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Abstract: Columns of stepwise variable bending stiffness are encountered in the engineering practice
quite often. Two different load cases can be distinguished: firstly, the axial force acting only at the end
of the column; secondly, besides the force acting at the end, the additional force acting at the place
where the section changes suddenly. Expressions for critical forces for these two cases of loading are
required to correctly design such columns. Analytical formulae defining critical forces for pin-ended
columns are derived and presented in the paper. Derivations were based on the Euler-Bernoulli
theory of beams. The energetic criterion of Timoshenko was adopted as the buckling criterion. Both
formulae were derived in the form of Rayleigh quotients using the Mathematica® system. The
correctness of formulae was verified based on one the of transcendental equations derived from
differential equations of stability and presented by Volmir. Comparisons to results obtained by other
authors were presented, as well. The derived formulae on the critical forces can be directly used
by designers in procedures leading to the column’s buckling resistance assessment. The relatively
simple procedure leading to buckling resistance assessment of steel stepped columns and based
on general Ayrton-Perry approach was proposed in this work. The series of experimental tests
made on steel, stepped columns and numerical simulations have confirmed the correctness of the
presented approach.

Keywords: stepped columns; critical force; buckling resistance; analytical formulae; experimental
tests; numerical simulations

1. Introduction

Columns of stepwise variable bending stiffness are quite often encountered in the
engineering practice. Steel, concrete or hollow columns filled by the concrete to a specific
level (cf. Figure 1) are examples of columns of stepwise variable sections.

Columns of steel mill buildings are the typical example of stepped columns. Such a
column with a crane girder plays double role: supporting the roof structure and carrying
loadings from the crane. The exemplary solution of inner columns in industrial multi-nave
steel mill buildings is shown in Figure 1a. In this case when the crane girder is present,
the column is loaded at the end and additionally at the place of the sudden change of
section. In Figure 1b the typical solution of the two step column, which is composed of
two coaxial steel tubes filled with a concrete, is shown. Figure 1c presents an example of
stepped reinforced concrete column.

The correct design of stepped columns requires knowledge of the critical force causing
the bending buckling. In the widely available literature referring to the mechanics or
structural problems there is a shortage of closed formulae describing the critical force of
compressed rods of the stepwise variable bending stiffness like these shown in Figure 2.

The first analytical solutions of the buckling problem of stepped columns were pub-
lished in [1,2]. The critical force was not obtained explicitly but as a result of the solution of
the transcendental equation that had to be solved for each specific case of the strut. Other
attempts of determination of the critical force or equivalent length of stepped columns were
presented in [3–6]. The problem has attracted attention of researchers also later (cf. [7,8])
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and contemporary (cf. [9–11]). Toosi et al. [12] for calculating the buckling load of stepped
columns proposed to use a method based on modified buckling mode shape of tapered
structure and perturbation theory. In a case of multi-bay frame Tian et al. [13] proposed
the method, which can be applied to frames composed of stepped (or prismatic) columns.
Asquez and Riddel [9] present an effective numerical model based on Przemieniecki [14]
approach. Pinarbasi et al. [10] determine the critical force of stepped columns using the
variational iteration method (VIM). Simao et al. [15,16], the buckling problem of stepped
column have reduced to a discrete, two degrees of freedom system. The eigenvalue prob-
lem of matrix 8 × 8 gives the searched critical value of the load parameter. The results
for various boundary conditions and various parameters describing the problem under
consideration are presented in these papers in the form of many tables.

Figure 1. Examples of two-segment stepped columns: (a) An inner column in industrial multi-nave
steel mill building; (b) CHS column filled by concrete in lower part; (c) Two stepped, industrial column.

Figure 2. Columns of stepwise variable bending stiffness loaded: (a) By force P applied at the end;
(b) By forces P1 and P2.

The main disadvantage of solutions presented in the above mentioned works is
the lack of explicit formulae that would be the most convenient for engineers designing
stepped columns. The present work is free of this drawback. Authors present the solution
of stepped column’s buckling problems, which is expressed by the explicit formula in
which all the parameters describing the stepped column made of any material are included.
The first proposal of this solution was published in [17].

The correctness of derived formulae was verified experimentally on two-segment,
steel stepped columns. Numerical simulations, carried out by means of Abaqus and
COSMOS/M systems (cf. [18–21]), have confirmed the correctness of derived formulae,
as well.

Buckling forces and corresponding equivalent lengths of both segments of stepped
columns are required to the assessment of buckling resistance of the column. This problem
was considered first by Barnes and Mangelsdorf [22] and then by Castiglioni [23,24]. Some
aspects of the buckling resistance of stepped columns were discussed in [25–27]. The
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most comprehensive studies referring to the buckling resistance of stepped column were
presented in works [28,29].

In the present work the comparatively easy approach, leading to the buckling resis-
tance assessment of stepped steel columns, was proposed. The proposed procedure was
based on the original Ayrton-Perry approach (cf. [30]) in which the assumed amplitude of
the bow imperfection was used. Experimental tests performed on two-segment stepped,
steel columns have positively verified correctness of the proposed approach. Numerical
simulations in which material parameters obtained in performed material tests were used,
have confirmed the correctness of the proposed procedure as well.

2. Determination of Critical Forces
2.1. The Column Loaded by a Force Applied at the End

Let us consider first the pin-ended column of stepwise variable bending stiffness
shown in Figure 2a. The critical force of the column shown in Figure 2a one can determine
solving the transcendental equation (cf. Volmir [2]). This task is not easy for a practicing
engineer yet. The closed formula for this case and for arbitrary values of coefficients β and
γ is required and such a formula was derived in this work.

To derive the closed analytical expression for the critical force the energetic criterion
of Timoshenko [1] was applied. The deflection shape caused by the lateral uniform loading
was utilized as the mode of the bending buckling. Due to different bending stiffnesses
the deflection shape is described by the two different functions within the first and the
second intervals (comp. Figure 3). The functions shown in Figure 3 were derived in general
analytical form in which parameters β and γ were utilized.

Figure 3. Deflections w1(x) and w2(x) caused by the uniformly distributed load.

The energetic criterion of Timoshenko which expresses the identity between the
increase of elastic energy of bending and the increment of work done by external forces
leads to the following relation:

1
2

∫ γL

0

P2w2
1

βE0 I0
dx +

1
2

∫ L

γL

P2w2
2

E0 I0
dx =

1
2

∫ γL

0
Pw′21dx +

1
2

∫ L

γL
Pw′22dx, (1)

from which the subsequent formula on searched Pkr can be obtained:

Pkr = E0 I0

∫ γL
0 w′21dx +

∫ L
γL w′22dx

1
β

∫ γL
0 w2

1dx +
∫ L

γL w2
2dx

, (2)

where E0I0 is the bending stiffness of the column within the second segment. The notation
(wi)’ means the first derivative of the function wi with respect to x.

The final formula was obtained in the form of the Rayleigh quotient and all the
derivations were carried out by means of the Mathematica® system (cf. [31]), which allows
performing symbolic derivations. Standard commands available in this system were used
to this end.
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Assuming that both parameters β and γ, the total length of the rod L and the bending
stiffness E0I0 are known, the critical force can be expressed by the following formula:

Pkr =
Fg

Fd

E0 I0

L2 (3)

where:

Fg(β, γ) = 18β[β2(315γ3 + 255γ2 + 85γ + 17
)
(γ− 1)5 − 70βγ3(9γ2 − 9γ− 4

)(
γ− 1)3 + γ5(315γ3 + 1540γ− 1200γ2 − 672

)] (4)

Fd(β, γ) = β3 (1890 γ4 + 1890 γ3 + 868 γ2 + 217 γ + 31) (γ− 1)7 +

42 β γ5 (135 γ3 + 149 γ − 315 γ2 + 48) (γ− 1)3−
42 β2 (γ − 1)5 γ3 (135 γ3 − 76 γ − 90 γ2 − 17) +

γ7 (9450 γ3 + 15183 γ − 17878 γ2 − 1890 γ4 − 4896)

(5)

The ratio Fg/Fd was presented in Table 1 for typical range of parameters β and γ.
Additionally, the family of graphs illustrating this relationship is presented in Figure 4.

Table 1. Values Fg/Fd for different values β and γ.

β

γ
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1.00 9.87 9.87 9.87 9.87 9.87 9.87 9.87 9.87 9.87 9.87 9.87

1.25 9.87 9.88 9.97 10.16 10.49 10.94 11.43 11.88 12.19 12.32 12.34

1.50 9.87 9.89 10.03 10.36 10.93 11.73 12.72 13.71 14.44 14.76 14.81

1.75 9.87 9.90 10.07 10.50 11.24 12.35 13.80 15.38 16.62 17.19 17.27

2.00 9.87 9.90 10.10 10.60 11.48 12.83 14.70 16.89 18.74 19.61 19.74

2.25 9.87 9.91 10.13 10.68 11.66 13.22 15.45 18.25 20.78 22.02 22.21

2.50 9.87 9.91 10.15 10.74 11.81 13.53 16.09 19.48 22.76 24.43 24.68

2.75 9.87 9.91 10.17 10.79 11.94 13.79 16.64 20.59 24.67 26.82 27.15

3.00 9.87 9.91 10.18 10.84 12.04 14.01 17.11 21.60 26.50 29.21 29.61

3.25 9.87 9.91 10.19 10.87 12.12 14.20 17.52 22.51 28.27 31.59 32.08

3.50 9.87 9.92 10.20 10.90 12.20 14.36 17.88 23.33 29.97 33.95 34.55

3.75 9.87 9.92 10.21 10.93 12.26 14.50 18.19 24.08 31.60 36.31 37.02

4.00 9.87 9.92 10.22 10.95 12.32 14.63 18.47 24.76 33.17 38.65 39.48

Figure 4. The ratio Fg/Fd for different values of β and γ.
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To verify the correctness of the derived formula the analytical solution presented by
Volmir [2] is used. The transcendental equation for this particular case can be reduced to
the following:

1
tg[x(1− γ)]

=
−1√

βtg
[

x γ√
β

] (6)

in which:

x =

√
P

E0 I0
L (7)

To check the correctness of the derived formula the following case is considered: β =
3.75 and γ = 0.2. The solution of Equation (6) gives x = 3.1950, and from Equation (7) one
obtains Pkr = 10, 208 E0 I0

L2 . Equation (3) gives multiplier 10.21 (look also at Table 1); it means
that correspondence of the derived formula with the exact solution is excellent.

Other examples of the practical application of Equation (1) were presented in [14]
where the numerical approach was adopted, as well.

Some particular cases of columns, shown in Figure 2a, were modeled numerically.
Material and geometrical parameters of considered columns are presented in Figure 5.

Figure 5. Columns modeled numerically.

According to adopted data: E0 I0 = 1.512 · 108 Nmm2, β = 1.5, Abaqus and COS-
MOS/M systems were used and domains of columns were modeled using the shell el-
ements of S4 and SHELL4 families in Abaqus and COSMOS/M systems respectively
(cf. [18–21]). Critical forces, obtained as results of linear buckling analyses (LBA), were
presented in Table 2 and compared to results obtained by analytical approach. Values
shown in the column 4 are results of solution of transcendental Equation (6). These are
exact solutions of considered buckling problems.

Table 2. Critical forces in [kN].

Column’s Case.
Length in (mm) γ = 607.6/L

Value
Resulting from

Equation (3)

Pprecise
cr

Equation (6)
Pnum

cr
COSMOS/M

Pnum
cr

Abaqus
Pexp

cr
(Average)

L = 1057.1 0.575 1.687 1.686 1.686 1.684 1.532
L = 915.1 0.664 2.415 2.414 2.414 2.410 2.253
L = 765.1 0.794 3.721 3.720 3.722 3.718 3.490
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Critical forces, obtained experimentally and presented in column 7 of Table 2, will be
discussed in Section 4 of this paper.

Results presented in Table 2 confirm correctness of the derived formulae in reference
to the considered particular cases of stepped columns.

2.2. The Column with Additional Force Acting at the Column’s Span

The considered case is presented in Figure 2b. Let forces P1 and P2 be related by the
relation: P2= αP1, where α is given. The analogous procedure like this, described in the
clause 2.1, leads to the following formula on the critical force:

P1,kr =
Pg

Pd
·E0 I0

L2 (8)

in which:

Pg = 18 β
{

γ5 [672− 1540 γ + 1200 γ2 − 315 γ3 + α (672 − 2100 γ + 2600 γ2−
1470 γ3 + 315 γ4)]− 70 β [α(γ− 1)− 1] (γ− 1)3 γ3 (9 γ2 − 9 γ− 4)+

β2 (γ− 1)5 [315 α γ4 − 105 (α + 3) γ3 − 5 (35 α + 51) γ2 − 5 (7 α + 17) γ− 17]
}

,
(9)

Pd = −β3 (γ− 1)7 [31 + 7 (31 + 18 α) γ + 14 γ2 (62 + 63 α + 15 α2)+
42 γ3 (45 + 51 α + 20 α2)− 210 γ4 (2α2 − 3 α− 9)− 1260 α γ5(2 α + 3)+

1890 α2 γ6] + 42 β2 γ3 (γ− 1)5 [135 γ3 − 90 γ2 − 76 γ− 17+
5 α2 (γ− 1)2 (27 γ3 − 21 γ2 − 13 γ− 1)− α (270 γ4 − 465 γ3 + 54 γ2+

119 γ + 22)]− 42 β γ5 (γ− 1)3 [135 γ3 − 315 γ2 + 149 γ + 48−
3 α (90 γ4 − 295 γ3 + 303 γ2 − 70 γ− 32) + α2 (135 γ5 − 570 γ4 + 880 γ3−

554 γ2 + 61 γ + 48)] + γ7 [1890 γ4 − 9450 γ3 + 17878 γ2 − 15183 γ + 4896−
2 α (1890 γ5 − 11025 γ4 + 26019 γ3 − 31234 γ2 + 19215 γ− 4896)+

α2 (1890 γ6 − 12600 γ5 + 35490 γ4 − 54348 γ3 + 47950 γ2 − 23247 γ + 4896)].

(10)

These formulae can be entered into a table or illustrated in a form of nomogram plots
from which, after a possible interpolation, the critical value of the force can be found.

Values of the ratio Pg/Pd for different values of β and γ and for α = 0.5, 1.0 and 2.0 are
presented in Tables 3–5, respectively.

Table 3. Values Pg/Pd for α = 0.5 and for different values β and γ.

γ

β
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.00 9.87 8.97 8.35 8.02 7.90 7.88 7.86 7.72 7.43 7.02 6.58

1.25 9.87 8.99 8.48 8.33 8.48 8.82 9.20 9.38 9.21 8.77 8.23

1.50 9.87 9.01 8.56 8.54 8.89 9.55 10.34 10.92 10.97 10.52 9.87

1.75 9.87 9.02 8.61 8.69 9.20 10.11 11.30 12.35 12.69 12.26 11.52

2.00 9.87 9.02 8.66 8.80 9.43 10.57 12.12 13.68 14.38 14.00 13.16

2.25 9.87 9.03 8.69 8.89 9.62 10.93 12.82 14.89 16.03 15.74 14.81

2.50 9.87 9.03 8.71 8.96 9.77 11.23 13.43 16.01 17.64 17.47 16.45

2.75 9.87 9.04 8.74 9.01 9.89 11.48 13.94 17.03 19.22 19.20 18.10

3.00 9.87 9.04 8.75 9.06 10.00 11.70 14.39 17.97 20.75 20.93 19.74

3.25 9.87 9.04 8.77 9.10 10.08 11.88 14.79 18.83 22.25 22.65 21.39

3.50 9.87 9.05 8.78 9.14 10.16 12.04 15.13 19.62 23.71 24.37 23.03

3.75 9.87 9.05 8.79 9.17 10.22 12.17 15.44 20.34 25.12 26.09 24.68

4.00 9.87 9.05 8.80 9.19 10.28 12.29 15.71 21.01 26.50 27.80 26.32
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Table 4. Values Pg/Pd for α = 1.0 and for different values of β and γ.

γ

β
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1.00 9.87 8.18 7.20 6.73 6.56 6.55 6.51 6.31 5.93 5.44 4.94

1.25 9.87 8.21 7.33 7.03 7.10 7.38 7.68 7.71 7.38 6.80 6.17

1.50 9.87 8.23 7.42 7.23 7.48 8.03 8.68 9.04 8.80 8.15 7.40

1.75 9.87 8.25 7.48 7.38 7.77 8.55 9.55 10.28 10.21 9.51 8.64

2.00 9.87 8.26 7.53 7.49 7.99 8.96 10.29 11.44 11.60 10.86 9.87

2.25 9.87 8.26 7.57 7.58 8.16 9.30 10.93 12.52 12.97 12.21 11.10

2.50 9.87 8.27 7.60 7.65 8.31 9.58 11.49 13.52 14.31 13.56 12.34

2.75 9.87 8.27 7.62 7.71 8.43 9.82 11.97 14.45 15.64 14.91 13.57

3.00 9.87 8.28 7.64 7.76 8.53 10.02 12.39 15.32 16.94 16.26 14.81

3.25 9.87 8.28 7.66 7.80 8.61 10.19 12.76 16.11 18.21 17.61 16.04

3.50 9.87 8.29 7.67 7.84 8.68 10.34 13.09 16.85 19.46 18.95 17.27

3.75 9.87 8.29 7.69 7.87 8.75 10.47 13.38 17.53 20.69 20.29 18.51

4.00 9.87 8.29 7.70 7.89 8.80 10.59 13.64 18.16 21.89 21.64 19.74

Table 5. Values Pg/Pd for α = 2.0 and for different values β and γ.

γ
β

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.00 9.87 6.91 5.59 5.06 4.89 4.88 4.83 4.61 4.21 3.75 3.29

1.25 9.87 6.94 5.73 5.32 5.33 5.55 5.75 5.67 5.25 4.68 4.11

1.50 9.87 6.97 5.82 5.51 5.65 6.08 6.55 6.68 6.28 5.62 4.94

1.75 9.87 6.99 5.89 5.64 5.90 6.51 7.26 7.65 7.31 6.55 5.76

2.00 9.87 7.00 5.94 5.75 6.09 6.86 7.87 8.57 8.32 7.49 6.58

2.25 9.87 7.01 5.97 5.83 6.25 7.15 8.41 9.44 9.33 8.42 7.40

2.50 9.87 7.02 6.01 5.90 6.37 7.39 8.89 10.26 10.33 9.36 8.23

2.75 9.87 7.03 6.03 5.95 6.48 7.59 9.30 11.03 11.32 10.29 9.05

3.00 9.87 7.03 6.05 6.00 6.57 7.77 9.67 11.75 12.30 11.22 9.87

3.25 9.87 7.04 6.07 6.04 6.64 7.92 9.99 12.43 13.26 12.16 10.69

3.50 9.87 7.04 6.09 6.07 6.71 8.05 10.28 13.06 14.22 13.09 11.52

3.75 9.87 7.05 6.10 6.10 6.77 8.16 10.53 13.66 15.16 14.02 12.34

4.00 9.87 7.05 6.11 6.12 6.82 8.27 10.76 14.21 16.09 14.95 13.16

Plots obtained based on these values are presented in Figures 6–8.
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Figure 6. Values Pg/Pd for α = 0.5 and for different values of β and γ.

Figure 7. Values Pg/Pd for α = 1.0 and for different values of β and γ.

Figure 8. Values Pg/Pd for α = 2.0 and for different values of β and γ.

Looking at these graphs one can observe that always exists such a value of γ for which
the critical force attains the maximum value and it is not the value of 1.0. It means that there is
no need to strengthen the whole two step column to obtain its maximum buckling resistance.
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To verify the correctness of the derived formula, the exact analytical solution presented
by Volmir [2] is used. The transcendental equation, from which the exact value of the
critical force can be determined, adopts in this case the following form (comp. [2]):

k2
4

k2
1
−

k2
1L + k2

4L1

k1tgk1L1
=

k2
3

k2
2
+

k2
2L− k2

3L2

k2tgk2L2
(11)

where:
k2

1 =
P1

EJ1
, k2

2 =
P1 + P2

EJ2
, k2

3 =
P2

EJ2
, k2

4 =
P2

EJ1
(12)

The case defined in Figure 2b one can adjust to this equation introducing the following
notation:

EJ1 = E0 I0, EJ2 = βE0 I0, L2 = γL, L1 = (1− γ)L, P2 = αP1 (13)

In this case:

k2
1 =

P1

E0 I0
, k2

2 =
P1 + αP1

βE0 I0
=

(1 + α)

β
k2

1,k2
3 =

αP1

βE0 I0
=

α

β
k2

1, k2
4 =

αP1

E0 I0
= αk2

1 (14)

The new unknown x is defined in the following way:

x =

√
P1

E0 I0
L (15)

and now:

k2
1 =

x2

L2 , k2
2 =

(1 + α)

β

x2

L2 , k2
3 =

α

β

x2

L2 , k2
4 = α

x2

L2 (16)

The Equation (7) on the unknown x adopts the following form:

α− x
1 + α(1− γ)

tg[x(1− γ)]
=

α

1 + α
+

x
β

1 + α(1− γ)√
1+α

β tg
[

xγ
√

1+α
β

] (17)

Solving this transcendental equation for given values of α, β and γ one can find the
critical value of the force P1 from the relationship:

P1 = x2 E0 I0

L2 (18)

It should be remembered that this force is always accompanied by the force P2 = αP1.
As an example of utilization of the transcendental Equation (17), the following case is

considered: α = 0.5, β = 1.5, γ = 0.5. From Equation (17) one can obtain x = 3.08902. Hence,
P1 = 9, 5420 E0 I0

L2 , P2 = 4, 7710 E0 I0
L2 and this is the exact solution.

For this particular case the derived Formula (8) gives the multiplier 9.55 (comp.
Table 2). The error on the level of 0.1% confirms the high accuracy of the derived formula.

The obtained results were compared also with solutions presented by Pinarbasi
et al. [10]. Formulae derived in the paper give results which compare favorably with
results presented in [10] in which critical forces were presented as a result of numerical
analysis only for discrete values of parameters defining the given problem. Advantage of
the proposed analytical formulae is obvious: it allows calculation of critical forces for any
values of parameters α, β and γ for the considered case of boundary condition.

The critical forces of columns considered in this clause were determined also numeri-
cally for some particular cases. The COSMOS/M and Abaqus systems were used to this
end again. The same material and geometrical parameters as those shown in Figure 5 were
adopted. The Critical forces for the case α = 2 (the force P2 = 2P1 applied at a distance
607.6 mm) are presented in Table 6 in which also results obtained in analytical approach
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(Equation (8)) are shown. In the column no. 4 the values resulting from the solution of
transcendental Equation (18) are presented.

Table 6. Critical forces in [kN] for the case α =2.

Column’s Case.
Length in [mm] γ = 607.6/L Value Resulting

from Equation (8)
Pprecise

cr
Equation (18)

Pnum
cr

COSMOS/M
Pnum

cr
Abaqus

L = 1057.1 0.575 0.8727 0.8706 0.8708 0.8699
L = 915.1 0.664 1.2093 1.2026 1.2031 1.2020
L = 765.1 0.794 1.6319 1.6215 1.6226 1.6217

Results presented in Table 6 confirm correctness of the derived formulae in reference
to the considered particular cases of stepped columns. The maximum error, in reference to
the exact solution, does not exceeds 1% (it is equal 0.6%).

3. The compressive Resistance of Stepped Steel Columns

The resistance of the considered stepped steel columns can be assessed based on the
classical Ayrton-Perry’s approach (cf. [30]). The initial bow imperfection with amplitude e0
(Figure 9) in a form of one half-wave sine function is defined, as follows:

e(x) = e0sin
πx
L

(19)

Figure 9. Deflections of the initially curved rod.

The total deflection uc(x) can be obtained from the formula (cf. [1]):

uc(x) = fcsin
πx
L

, fc =
e0

1− P
Pcr

(20)

where fc—total eccentricity in the middle section of the rod, Pcr—critical buckling force.
The maximum longitudinal stresses at arbitrary cross section, defined by x, can be

calculated from the formula:

σmax =
P

A(x)
+

P fc

W(x)
sin

πx
L
≤ fy, (21)

in which A(x) and W(x) are the cross-sectional area and the elastic section modulus,
respectively. The quantity fy used in inequality (21) is the nominal yield strength for the
giving steel grade according to EN1993-1-1.

Using (20) and taking the equality in (21) are obtains:

P
A(x)

+
P

W(x)
e0

Pcr

Pcr − P
sin

πx
L

= fy (22)

To convert Equation (22) to the form known from EN1993-1-1 (2005) the following
notations are used:

P(x) = χ(x) · A(x) · fy, λ̂(x) =

√
fy A(x)

Pcr
(23)
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where: χ(x) is the buckling reduction factor, λ̂(x) is the dimensionless measure of the
slenderness, both dependent on x in this particular case.

It is worth mentioning that in contrary to provisions of EN1993-1-1 (2005) the buckling
reduction factor χ and dimensionless slenderness λ are dependent on the current coordinate
x in the presented approach.

Substituting (23) to Equation (22) and introducing the function Φ(x) defined as follows:

Φ(x) =
1
2

[
1 +

A(x)
W(x)

e0sin
πx
L

+ λ̂2(x)
]

(24)

one obtains the following:

χ2(x) · λ̂2(x)− χ(x) · 2Φ(x) + 1 = 0, (25)

from which the searched reduction factor χ(x) is obtained in the form:

χ(x) =
Φ(x)−

√
Φ2(x)− λ̂2(x)

λ̂2(x)
=

1

Φ(x) +
√

Φ(x)− λ̂2(x)
(26)

which is consistent with formula (6.49) from EN 1993-1-1 (2005) valid for columns with the
constant cross-section.

The column’s resistance Pult is determined by the smallest value of the expression:

Pult(x) = χ(x) · A(x) · fy (27)

The value of ultimate force defined by formula (27) could be too high in some cir-
cumstances. For the safe design procedures, the additional partial coefficient γM = 1.1
is proposed and the final formula for the design value of column’s buckling resistance is
as follows:

PRd(x) =
1

γM
· χ(x) · A(x) · fy (28)

The whole procedure can be easily inserted in a spreadsheet for every x from the
interval 0 < x < L and in this way the smallest value of PRd can be found.

The initial bow amplitude e0 required in this procedure can be adopted according
to the code recommendations. Following provisions inserted in EN 10219-2, EN 10210-2
(2006) and EN 1090-2 (2018), the e0 can be adopted as L/750, and this value, guaranteeing
the conservative assessment of columns resistance, was adopted in examples presented in
the next section.

The resulting formulae will be different for the case when the additional force is
present in the column’s span (the case shown in Figures 2b and 10). Assuming as before
that the initial bow imperfection is present (comp. (19)), the expressions for bending
moments within two segments of the bar shown in Figure 10 are as follows:

M(x) = P(α + 1)uc(x)− Pα
uc(γL)

L
x = P fcsin

πx
L

[
1 + α

(
1− x

L
sin(γπ)

sin πx
L

)]
for 0 < x ≤ γL, (29)

M(x) = Puc(x) + Pα
uc(γL)

L
x = P fcsin

πx
L

[
1 + α

(
1− x

L

) sin(γπ)

sin πx
L

]
for γL ≤ x < L. (30)

Instead of Equation (21) the following condition can be written now:

σmax =
P

A(x)
+

M(x)
W(x) y

≤ fy (31)
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Assuming that both expressions (20) hold true and making the analogous derivations
as before, the following expressions for functions Φ(x) are obtained:

Φ(x) =
1
2

{
1 +

A(x)
W(x)

e0

[
1 + α− α

L
sin(γπ)

sin πx
L

x
]

sin
πx
L

+ λ̂2(x)
}

for 0 < x ≤ γL, (32)

Φ(x) =
1
2

{
1 +

A(x)
W(x)

e0

[
1 +

α

L
sin(γπ)

sin πx
L

x
]

sin
πx
L

+ λ̂2(x)
}

for γL ≤ x < L (33)

The general forms of Equations (28)–(31) remain unchanged. As before, the ultimate
force should be calculated at every column’s section x and the smallest value is the measure
of the column’s compressive resistance. All the calculations can be carried out by means of
the spreadsheet.

Figure 10. Deflections of the initially curved rod. The case with additional force in the column’s span.

The compression resistances of columns considered in Section 2 will be determined
now using derived formulae. Resistances of columns loaded at ends and loaded addi-
tionally at the section of the sudden cross-section change, calculated from Formulas (30)
and (31), are presented in Tables 7 and 8 and labeled as Pprop

Rd Results of geometrically and
materially nonlinear analyses, carried out by means of the Abaqus system, are presented in
these tables as well. Pnum

Rd are the maximum values of force on the load-displacement paths
obtained for the initial bow imperfection of amplitude L/750.

Table 7. Compressive resistance in [kN].

Column’s Case.
Length in (mm) γ = 607.6/L Critical Force

Pcr
Pprop

Rd
Pnum

Rd
Abaqus col.5/col.4

L = 1057.1 0.575 1.687 1.483 1.632 1.10
L = 915.1 0.664 2.415 2.114 2.330 1.10
L = 765.1 0.794 3.721 3.257 3.591 1.10

Table 8. Compressive resistance in [kN] for the case α = 2.

Column’s Case.
Length in (mm) γ = 607.6/L Critical Force

Pcr
Pprop

Rd
Pnum

Rd
Abaqus col.5/col.4

L = 1057.1 0.575 0.8727 0.7668 0.8460 1.10
L = 915.1 0.664 1.2093 1.060 1.1681 1.10
L = 765.1 0.794 1.6319 1.418 1.5613 1.10

These results were obtained for the yield stress fy = 285 MPa, the value determined
in material tests made on coupons cut from the same steel sheet from which the analyzed
columns were made.

4. Experimental Tests and Numerical Simulations

To confirm the correctness of the proposed method, experimental tests were carried
out on steel specimens shown in Figure 5. Specimens were prepared by laser cut from the
steel sheet of thickness 6 mm. Figure 11 shows the test rig with its most important details.
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The main part of the test rig is the frame of Instron testing machine. To accomplish the
pin ended boundary conditions the special accessories were designed. Details of these
additional elements, used in every test, are shown in Figure 11b.

Figure 11. The test rig: (a) General view; (b) Details.

The compressive force was generated by the downward movement of the upper
hydraulic grips. The value of the force was measured by the load cell placed beneath the
lower hinge of the specimen. Horizontal and vertical displacements of specimens during
the test were measured by means of the noncontact optical DIC (digital image correlation)
system. To this end, the specimen’s surface was covered by black, speckle pattern visible in
Figure 11a.

It is worth mentioning that specimens did not exhibit any initial geometrical imper-
fections. The existing residual stresses (due to hot rolling of the steel sheet) were present
inside specimens because they were not heat treated (annealed) before experiments.

Material investigations on coupons cut from steel sheets were carried out and acquired
material parameters were used in numerical simulations. (Exemplary stress-strain curves
are shown in Figure 12).

Figure 12. Material investigations of coupons cut from the Test Beam 4.
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Experimental tests proceeded as follows. The quasi-static (0.5 mm/min), downward
movement of the upper grip was initiated. The accompanying forces and horizontal and
vertical displacements of the specimen’s central zone were recorded at a rate of 5 samples
per second.

Three specimens of each kind of columns shown in Figure 5 were examined. In some
cases tests were repeated on the same specimen two or even three times provided they
were limited to the elastic range.

The critical forces were determined experimentally by means of the Southwell method
(comp. [1] Chapter 4) after choosing the initial portion of the load-displacement curve. An
example of determination of critical force is presented in Figure 13.

Figure 13. Specimen L = 915 mm. The initial part of the load deflection path and the Southwell’s plot.

According to the Southwell method, the critical force is the inverse of the slope coefficient
of the f c/P versus fc characteristics. In the presented example Pcr = 1/0.3949 = 2.5323 kN.

The critical forces, obtained experimentally, are presented in Table 2. Discrepancies
between values shown in column 7 and values obtained by other methods are caused
by the approximate character of the Southwell method for columns of variable cross-
sections and the presence of material defects caused by the hot rolling and laser cutting of
tested columns.

Ultimate forces for tested specimens were detected as a maximum on load deflection
characteristics obtained in experiments. The nonlinear load-displacements characteristics
for the considered specimens are presented in Figures 14–16. Besides the equilibrium paths
obtained in experimental tests, also the equilibrium paths obtained numerically for the
amplitude of bow imperfection e0 = L/750, are shown, as well.
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Figure 14. Specimen L = 1057.1 mm. Load deflection paths obtained in experimental tests
and numerically.

Figure 15. Specimen L = 915.1 mm. Load deflection paths obtained in experimental tests and numerically.

Figure 16. Specimen L = 765.1 mm. Load deflection paths obtained numerically and in experimental
tests with the collapse mode.
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Average measures of compression resistances obtained in experiments were equal
1.58 kN, 2.22 kN and 3.37 kN for columns of L = 1057.1, L = 915.1 and L = 765.1, respectively.
These values are greater than resistances predicted by the procedure proposed in this paper
(comp. column 4 in Table 7).

Figure 17 presents collection of nonlinear equilibrium paths obtained numerically
by means of Abaqus systems for the two families of considered columns, assuming the
initial bow imperfection of amplitude e0 = L/750 and bilinear material model with the
yield stress fy = 285 MPa and the strain hardening measured by the tangent modulus
Etan = E/104 (Figure 12). Maxima on obtained nonlinear equilibrium paths are measures of
compression resistances. Obtained values are presented in column 5 of Table 7 (case α = 2)
and in the column 5 of Table 8 (case α = 2).

Figure 17. Load deflection paths obtained numerically for the initial bow imperfection of amplitude
e0 = L/750.

Columns no. 6 in these tables express relations between compression resistances
predicted by numerical analyses and design resistances proposed in the paper. In all the
cases nearly the 10% margin was obtained.

5. Concluding Remarks

The presented paper provides closed formulae on critical forces acting on the two-
segment stepped columns of general geometrical data and the stiffness distribution. The
correctness of derived formulae was verified based on the exact analytical solution pre-
sented by Volmir [2] in the form of the transcendental equation. The additional comparisons
to results of other authors and with numerical simulations were successful. It confirms
usefulness of the derived formulae for the critical forces for engineering practice.

The derived formulae for the critical forces, complicated at the first glance, can be
copied into a spreadsheet or into a software serving to symbolic computations. After
substitution of specific values for particular parameters, corresponding to the given case of
the two step compressed column, one can obtain the critical value of the force. Tables and
nomograms presented in the paper can be additional assistance for quick assessment of
critical forces for particular cases of stepped columns.

To estimate the buckling resistance of considered steel, stepped columns, the procedure
based on classical Ayrton-Perry approach was presented. Particular steps of the procedure
were similar to their counterparts adopted in provisions of Eurocode EN1993-1-1. Due to
the fact that the cross-section is variable, the final formula for the buckling resistance must
be applied at each section, and the smallest value is the searched measure of the column’s
buckling resistance.
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Experimental tests and numerical simulations have confirmed the correctness of the
proposed procedures. Formulae on critical forces and the procedure leading to assessment
of the buckling resistance, presented in the paper, can be a valuable assistance for designers
engaged in the designing the two step columns.
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