numerous subprograms. GEP genes along with a function set and terminal set play a
vital role during the process [46].

4.4. K-Fold Cross-Validation and Statistical Measures

The model performance in terms of bias and variance is checked by employing K-fold
cross-validation. The data is divided into 10 stratified groups, which randomly distribute
the data into a training set and test set. This process takes one part of the overall data
into the test sample and the remaining into the training set, as illustrated in Figure 5.
The model’s overall efficiency by cross-validation is then tested by taking an average of
10 rounds by various errors. Similarly, the model evaluation is also done by using statistical
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indicators [23]. Three types of the indicator are used in our current study, which is listed
below (Equations (1)–(3)).

MAE =
1
n

n

∑
i = 1
|xi − x| (1)

MSE =
1
n

n

∑
i = 1

(
ypred − yre f

)2
(2)

RMSE =

√√√√
∑

(
ypred − yre f

)2

n
(3)

where:

• n = Total number of data samples,
• x, yre f = reference values in the data sample,
• xi, ypred = predicted values from models.
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5. Model Result
5.1. Decision Tree/Ensemble Model

The prediction of concrete strength by employing a decision tree yields an adamantly
strong relationship between targets to output strength, as depicted in Figure 6. It can be
seen that the individual model gives a better response with less variance, as illustrated
in Figure 6a. However, the decision tree with bagging gives precise performance than an
individual one, as illustrated in Figure 6d. This is due to an increase in model efficiency as
it takes several data to train the best model by using weak base learners [47]. The ensemble
model is optimized by making 20 sub-models, as depicted in Figure 6c. The zero number
shows the individual model, which is made by using the decision approach and shows
R2 = 0.812. After the ensemble approach, there is a significant enhancement in the overall
response of the model. Every model shows a surpass effect by giving an average score of
about R2 = 0.904 within 20 models. However, the 12th sub-model gives a prime result with
R2 = 0.911, as depicted in Figure 6c. Moreover, the model comparison in terms of errors
is depicted in Figure 6b,e. Decision tree (DT) with bagging enhances the model accuracy
by giving fewer errors. The test data shows that there is a 20.10% prediction capacity of
average errors by bagging than in the individual model. Besides, DT shows the minimum
and maximum error of 0 and 21.97 MPa, respectively. Similarly, DT with an ensemble
model shows the minimum and maximum error of 0.11, and 12.77 MPa, respectively. The
detailed result is shown in Table 2.
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Table 2. Evaluation of models.

Data
Points

Decision
Tree (DT)
Targets

DT Predic-
tions

Ensemble
Prediction

Gene
Expression

Programming
(GEP) Targets

GEP Pre-
dictions DT Errors Ensemble

Errors
GEP

Errors

1 56.74 55.64 51.14 26.74 27.66 1.10 5.60 0.92
2 32.72 44.87 33.11 37.44 37.21 12.15 0.39 0.23
3 14.31 13.52 14.94 51.04 49.48 0.79 0.63 1.56
4 39.06 39.05 38.35 18.13 21.68 0.01 0.71 3.55
5 38.11 36.15 35.22 51.33 49.31 1.96 2.89 2.02
6 42.64 42.64 37.67 37.91 39.76 0.00 4.97 1.85
7 34.49 36.15 33.57 25.10 36.42 1.66 0.92 11.32
8 21.65 25.18 25.55 74.17 77.61 3.53 3.90 3.44
9 14.7 19.11 20.62 37.27 40.69 4.41 5.92 3.42
10 40.06 40.06 37.74 15.05 14.58 0.00 2.32 0.47
11 38.21 31.65 34.74 23.52 22.76 6.56 3.47 0.76
12 13.52 13.52 14.79 41.89 42.56 0.00 1.27 0.67
13 21.78 21.02 20.63 48.79 46.44 0.76 1.15 2.35
14 69.84 58.52 63.61 40.68 40.59 11.32 6.23 0.09
15 24 30.14 24.11 32.92 34.99 6.14 0.11 2.07
16 39.58 31.35 37.01 25.18 26.87 8.23 2.57 1.69
17 20.28 18.13 18.00 59.20 85.40 2.15 2.28 26.20
18 14.84 18.91 17.15 33.94 32.67 4.07 2.31 1.27
19 41.37 41.37 48.22 53.30 49.35 0.00 6.85 3.95
20 50.51 46.9 44.65 42.22 46.77 3.61 5.86 4.55
21 38.6 34.57 29.43 30.96 18.90 4.03 9.17 12.06
22 33.61 44.87 32.51 21.75 25.93 11.26 1.10 4.18
23 29.59 36.15 30.80 12.54 9.95 6.56 1.21 2.59
24 41.24 38.89 39.02 31.18 37.50 2.35 2.22 6.32
25 44.86 44.87 39.55 14.20 16.26 0.01 5.31 2.06
26 54.32 54.28 50.46 33.80 36.88 0.04 3.86 3.08
27 48.4 55.94 51.65 30.14 29.77 7.54 3.25 0.37
28 36.45 39 37.80 31.88 36.23 2.55 1.35 4.35
29 22.5 22.95 22.03 30.12 36.52 0.45 0.47 6.40
30 40.66 37.91 40.12 32.72 32.57 2.75 0.54 0.15
31 14.99 15.05 15.71 30.85 41.47 0.06 0.72 10.62
32 43.89 43.94 44.89 43.70 45.88 0.05 1.00 2.18
33 6.27 19.11 19.05 24.50 25.95 12.84 12.78 1.45
34 33.94 50.6 41.89 39.29 41.35 16.66 7.95 2.06
35 14.2 18.91 17.38 32.07 35.21 4.71 3.18 3.14
36 23.8 22.95 21.86 9.01 13.37 0.85 1.94 4.36
37 35.76 34.68 33.99 22.50 18.93 1.08 1.77 3.57
38 32.72 41.05 36.38 14.50 16.89 8.33 3.66 2.39
39 36.8 36.8 37.17 39.06 37.75 0.00 0.37 1.31
40 42.13 42.62 43.28 42.42 43.95 0.49 1.15 1.53
41 56.83 78.8 59.50 42.13 38.72 21.97 2.67 3.41
42 33.08 36.94 38.20 42.03 48.82 3.86 5.12 6.79
43 41.3 41.64 39.45 43.89 46.77 0.34 1.85 2.88
44 58.61 56.85 58.01 40.06 31.79 1.76 0.60 8.27
45 26.85 21.75 27.39 48.28 47.22 5.10 0.54 1.06
46 33.21 34.57 28.27 37.42 37.11 1.36 4.94 0.31
47 31.97 31.45 32.39 39.49 41.69 0.52 0.42 2.20
48 39.49 37.91 40.61 36.94 38.73 1.58 1.12 1.79
49 37.33 36.15 34.77 25.22 27.85 1.18 2.56 2.63
50 22.53 27.04 26.86 55.64 55.64 4.51 4.33 0.00
51 40.68 38.63 36.96 60.95 60.16 2.05 3.72 0.79
52 26.06 18.13 20.51 37.33 40.76 7.93 5.55 3.43
53 55.16 51.04 49.54 25.45 29.65 4.12 5.62 4.20
54 48.28 51.33 42.55 - - 3.05 5.73 -
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5.2. Gene Expression Programming

The performance of the model by GEP yielded a robust relationship between targets
and predicted, as illustrated in Figure 7. It can be seen that R2 by employing GEP is close
to 1. Moreover, Figure 7b represents the error distribution of the testing set with fewer
errors. Similarly, the predicted value shows a lower error to target values with a minimum,
maximum, and average value of 0.00 MPa, 26.20 MPa, and 3.48 MPa, respectively. Table 2
presents detailed results from the models.
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5.3. Evaluation of the Model by K-Fold and Statistical Checks

Cross-validation is a statistical practice used to evaluate or estimate the actual per-
formance of the machine learning models. It is necessary to know the performance of
the selected models. For this purpose, a validation technique is required to find the accu-
racy level of the model’s data. Shuffling of the data set randomly and splitting a dataset
into k-groups is required for the k-fold validation test. In the described study, data of
experimental samples are equally divided into 10 subsets. It uses nine out of ten subsets,
while the only subset is utilized for the validation of the model. The same approach of this
process is then repeated 10 times for obtaining the average accuracy of these 10 repetitions.
It is clarified widely that the 10-fold cross-validation method well represents the conclusion
and accuracy of the model performance [48].

Bias and a variance decrease for the test set can be checked by employing K-fold
cross-validation. The results of cross-validation are evaluated by a correlation coefficient
(R2), a mean absolute error (MAE), a mean square error (MSE), and a root mean square
error (RMSE), as illustrated in Figure 8. The ensemble model shows fewer errors and
better R2 as compared to GEP. The average R2 for ensemble modeling is 0.905 with a
maximum and minimum values of 0.84 and 0.96, as depicted in Figure 8a. Whereas the
GEP model shows an average R2 = 0.873 of ten folds with 0.76 and 0.95 for a minimum and
maximum correlation, respectively, as shown in Figure 8b. Each model shows fewer errors
for validation. The validation indicator result shows that ensemble means values of MAE,
MSE, and RMSE come to be 6.43 MPa, 6.66 MPa, and 2.55 MPa, respectively. Similarly, the
GEP model shows the same trend by showing fewer errors. The GEP model shows mean
values of 7.30 MPa, 9.60 MPa, and 3.06 MPa for MAE, MSE, and RMSE, respectively (see
Figure 8b). Table 3 represents the validation results of both models.
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Table 3. Result of K-Fold Cross-validation.

K Fold
Ensemble Model GEP Model

R2 MAE MSE RMSE R2 MAE MSE RMSE

1 0.96 8.46 4.45 2.10 0.86 10.71 13.57 3.68
2 0.91 5.17 7.44 2.72 0.94 7.45 7.97 2.82
3 0.84 3.73 8.54 2.92 0.89 6.18 11.24 3.35
4 0.90 9.52 5.84 2.41 0.95 5.84 14.51 3.80
5 0.94 6.81 6.44 2.53 0.93 7.81 9.64 3.10
6 0.90 5.65 5.88 2.42 0.86 7.51 6.51 2.55
7 0.85 7.91 6.87 2.62 0.81 8.47 7.25 2.69
8 0.88 5.81 9.85 3.13 0.76 6.58 7.58 2.75
9 0.95 6.37 4.97 2.22 0.84 5.64 9.47 3.07
10 0.92 4.92 6.35 2.51 0.89 6.84 8.35 2.88

Statistical check is also applied to evaluate the model with regard to the testing results.
The statistical check is an indicator that shows the model response towards prediction, as
shown in Table 4. It can be seen that models depict bottom-most errors. However, the
ensemble model shows a 25% error reduction for MAE as compared to the individual
and GEP. Similarly, the bagging approach indicates the robust performance of the model.
Moreover, MSE and RMSE for strong learners show 121% and 49% enhancement in the
predictions by showing reduced errors between the target and predicted outcomes, as
shown in Table 4.

Table 4. Statistical checks.

Statistics MAE (MPa) MSE (MPa) RMSE (MPa)

DT 3.896 36.01 6.00
DT-BAG 3.113 16.28 4.03

GEP 3.478 29.91 5.46

Moreover, permutation feature importance via python is conducted to check the
influence of variables on strength, as depicted in Figure 9. These variables have a vital
influence on the prediction of compressive strength of concrete. The concrete age, cement,
and water-to-cement ratio have a significant influence on model analysis. Whereas water,
filler material (fly ash), superplasticizer, fine aggregate, and coarse aggregate have moderate
influences in making the model. Thus, it can be concluded that every parameter is crucial in
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the forecasting of the strength properties. However, cement, age, and the water-to-cement
ratio should be given more importance while casting of specimens.
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5.4. Limitation and Future Work

Despite the fact that, in the work, a thorough analysis based on a large number of
data points was conducted and an extensive machine learning algorithm with evaluation
was implemented, the limitations of work should be mentioned. Described in the paper
selection, an approach can be enhanced by using other appropriate methods. A clear
limitation of work is the number of data points equal to 270. The study is also limited to
predict only one result from various mechanical properties of concrete. Tensile strength,
durability, corrosion, toughness, and abrasion behavior of concrete is not considered in this
work. Other algorithm-based techniques, like artificial neural network (ANN), support
vector machine (SVM), gradient boosting, and AdaBoost may also be applied to the same
dataset for a better understanding. However, this research work does not only focus
on algorithm-based techniques but also involves the programming-based GEP, which
indicated the wide scope of this work.

Since concrete is the most widely used material after water on this earth, it is further
recommended that other properties of this material should be incorporated except for its
compressive strength. Machine learning techniques should also be used to predict the
environmental effects on concrete properties. To achieve high accuracy in the actual and
predicted results, the multi-stage genetic programming approach may also be used. It is
also recommended that models can be run for the concrete modified with different fibers
as: jute fibers, glass fibers, polypropylene fibers, nylon fibers, and steel fibers.

6. Conclusions

This study describes the supervised machine learning approaches with ensemble
modeling and gene expression programming to predict concrete strength. The following
points are drawn from the analysis:

1. A decision tree with ensemble modeling gives a robust performance compared to a
decision tree individually and with gene expression programming. The correlation
coefficient of R2 = 0.911 is reported for DT with bagging.
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2. Optimization of the model for the decision tree with bagging is done by making
twenty sub-models. Magnificent enhancement is observed from the twelve, which
shows R2 = 0.911 as compared to the individual model with R2 = 0.812.

3. Validation score is conducted by different indicators. Both models (DT with bagging
and GEP) show better anticipation for testing results.

4. Statistical analysis checks reveal that the decision tree with bagging shows enhance-
ment in model accuracy by minimizing the error difference between targeted and
predicted values.

To summarize, all applied algorithms show a significant effect on the model’s quality
by predicting the target response more accurately. As described in the paper, machine
learning approaches can save experimental time and predict the outcome by gathering
extensive data from laboratory and published papers. It can help the scientific society to
predict the properties and responses in the coming month or year.
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Appendix A

Table A1. Experimental variable data.

S. No. Cement Fly Ash Water Super Plasticizer Coarse Aggregate Fine Aggregate Days W/C Strength

1 540 0 162 2.5 1040 676 28 0.3 79.99
2 540 0 162 2.5 1055 676 28 0.3 61.89
3 475 0 228 0 932 594 28 0.48 39.29
4 380 0 228 0 932 670 90 0.6 52.91
5 475 0 228 0 932 594 180 0.48 42.62
6 380 0 228 0 932 670 365 0.6 52.52
7 380 0 228 0 932 670 270 0.6 53.3
8 475 0 228 0 932 594 7 0.48 38.6
9 475 0 228 0 932 594 270 0.48 42.13
10 475 0 228 0 932 594 90 0.48 42.23
11 380 0 228 0 932 670 180 0.6 53.1
12 349 0 192 0 1047 806.9 3 0.55 15.05
13 475 0 228 0 932 594 365 0.48 41.93
14 310 0 192 0 971 850.6 3 0.62 9.87
15 485 0 146 0 1120 800 28 0.3 71.99
16 531.3 0 141.8 28.2 852.1 893.7 3 0.27 41.3
17 531.3 0 141.8 28.2 852.1 893.7 7 0.27 46.9
18 531.3 0 141.8 28.2 852.1 893.7 28 0.27 56.4
19 531.3 0 141.8 28.2 852.1 893.7 56 0.27 58.8
20 531.3 0 141.8 28.2 852.1 893.7 91 0.27 59.2
21 290.4 96.2 168.1 9.4 961.2 865 3 0.58 22.5
22 290.4 96.2 168.1 9.4 961.2 865 14 0.58 34.67
23 290.4 96.2 168.1 9.4 961.2 865 28 0.58 34.74
24 290.4 96.2 168.1 9.4 961.2 865 56 0.58 45.08
25 290.4 96.2 168.1 9.4 961.2 865 100 0.58 48.97
26 277.1 97.4 160.6 11.8 973.9 875.6 3 0.58 23.14
27 277.1 97.4 160.6 11.8 973.9 875.6 14 0.58 41.89
28 277.1 97.4 160.6 11.8 973.9 875.6 28 0.58 48.28
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Table A1. Cont.

S. No. Cement Fly Ash Water Super Plasticizer Coarse Aggregate Fine Aggregate Days W/C Strength

29 277.1 97.4 160.6 11.8 973.9 875.6 56 0.58 51.04
30 277.1 97.4 160.6 11.8 973.9 875.6 100 0.58 55.64
31 295.7 95.6 171.5 8.9 955.1 859.2 3 0.58 22.95
32 295.7 95.6 171.5 8.9 955.1 859.2 14 0.58 35.23
33 295.7 95.6 171.5 8.9 955.1 859.2 28 0.58 39.94
34 295.7 95.6 171.5 8.9 955.1 859.2 56 0.58 48.72
35 295.7 95.6 171.5 8.9 955.1 859.2 100 0.58 52.04
36 251.8 99.9 146.1 12.4 1006 899.8 3 0.58 21.02
37 251.8 99.9 146.1 12.4 1006 899.8 14 0.58 33.36
38 251.8 99.9 146.1 12.4 1006 899.8 28 0.58 33.94
39 251.8 99.9 146.1 12.4 1006 899.8 56 0.58 44.14
40 251.8 99.9 146.1 12.4 1006 899.8 100 0.58 45.37
41 249.1 98.8 158.1 12.8 987.8 889 3 0.63 15.36
42 249.1 98.8 158.1 12.8 987.8 889 14 0.63 28.68
43 249.1 98.8 158.1 12.8 987.8 889 28 0.63 30.85
44 249.1 98.8 158.1 12.8 987.8 889 56 0.63 42.03
45 249.1 98.8 158.1 12.8 987.8 889 100 0.63 51.06
46 252.3 98.8 146.3 14.2 987.8 889 3 0.58 21.78
47 252.3 98.8 146.3 14.2 987.8 889 14 0.58 42.29
48 252.3 98.8 146.3 14.2 987.8 889 28 0.58 50.6
49 252.3 98.8 146.3 14.2 987.8 889 56 0.58 55.83
50 252.3 98.8 146.3 14.2 987.8 889 100 0.58 60.95
51 246.8 125.1 143.3 12 1086.8 800.9 3 0.58 23.52
52 246.8 125.1 143.3 12 1086.8 800.9 14 0.58 42.22
53 246.8 125.1 143.3 12 1086.8 800.9 28 0.58 52.5
54 246.8 125.1 143.3 12 1086.8 800.9 56 0.58 60.32
55 246.8 125.1 143.3 12 1086.8 800.9 100 0.58 66.42
56 275.1 121.4 159.5 9.9 1053.6 777.5 3 0.58 23.8
57 275.1 121.4 159.5 9.9 1053.6 777.5 14 0.58 38.77
58 275.1 121.4 159.5 9.9 1053.6 777.5 28 0.58 51.33
59 275.1 121.4 159.5 9.9 1053.6 777.5 56 0.58 56.85
60 275.1 121.4 159.5 9.9 1053.6 777.5 100 0.58 58.61
61 297.2 117.5 174.8 9.5 1022.8 753.5 3 0.59 21.91
62 297.2 117.5 174.8 9.5 1022.8 753.5 14 0.59 36.99
63 297.2 117.5 174.8 9.5 1022.8 753.5 28 0.59 47.4
64 297.2 117.5 174.8 9.5 1022.8 753.5 56 0.59 51.96
65 297.2 117.5 174.8 9.5 1022.8 753.5 100 0.59 56.74
66 376 0 214.6 0 1003.5 762.4 3 0.57 16.28
67 376 0 214.6 0 1003.5 762.4 14 0.57 25.62
68 376 0 214.6 0 1003.5 762.4 28 0.57 31.97
69 376 0 214.6 0 1003.5 762.4 56 0.57 36.3
70 376 0 214.6 0 1003.5 762.4 100 0.57 43.06
71 500 0 140 4 966 853 28 0.28 67.57
72 475 59 142 1.9 1098 641 28 0.3 57.23
73 505 60 195 0 1030 630 28 0.39 64.02
74 451 0 165 11.3 1030 745 28 0.37 78.8
75 516 0 162 8.2 801 802 28 0.31 41.37
76 520 0 170 5.2 855 855 28 0.33 60.28
77 528 0 185 6.9 920 720 28 0.35 56.83
78 520 0 175 5.2 870 805 28 0.34 51.02
79 385 136 158 20 903 768 28 0.41 55.55
80 500.1 0 200 3 1124.4 613.2 28 0.4 44.13
81 405 0 175 0 1120 695 28 0.43 52.3
82 516 0 162 8.3 801 802 28 0.31 41.37
83 475 0 162 9.5 1044 662 28 0.34 58.52
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Table A1. Cont.

S. No. Cement Fly Ash Water Super Plasticizer Coarse Aggregate Fine Aggregate Days W/C Strength

84 500 0 151 9 1033 655 28 0.3 69.84
85 436 0 218 0 838.4 719.7 28 0.5 23.85
86 289 0 192 0 913.2 895.3 90 0.66 32.07
87 289 0 192 0 913.2 895.3 3 0.66 11.65
88 393 0 192 0 940.6 785.6 3 0.49 19.2
89 393 0 192 0 940.6 785.6 90 0.49 48.85
90 393 0 192 0 940.6 785.6 28 0.49 39.6
91 480 0 192 0 936.2 712.2 28 0.4 43.94
92 480 0 192 0 936.2 712.2 7 0.4 34.57
93 480 0 192 0 936.2 712.2 90 0.4 54.32
94 480 0 192 0 936.2 712.2 3 0.4 24.4
95 333 0 192 0 931.2 842.6 3 0.58 15.62
96 289 0 192 0 913.2 895.3 7 0.66 14.6
97 333 0 192 0 931.2 842.6 28 0.58 31.97
98 333 0 192 0 931.2 842.6 7 0.58 23.4
99 289 0 192 0 913.2 895.3 28 0.66 25.57

100 333 0 192 0 931.2 842.6 90 0.58 41.68
101 393 0 192 0 940.6 785.6 7 0.49 27.74
102 397 0 185.7 0 1040.6 734.3 28 0.47 33.08
103 382.5 0 185.7 0 1047.8 739.3 7 0.49 24.07
104 295.8 0 185.7 0 1091.4 769.3 7 0.63 14.84
105 397 0 185.7 0 1040.6 734.3 7 0.47 25.45
106 381.4 0 185.7 0 1104.6 784.3 28 0.49 22.49
107 295.8 0 185.7 0 1091.4 769.3 28 0.63 25.22
108 339.2 0 185.7 0 1069.2 754.3 7 0.55 21.18
109 381.4 0 185.7 0 1104.6 784.3 7 0.49 14.54
110 339.2 0 185.7 0 1069.2 754.3 28 0.55 31.9
111 382.5 0 185.7 0 1047.8 739.3 28 0.49 37.44
112 339 0 197 0 968 781 3 0.58 13.22
113 339 0 197 0 968 781 7 0.58 20.97
114 339 0 197 0 968 781 14 0.58 27.04
115 339 0 197 0 968 781 28 0.58 32.04
116 339 0 197 0 968 781 90 0.58 35.17
117 339 0 197 0 968 781 180 0.58 36.45
118 339 0 197 0 968 781 365 0.58 38.89
119 277 0 191 0 968 856 14 0.69 21.26
120 277 0 191 0 968 856 28 0.69 25.97
121 277 0 191 0 968 856 3 0.69 11.36
122 277 0 191 0 968 856 90 0.69 31.25
123 277 0 191 0 968 856 180 0.69 32.33
124 277 0 191 0 968 856 360 0.69 33.7
125 307 0 193 0 968 812 180 0.63 34.49
126 307 0 193 0 968 812 365 0.63 36.15
127 307 0 193 0 968 812 3 0.63 12.54
128 307 0 193 0 968 812 28 0.63 27.53
129 307 0 193 0 968 812 90 0.63 32.92
130 325 0 184 0 1063 783 7 0.57 17.54
131 325 0 184 0 1063 783 28 0.57 30.57
132 275 0 183 0 1088 808 7 0.67 14.2
133 275 0 183 0 1088 808 28 0.67 24.5
134 300 0 184 0 1075 795 7 0.61 15.58
135 300 0 184 0 1075 795 28 0.61 26.85
136 375 0 186 0 1038 758 7 0.5 26.06
137 375 0 186 0 1038 758 28 0.5 38.21
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Table A1. Cont.

S. No. Cement Fly Ash Water Super Plasticizer Coarse Aggregate Fine Aggregate Days W/C Strength

138 400 0 187 0 1025 745 28 0.47 43.7
139 400 0 187 0 1025 745 7 0.47 30.14
140 350 0 186 0 1050 770 7 0.53 20.28
141 350 0 186 0 1050 770 28 0.53 34.29
142 310 0 192 0 1012 830 3 0.62 11.85
143 310 0 192 0 1012 830 7 0.62 17.24
144 310 0 192 0 1012 830 28 0.62 27.83
145 310 0 192 0 1012 830 90 0.62 35.76
146 310 0 192 0 1012 830 120 0.62 38.7
147 331 0 192 0 1025 821 3 0.58 14.31
148 331 0 192 0 1025 821 7 0.58 17.44
149 331 0 192 0 1025 821 28 0.58 31.74
150 331 0 192 0 1025 821 90 0.58 37.91
151 331 0 192 0 1025 821 120 0.58 39.38
152 349 0 192 0 1056 809 3 0.55 15.87
153 349 0 192 0 1056 809 7 0.55 9.01
154 349 0 192 0 1056 809 28 0.55 33.61
155 349 0 192 0 1056 809 90 0.55 40.66
156 349 0 192 0 1056 809 120 0.55 40.86
157 296 0 186 0 1090 769 7 0.63 18.91
158 296 0 186 0 1090 769 28 0.63 25.18
159 297 0 186 0 1040 734 7 0.63 30.96
160 480 0 192 0 936 721 28 0.4 43.89
161 480 0 192 0 936 721 90 0.4 54.28
162 397 0 186 0 1040 734 28 0.47 36.94
163 281 0 186 0 1104 774 7 0.66 14.5
164 281 0 185 0 1104 774 28 0.66 22.44
165 500 0 200 0 1125 613 1 0.4 12.64
166 500 0 200 0 1125 613 3 0.4 26.06
167 500 0 200 0 1125 613 7 0.4 33.21
168 500 0 200 0 1125 613 14 0.4 36.94
169 500 0 200 0 1125 613 28 0.4 44.09
170 540 0 173 0 1125 613 7 0.32 52.61
171 540 0 173 0 1125 613 14 0.32 59.76
172 540 0 173 0 1125 613 28 0.32 67.31
173 540 0 173 0 1125 613 90 0.32 69.66
174 540 0 173 0 1125 613 180 0.32 71.62
175 540 0 173 0 1125 613 270 0.32 74.17
176 350 0 203 0 974 775 7 0.58 18.13
177 350 0 203 0 974 775 14 0.58 22.53
178 350 0 203 0 974 775 28 0.58 27.34
179 350 0 203 0 974 775 56 0.58 29.98
180 350 0 203 0 974 775 90 0.58 31.35
181 350 0 203 0 974 775 180 0.58 32.72
182 385 0 186 0 966 763 1 0.48 6.27
183 385 0 186 0 966 763 3 0.48 14.7
184 385 0 186 0 966 763 7 0.48 23.22
185 385 0 186 0 966 763 14 0.48 27.92
186 385 0 186 0 966 763 28 0.48 31.35
187 331 0 192 0 978 825 180 0.58 39
188 331 0 192 0 978 825 360 0.58 41.24
189 349 0 192 0 1047 806 3 0.55 14.99
190 331 0 192 0 978 825 3 0.58 13.52
191 382 0 186 0 1047 739 7 0.49 24
192 382 0 186 0 1047 739 28 0.49 37.42
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Table A1. Cont.

S. No. Cement Fly Ash Water Super Plasticizer Coarse Aggregate Fine Aggregate Days W/C Strength

193 382 0 186 0 1111 784 7 0.49 11.47
194 281 0 186 0 1104 774 28 0.66 22.44
195 339 0 185 0 1069 754 7 0.55 21.16
196 339 0 185 0 1069 754 28 0.55 31.84
197 295 0 185 0 1069 769 7 0.63 14.8
198 295 0 185 0 1069 769 28 0.63 25.18
199 296 0 192 0 1085 765 7 0.65 14.2
200 296 0 192 0 1085 765 28 0.65 21.65
201 296 0 192 0 1085 765 90 0.65 29.39
202 331 0 192 0 879 825 3 0.58 13.52
203 331 0 192 0 978 825 7 0.58 16.26
204 331 0 192 0 978 825 28 0.58 31.45
205 331 0 192 0 978 825 90 0.58 37.23
206 349 0 192 0 1047 806 7 0.55 18.13
207 349 0 192 0 1047 806 28 0.55 32.72
208 349 0 192 0 1047 806 90 0.55 39.49
209 349 0 192 0 1047 806 180 0.55 41.05
210 349 0 192 0 1047 806 360 0.55 42.13
211 302 0 203 0 974 817 14 0.67 18.13
212 302 0 203 0 974 817 180 0.67 26.74
213 525 0 189 0 1125 613 180 0.36 61.92
214 500 0 200 0 1125 613 90 0.4 47.22
215 500 0 200 0 1125 613 180 0.4 51.04
216 500 0 200 0 1125 613 270 0.4 55.16
217 540 0 173 0 1125 613 3 0.32 41.64
218 339 0 185 0 1060 754 28 0.55 31.65
219 393 0 192 0 940 758 3 0.49 19.11
220 393 0 192 0 940 758 28 0.49 39.58
221 393 0 192 0 940 758 90 0.49 48.79
222 382 0 185 0 1047 739 7 0.48 24
223 382 0 185 0 1047 739 28 0.48 37.42
224 310 0 192 0 970 850 7 0.62 14.99
225 310 0 192 0 970 850 28 0.62 27.92
226 310 0 192 0 970 850 90 0.62 34.68
227 310 0 192 0 970 850 180 0.62 37.33
228 310 0 192 0 970 850 360 0.62 38.11
229 525 0 189 0 1125 613 3 0.36 33.8
230 525 0 189 0 1125 613 7 0.36 42.42
231 525 0 189 0 1125 613 14 0.36 48.4
232 525 0 189 0 1125 613 28 0.36 55.94
233 525 0 189 0 1125 613 90 0.36 58.78
234 525 0 189 0 1125 613 270 0.36 67.11
235 322 0 203 0 974 800 14 0.63 20.77
236 322 0 203 0 974 800 28 0.63 25.18
237 322 0 203 0 974 800 180 0.63 29.59
238 302 0 203 0 974 817 28 0.67 21.75
239 397 0 185 0 1040 734 28 0.47 39.09
240 480 0 192 0 936 721 3 0.4 24.39
241 522 0 146 0 896 896 7 0.28 50.51
242 522 0 146 0 896 896 28 0.28 74.99
243 374 0 190 7 1013 730 28 0.51 39.05
244 305 100 196 10 959 705 28 0.64 30.12
245 298 107 186 6 879 815 28 0.62 42.64
246 318 126 210 6 861 737 28 0.66 40.06
247 356 142 193 11 801 778 28 0.54 40.87
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Table A1. Cont.

S. No. Cement Fly Ash Water Super Plasticizer Coarse Aggregate Fine Aggregate Days W/C Strength

248 314 113 170 10 925 783 28 0.54 38.46
249 321 128 182 11 870 780 28 0.57 37.26
250 298 107 210 11 880 744 28 0.7 31.87
251 322 116 196 10 818 813 28 0.61 31.18
252 313 113 178 8 1002 689 28 0.57 36.8
253 326 138 199 11 801 792 28 0.61 40.68
254 336 0 182 3 986 817 28 0.54 44.86
255 298 107 164 13 953 784 28 0.55 35.86
256 313 0 178 8 1000 822 28 0.57 25.1
257 313.3 113 178.5 8 1001.9 688.7 28 0.57 36.8
258 326.5 137.9 199 10.8 801.1 792.5 28 0.61 38.63
259 336.5 0 181.9 3.4 985.8 816.8 28 0.54 44.87
260 298.1 107.5 163.6 12.8 953.2 784 28 0.55 35.87
261 312.7 0 178.1 8 999.7 822.2 28 0.57 25.1
262 374.3 0 190.2 6.7 1013.2 730.4 28 0.51 39.06
263 304.8 99.6 196 9.8 959.4 705.2 28 0.64 30.12
264 298.1 107 186.4 6.1 879 815.2 28 0.63 42.64
265 317.9 126.5 209.7 5.7 860.5 736.6 28 0.66 40.06
266 355.9 141.6 193.3 11 801.4 778.4 28 0.54 40.87
267 313.8 112.6 169.9 10.1 925.3 782.9 28 0.54 38.46
268 321.4 127.9 182.5 11.5 870.1 779.7 28 0.57 37.27
269 298.2 107 209.7 11.1 879.6 744.2 28 0.7 31.88
270 322.2 115.6 196 10.4 817.9 813.4 28 0.61 31.18
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