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Abstract: In this study, large-sized Al–Zn–Mg–Cu alloy billets were prepared by direct chill casting
imposed with annular electromagnetic stirring and intercooling; a process named uniform direct
chill casting. The effects of uniform direct chill casting on grain size and the alloying element
distribution of the billets were investigated and compared with those of the normal direct chill
casting method. The results show that the microstructures were refined and the homogeneity of the
alloying elements distribution was greatly improved by imposing the annular electromagnetic stirring
and intercooling. In uniform direct chill casting, explosive nucleation can be triggered, originating
from the mold wall and dendrite fragments for grain refinement. The effects of electromagnetic
stirring on macrosegregation are discussed with consideration of the centrifugal force that drives the
movement of melt from the central part towards the upper-periphery part, which could suppress the
macrosegregation of alloying elements. The refined grain can reduce the permeability of the melt in
the mushy zone that can restrain macrosegregation.

Keywords: Al–Zn–Mg–Cu alloy; direct chill casting; electromagnetic stirring; intercooling; grain
refinement; macrosegregation

1. Introduction

The Al–Zn–Mg–Cu alloy with a high strength-to-density ratio, considerable fracture
toughness and good stress corrosion cracking resistance has been widely used for military
and commercial applications [1–6]. Despite its positive characteristics, the main bottleneck
for this alloy is how to prepare large-sized high quality billets or ingots for final applications
of forging or extrusion. With the increase in billet size, permanent-mold casting and direct
chill (DC) casting methods have been developed successively to increase the cooling rate.
At present, DC casting is the main way to obtain billets [7,8]. However, during the process
of DC casting, the melt can only be cooled and solidified from outside to inside by the
mold cooling (primary cooling) and by spraying water cooling (secondary cooling). Due
to the long distance from the edge to the center of the billet for heat conduction, the effect
of secondary cooling cannot be fully brought into play [9]. Therefore, as the billet size
increases, it is more and more difficult to obtain the uniformity of the melt temperature
field. Especially in the primary cooling area that is in contact with the graphite ring, the
non-uniform melt temperature leads to a non-uniform solidification shell which exhibits
remarkable thermal stresses and strains, and is prone to wrinkles, segregation tumors and
even leaks of billets [10,11]. To reduce the heat extraction rate and the thermal strain during
the DC casting process, the wiper is implemented to divert the free falling water from the
billet surface, thus, drastically reducing the heat extraction rate [12]. Due to the application

Materials 2021, 14, 708. https://doi.org/10.3390/ma14040708 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-6593-8062
https://doi.org/10.3390/ma14040708
https://doi.org/10.3390/ma14040708
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14040708
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/4/708?type=check_update&version=1


Materials 2021, 14, 708 2 of 9

of the wiper, the billet pulling speed should be reduced to ensure that billets have enough
time to solidify. In addition, the large volume melt solidification will release a lot of latent
heat that takes a considerable amount of time for the melt center to cool. Therefore, in
order to ensure the smooth progress of the DC casting process, the pulling speed should be
reduced to ensure that the heat of the melt itself and the latent heat of solidification are fully
released. However, if the casting speed is too slow, there is enough time for the nuclei to
grow up, meanwhile, the formed nuclei would be dissolved again, resulting in the reduction
in nucleation sites. As a result, the microstructure of the billet is non-uniform and coarse.

Recently, many researchers have studied the application of external force including
mechanical stirring, ultrasonic vibrating and electromagnetic stirring on DC casting to
improve the uniformity of the temperature field of billets and to obtain high quality
billets with fine and uniform structures [13–16]. Electromagnetic stirring (EMS) is the
most widely used melt treatment technology in industry and is widely used in the field
of steel and non-ferrous metal continuous casting [17,18]. However, due to the skin
effect, electromagnetic stirring technology is limited in the preparation of large-sized
aluminum alloy billets. For this reason, the previous research group put forward Annular
Electromagnetic Stirring (A-EMS), which provided a new idea to solve the skin effect [19].
The mechanism of these methods is to enhance the thermal convection of the melt to
improve the uniformity of the temperature field, but the single cooling mode that the melt
was only cooled by the mold and spraying water is not changed, the temperature difference
between the edge part and the center part of the billets is still remarkable [20]. From the
point of view of the development of large size billet preparation technology, this is mainly
achieved through improving the cooling rate of the melt from mold cooling alone to mold
cooling and spray water cooling. Therefore, based on A-EMS technology, a uniform direct
chill (UDC) casting method was designed for extracting heat from the melt center and
preparing large-sized billets by coupling A-EMS with intercooling in the sump during
the DC casting process [21]. In previous studies, the effects and mechanism of UDC on
microstructures, macrosegregation and the mechanical properties of the 7005 aluminum
alloy were investigated and discussed [20,22]. However, the content of the alloy elements
of the 7005 aluminum alloy is relatively low, which is not sufficient to illustrate that UDC
casting can be applied to prepare other large-sized 7xxx series high strength aluminum
alloy billets containing high alloying elements.

In this paper, the recently developed UDC casting was employed for the production
of large-sized Al–Zn–Mg–Cu alloy billets with improved quality, and the operating mech-
anisms responsible for the microstructure refinement and composition homogenization
were analyzed in detail.

2. Experimental

The schematic illustration of the UDC casting is shown in Figure 1 [21]. Based on
the normal direct chill (NDC) casting equipment, the intercooling is realized by an in-
mold cooler with a cooling end made of highly pure graphite placed in the central axis
of the mold. Thus, there was annular gap between the in-mold cooler and the mold,
electromagnetic stirrer arranged with six water-cooled copper coils fed with a three-phase
electric current was externally installed around the mold to achieve A-EMS.

Commercial pure aluminum (99.85 wt.%), commercial pure zinc (99.995 wt.%), com-
mercial pure magnesium (99.90 wt.%), commercial pure copper (99.97 wt.%), Al-4Zr master
alloys master alloy were melted in an industrial induction furnace (Idea electric co., LTD.,
Shijiazhuang, China) to obtain the experimental Al–Zn–Mg–Cu alloy without grain refiner.
It should be indicated that the composition of the alloy is Al–5.91 Zn–2.32 Mg–2.26 Cu–0.13
Zr–0.072 Fe–0.031 Si (wt.%). After being degassed and filtered, the molten alloy whose
temperature reached 1023 K was poured into the preheated hot top of a DC caster with
a billet diameter of 508 mm. The intercooling and A-EMS were started at the same time
when the casting process proceeded at a stable stage. The NDC and UDC casting process
parameters are shown in Table 1.
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Figure 1. Schematic illustration of the uniform direct chill (UDC) casting process (a) [21] and sampling location of billet for
structural inspection and chemical composition measurement (b).

Table 1. Casting process parameters of normal direct chill (NDC) and UDC.

Parameters NDC UDC

Pouring temperature (K) 1023 1023
Casting speed (mm min−1) 27 27

Cooling water (m3 h−1) 9 9
Electromagnetic current (A) - 100

Electromagnetic frequency (Hz) - 5
Cooler diameter (mm) - 200

Cooling rate (W m−2 K−1) - 300

To avoid cracking, the billets were homogenized at 743 K for 24 h immediately af-
ter being produced by the NDC casting and UDC casting, and then air-cooled to room
temperature. For structural inspection and chemical composition measurements, the sam-
ples were sliced along its half-length, as shown in Figure 1b, where the casting process
is steady. The samples were deposited with anodic coatings at 30 V direct current in 2.5
vol.% fluoroboric acid solution. A polarized light optical microscope equipped with an
image analysis system (Carl Zeiss Axiovert 200 MAT, Carl Zeiss AG, Heidenheim and der
Brenz, Germanywas used for metallography observations. The chemical composition was
determined by a Foundry-Master Pro direct reading spectrometer (Oxford Instruments,
Taunusstein, Germany), five chemical composition measurements were made to obtain the
average of each condition.

3. Results

Figure 2 presents the micrographs of the Al–Zn–Mg–Cu alloy billets prepared by NDC
casting and UDC casting, and Figure 3 shows the data for the average billet grain size along
the radius direction of the billets formed using NDC casting and UDC casting. Dramatic
discrepancies in the microstructure between the two different casting billets were observed.
The microstructure throughout the Al–Zn–Mg–Cu alloy billet, prepared by NDC casting,
is typically made of coarse grains. These coarse grains are developed dendrites that are
distributed all over the billets. The average grain size of the billet increases from 375 µm
in the periphery section to 779 µm in the central section due to the lower cooling rate in
the central section. Therefore, it is difficult to prepare large-sized Al–Zn–Mg–Cu alloy
billets with fine and uniform microstructure by NDC casting. It can be noted that the whole
microstructure of the billet prepared by UDC casting was fine equiaxed grains. The average
grain size in the periphery part of the billet was only 81 µm. Owing to intercooling, the
grain size in the central part of the billet only increased a little to 125 µm. It was calculated
that the average grain size decreased from 520 ± 110 µm to 109 ± 10 µm by using UDC.
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NDC casting.

To evaluate the macrosegregation in the radius direction of billet, it is necessary to
measure the main alloying elements along the radius direction of the billets. Relative
segregation, which is defined by the following equation, is used to describe the degree of
macrosegregation.

C = (Ci − C0)/C0 (1)

where, Ci is the measured content of element i, C0 is the nominal content of the element.
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Figure 4 shows the relative segregation of the main alloying elements along the radius
direction of the Al–Zn–Mg–Cu alloy billets with diameter of 508 mm, prepared by NDC
and UDC casting. It is apparent that all the element segregation patterns are the same for
the billet prepared by NDC or UDC casting, but the degree of segregation varies greatly
between the two different casting billets. This demonstrates the typical negative surface
segregation, positive mid-radius segregation and positive centerline segregation for the
NDC or UDC casting billets. In the NDC casting process, the natural thermo-solutal
convection facilitates negative surface segregation and positive centerline segregation
of Zn, Mg and Cu. For example, the negative surface segregation of Zn, Mg and Cu is
enhanced to 6, 8 and 12%, respectively. The forced flow in the UDC casting process can
effectively eliminate macrosegregation, and the deviation of Zn, Mg and Cu is less than 3%.
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4. Discussion

In the UDC casting process, the occurrence of explosive nucleation is essential for
effective grain refinement. Two different routes that exist in UDC casting are responsible for
explosive nucleation. The nuclei could originate from the graphite ring wall and in-mold
cooler wall. Meanwhile, the forced flow can break or fuse the dendrites into fragments that
can be brought to the remaining liquid and finally form nuclei. These will be discussed in
detail as below.

Both the intercooling and the A-EMS have a certain effect on grain refinement, and the
UDC casting technology makes full use of the advantages of both. The implementation of
an in-mold cooler can remove heat from the sump center. Intercooling works with the mold
cooling and spraying water cooling to reduce the heat energy of the large volume melt in
the sump for preparing large-sized billet. Meanwhile, the A-EMS can contribute to the
heat convection of the melt in the sump. Due to the effect of intercooling and A-EMS, the
temperature of the melt in the billet center decreases significantly during the UDC casting
process compared to the NDC casting [21]. Therefore, the cooling rate of the melt can be
significantly improved by the UDC casting. Numerous nuclei were formed alongside the
graphite ring in the sump during the NDC and UDC casting processes, owing to the rapid
cooling rate of the melt near the mold (as shown in Figure 5). In addition, the melt also can
nucleate around the in-mold cooler in the UDC casting process. Therefore, the nucleation
rate of the UDC is higher than that of the NDC. In the NDC casting process, these nuclei
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can only be driven to move down along the sump slope by the weak natural thermo-solutal
convection of the melt. This is shown in Figure 5a with just a few nuclei flowing to the
sump center and growing up to the coarse dendrite under the conditions of enough space
and time. However, under the effect of A-EMS in the UDC casting process, all the nuclei
formed around the graphite ring and in-mold cooler can be brought to anywhere in the
sump by the forced flow, as shown in Figure 5b. These nuclei are dispersed homogeneously
throughout the sump and nuclei growth is blocked by each other in the limited space.
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Another mechanism plays the role of grain refinement in the UDC casting process.
A-EMS could fuse or break the dendrites into fragments that can be melted and become
new nuclei. On the one hand, under the effect of A-EMS on the melt, a Lorentz force is
generated, which can break the formed dendrite. Campanella et al. [23] gives the criterion
of dendrite fracture in electromagnetic stirring DC casting process:

CR ≈ 1
v

K
gl ·µ

B2
0

µ0dind
> 1 (2)

where, gl , µ and µ0 refer to the volume fraction of the liquid, the dynamic viscosity of
the melt and the vacuum permeability, respectively. Additionally, K, dind and B0 refer
to the permeability of mushy zone, the distance between the inductor and the liquidus
front and the magnetic field, respectively. v is the casting speed. It can be seen from the
above formula that the dendrite fracture will occur as long as the relationship between the
magnetic induction strength and the melt meets the above requirements. The value of CR at
the radius of 1/2 of the graphite ring in the process of UDC casting is 1.61. Liotti et al. [24]
demonstrated that the electromagnetic field can break dendrites into fragments by in situ
synchrotron X-ray radiography. On the other hand, the electromagnetic stirring accelerates
the melt convection, resulting in the high-temperature melt reaching the dendrite root. The
arms of a columnar or dendrite remelt at their necks and form fragments [25]. Therefore,
the dendrite in the UDC casting can be broken or fused into fragments, as shown in the
enlarged part of Figure 5b. The fragments could be driven to the sump central part as
new nucleation sites [26,27]. Under the combined action of electromagnetic stirring and
intercooling, explosive nucleation appears throughout the mushy zone. Nuclei compete
with each other to grow up, resulting in a fine and uniform microstructure.

In the NDC casting, the melt is mainly driven by the temperature buoyancy force and
moves down along the sump slope to the sump center, leading to the solute-rich melt being
formed in the upper-periphery part of the mush flows to the lower-central mush, as shown
in Figure 5a. Therefore, negative segregation occurs at the surface and positive segregation
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occurs in the central part of the billet [28]. However, due to the increase in the melt cooling
rate and the improvement in the temperature field uniformity in the UDC casting, the sump
is obviously shallower than that in the NDC casting [20,29]. The sump slope in the UDC
casting is more gradual than that in the NDC casting, the solute-rich melt that flows along
the slope from the upper-periphery part towards the central part becomes difficult in the
sump during the UDC casting process. Moreover, it is considered that the centrifugal force
field is presented in the electromagnetic stirring. Under the action of the centrifugal force,
the solute-rich melt tends to do an outwards radial motion, in addition, to a rotary motion.
Yao et al. [30] also found that electromagnetic stirring generated a centrifugal movement,
which brought high temperature melt from the center of molten pool to its edge. Therefore,
the temperature buoyancy force can be offset by the centrifugal force, slowing down the
flow velocity of solute-rich melt flow from upper-periphery part towards the central part.
The negative surface segregation and positive centerline segregation can be relieved.

Grain size is another factor that has an influence on macrosegregation. During the
later stages of the solidification process, the dendrites can bridge each other and form
a continuous solid network. Solute-rich melt flows through channels of that solid network.
The depth of melt penetration can be described by permeability, calculated as [31]:

K =
d2(1 − fs)

3

180 f 2
s

(3)

where fs is the solid fraction, and d is the grain size. The average grain size of the
billet prepared by NDC casting and UDC casting is 520 and 109 µm, respectively. The
permeability of UDC casting is lower than that of NDC casting, indicating that solute-rich
melt is difficult to flow through the solid network in mushy zone and the distance of
solute-rich melt transport is short in the UDC casting process. As a result, the uniformity
of the alloying elements’ distribution is improved in the UDC casting billet.

5. Conclusions

This paper represents the first time that UDC casting has been used to prepare a high
alloying element Al–Zn–Mg–Cu ultra-high strength aluminum alloy billet. Compared
with NDC casting, the quality of the billet prepared by UDC casting is dramatic improved.
The effect of A-EMS and intercooling on microstructural refinement and composition
homogenization have been investigated. Major conclusions are summarized as follows:

(1) With the help of A-EMS and intercooling, the grain size of the Al–Zn–Mg–Cu alloy
billet was reduced from 520 ± 110 µm to 109 ± 10 µm. Macrosegregation of Al–Zn–Mg–Cu
alloy billet was suppressed and the relative segregation of Zn, Mg and Cu is less than 3%.

(2) Explosive nucleation is responsible for grain refinement. Lots of nuclei originate
from the graphite ring wall and in-mold cooler wall, and from survived fragments that were
brought from the broken or fused dendrites. These nuclei are dispersed homogeneously
throughout the sump and nuclei blocked the growth of each other in the limited space,
resulting in a fine and uniform microstructure.

(3) The centrifugal force driven by A-EMS offset the temperature buoyancy force that
is the driving force of the movement of melt from upper-periphery part towards the central
part, and the permeability of the solute-rich melt flowing through the channels of the
solid network was reduced by grain refinement. Therefore, melt flow in radial direction is
impeded, resulting in less macrosegregation.
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