

Supplementary Materials

Silicon Oxycarbide and Silicon Oxycarbonitride Materials under Concentrated Solar Radiation

M. Alejandra Mazo 1,*, Isabel Padilla ², Aurora López-Delgado ², Aitana Tamayo ¹ and Juan Rubio ¹

- ¹ Ceramics and Glass Institute, CSIC, Kelsen 5, 28049 Madrid, Spain; aitanath@icv.csic.es (A.T.); jrubio@icv.csic.es (J.R.)
- ² National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid, Spain; isapadilla@cenim.csic.es (I.P.); alopezdelgado@cenim.csic.es (A.L.-D.)
- * Correspondence: sandra@icv.csic.es

Citation: Mazo, M.A.; Padilla, I.; López-Delgado, A.; Tamayo, A.; Rubio, J. Silicon Oxycarbide and Silicon Oxycarbonitride Materials under Concentrated Solar Radiation. *Materials* 2021, *14*, 1013. https://doi.org/10.3390/ma14041013

Received: 15 December 2020 Accepted: 8 February 2021 Published: 21 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Figure S1. SEM micrographs of the initial surface of (a) $SiOCN_{P}$; (b) $SiOC_{P}$; (c) $SiOC_{d}$; (d) $SiOC-SiC_{d}$.

Figure S2. ICM images showing the initial surfaces of samples: (**a**) SiOCN_P; (**b**) SiOC_P; (**c**) SiOCd; (**d**) SiOC–SiCd.

Figure S3. Temperature recordings during the thermal shock tests: (a) $SiOCN_{P}$; (b) $SiOC_{P}$; (c) SiOCd; (d) SiOC-SiCd.

Figure S4. ICM images showing the surface of the SiOC_P sample after 25 cycles of the thermal shock tests: (**a**) nearest focus area; (**b**) middle zone; (**c**) furthest area from the solar radiation focus.