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Abstract: The Curie temperature (Tc) and magnetic entropy change (−∆Sm), and their relationship
to the alloy composition of Tb–Co metallic glasses, were studied systematically in this paper. It was
found that, in contrast to the situation in amorphous Gd–Co ribbons, the dependence of Tc on Tb
content and the maximum −∆Sm vs. Tc -2/3 plots in Tb–Co binary amorphous alloys do not follow a
linear relationship, both of which are supposed to be closely related to the non-linear compositional
dependence of Tb–Co interaction due to the existence of orbital momentum in Tb.

Keywords: amorphous materials; curie temperature; magnetic entropy change

1. Introduction

In recent years, with the increasing demands for reducing energy consumption and
the mitigating global warming, new refrigeration technologies have been intensively
investigated. Amongst these innovative refrigeration technologies, magnetic refrigeration
(MR) technology has been extensively concerned since it is free contributing to the depletion
of the ozone layer and due to its long-service life, superior to the that of traditional vapor
compression refrigeration technology. Therefore, experts in the related research fields are
paying more and more attention to the development of novel magnetocaloric materials in
the last two decades because the efficiency of the magnetic refrigerator is determined by
the magnetocaloric properties of its magnetic refrigerant [1–5].

Amorphous magnetocaloric alloys, as an important category of magnetic refrigerant,
show potential applications from the perspective of magnetic refrigerators because they
possess a rather broad “hillside” of magnetic entropy change (−∆Sm) and a low but ad-
equate maximum −∆Sm (−∆Sm

peak), which results in an ultrahigh refrigeration capacity
(RC) [5–27]. This makes it possible to design and manufacture metallic glass composites
with a flattened −∆Sm peak within a tailorable temperature span because magnetic refrig-
erant with a flattened −∆Sm peak within the cold end and the hot end of a refrigerator is
expected to be optimal in an Ericsson cycle [6–9].

In the preliminary works, metallic glasses consisting of rare earth (RE) elements
and transition metals (TM) elements, especially the Gd–TM-based amorphous alloys,
have demonstrated excellent magnetocaloric properties [8–19]. However, RE–TM-based
amorphous materials containing other rare earth (Tb, Dy, etc.) metals usually exhibit spin-
glass-like behaviors and high coercivity at low temperature [19–27]. The hard magnetic
properties make the magnetocaloric behaviors irreversible and thus deteriorate the applica-
tion perspective of these metallic glasses. Therefore, it is necessary to systematically observe
the magnetic and the magnetocaloric properties of the Tb/Dy–TM binary metallic glasses,
which may be helpful to understand the relationship between alloy composition and the
magnetic properties, the origin of coercivity and their influences on the magnetocaloric
effect of these metallic glasses.
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In this paper, the magnetic properties and magnetocaloric effect, including the Curie
temperature (Tc), coercivity, spin freezing temperature (Tf) and the −∆Sm of the binary
Tb–Co amorphous alloys were measured. Based on these results, the dependence of
Curie temperature on the composition of the alloys and the relationship between the
maximum −∆Sm and the Curie temperature of the glassy samples were established, and
the mechanism involved was investigated.

2. Materials and Methods

Sample synthesis: Tb and Co pure metals with a purity higher than 99.9 at.% were
mixed together according to the stoichiometric compositions of TbxCo100−x (x = 45, 50, 55,
60, 62.5) and were arc-melted, respectively, into the shape of ingots in the presence of a Ti
getter under an Ar atmosphere. Ribbons of each alloy were manufactured by means of
melt-spinning method under the protection of an argon atmosphere. The thickness of the
ribbons is ~40 µm in average.

Structural characterization: The disordered structure of the TbxCo100−x ribbons was
confirmed by a Rigaku X-ray diffractometer (model D/max-rC) with Cu Kα source.

Magnetic measurements: the Tc and Tf of the ribbons were obtained from the magne-
tization vs. temperature (M–T) curves measured under a magnetic field of 0.03 T (Tesla)
after a cooling under a zero field (ZFC) and a cooling under a magnetic field (FC) of 0.03 T.
Saturation magnetization (Ms) and the coercivity of the ribbons were obtained from the hys-
teresis loops measured under a field of 5 T. The plots of −∆Sm vs. temperature ((−∆Sm)-T
curves) were constructed according to the Maxwell equation from the isothermal mag-
netization (M–H) curves measured at various temperatures under 5 T. The M–T curves,
hysteresis loops and M–H curves were measured on a vibrating sample magnetometer
module of a quantum design PPMS Evercool II system. Measurement precision is less than
5 × 10−6 emu/T(Tesla).

3. Results

Figure 1 illustrates the X-ray diffraction (XRD) patterns of the as-spun TbxCo100-x
(x = 45, 50, 55, 60, 62.5) ribbons. Only broad humps representing the first diffuse halo and
the absence of visible crystalline peaks indicate the formation of a fully amorphous phase
in each ribbon.
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can obtain the Curie temperature of the glassy samples as follows: 170 K for Tb45Co55, 130 

Figure 1. XRD patterns of the TbxCo100−x (x = 45, 50, 55, 60, 62.5) as-spun ribbons.

Figure 2a displays the FC M–T curves of the TbxCo100−x (x = 45, 50, 55, 60, 62.5) glassy
samples measured under a field of 0.03 T. By taking the derivation of the M–T curves, we
can obtain the Curie temperature of the glassy samples as follows: 170 K for Tb45Co55,
130 K for Tb50Co50, 105 K for Tb55Co45, 97 K for Tb60Co40 and 92 K for Tb62.5Co37.5 [28], as
summarized in Table 1. The variation of the Curie temperature with the composition of
the TbxCo100−x glassy samples, and the DyxCo100−x as well as GdxCo100−x binary metallic



Materials 2021, 14, 1002 3 of 8

glasses for comparison purpose [11,23], are plotted, respectively, in Figure 2b. Along with
the increase in RE content, the Curie temperature of the three kinds of RE–Co binary
metallic glasses decreases monotonously. However, one can find that the compositional
dependence of Tc follows a linear relationship in Gd–Co binary alloys, which in contrast, is
non-linear in Tb–Co and Dy–Co binary alloys.
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Table 1. The Curie temperature (Tc), spin freezing temperature (Tf) and −∆Sm
peak under various

magnetic fields of the TbxCo100-x amorphous ribbons.

TbxCo100−x
Ribbons Tc (K) Tf (K)

−∆Sm
peak (J K−1 kg−1)

Ref.
1 T 1.5 T 2 T 3 T 4 T 5 T

x = 45 170 139 1.45 2.04 2.58 3.56 4.46 5.31

Present work
x = 50 130 113 1.94 2.76 3.52 4.90 6.15 7.30
x = 55 105 95 2.52 3.54 4.46 6.10 7.54 8.84
x = 60 97 88 2.67 3.75 4.71 6.39 7.86 9.18

x = 62.5 92 78 2.77 3.86 4.83 6.51 7.97 9.27 [28]

In order to reveal the mechanism for the dependence of Tc on composition in these
RE–Co binary metallic glasses, it is necessary to study the interactions between atoms
in these metallic glasses, including the Co–Co (direct) interaction, the RE–RE (indirect)
interaction and RE–Co (indirect) interaction. If the variation of Curie temperature with the
composition of the RE–Co binary glassy alloys is only induced by the RE–RE interaction,
the relationship between the Curie temperature and the RE content in the RE–Co binary
metallic glasses agrees well with the RKKY (Ruderman-Kittel-Kasuya-Yosida) indirect
interaction model, that is, Tc will have a linear relationship with the G factor, which is
a physical quantity simply related to the mole fraction of the RE element in the alloy
system that contains merely one type of RE atoms [17,26]. For amorphous alloys containing
only one RE element, the G factor is proportional to the molar fraction of the RE atoms.
Therefore, from the viewpoint of 4f–4f indirect interaction, the compositional dependence
of Tc in Tb–Co amorphous alloys should be linear. However, in addition to the 4f–4f
indirect interaction between the RE–RE atoms, there are two other kinds of interactions in
RE–TM-based amorphous alloys: 3d–3d direct interaction between the TM–TM atoms and
the 3d–4f indirect interaction between the RE–TM atoms. The influence of the 3d–3d direct
interaction on the Curie temperature in the RE–TM-based amorphous alloys is supposed
to be similar to that of the 4f–4f indirect interaction. This is understandable because there
is only (100%) 3d–3d direct interaction in a pure TM metal, and no (0%) 3d–3d direct
interaction in alloys free of TM elements. The contribution of the 3d–3d direct interaction
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is proportional to the molar fraction of the Co element in Tb–Co amorphous alloys and
the compositional dependence of Tc in Tb–Co amorphous alloys is still linear from the
viewpoint of 3d–3d direct interaction. However, the effect of 3d–4f indirect interaction
on the Curie temperature in RE–TM-based amorphous alloys is more complicated [23].
On the other hand, the direct interaction between Co atoms is largely influenced by the
surrounding environment of a Co atom, which means that the addition of the large-size
RE atoms (e.g., Gd, Tb, Dy...) give rise to the expansion of the distance between Co atoms
and thus weaken the interactions between Co atoms. In other words, if the variation of
Curie temperature with the composition of the RE–Co binary glassy alloys is considered
to be only induced by the Co–Co direct interaction, the Curie temperature of the RE–Co
binary metallic glasses will decrease with the decreasing content of Co. The dependence of
Tc on the Co–Co interaction probably resembles the case of the RE–RE interaction, which
indicates the linear relationship between Tc and Co content when only Co–Co interaction
is considered. The assumption can be ascertained in the binary Gd–Co metallic glasses [11].
Unlike other RE metals such as Tb and Dy, Gd has no orbital momentum due to its stable
half-full 4f shell, and thus the interaction among Gd–Co atoms can generally be ignored.
As such, the Curie temperature of the Gd–Co metallic glass system ultimately depends on
the co-effect of the Co–Co direct interaction and Gd–Gd indirect interaction. Considering
that the Tc exhibits a linear relationship with the composition in the Gd–Co metallic glasses,
as shown in Figure 2b, and the concentration of Gd element and Tc are linearly related
according to the RKKY model, the relationship between Co concentration and Tc induced
by the Co–Co interaction should also be linear. It is reported that the Tc variation induced
by the Gd–Gd indirect interaction is nearly equal to the variation of the Tc induced by
the direct interaction between Ni–Ni atoms, which makes the Curie temperature remains
constant near 123 K in the Gd–Ni binary metallic glasses [12]. In contrast, the increase in
Gd content in Gd–Co metallic glasses, that is, the decrease in Co concentration, makes
the Curie temperature decrease linearly from 267 to 179 K because the direct interaction
between Co atoms is much stronger than that of the Ni atoms.

The compositional dependence of the Curie temperature in the binary Tb–Co and
Dy–Co amorphous alloy systems; however, is more complicated because of the existence
of RE–Co interactions [23]. For the binary Tb–Co metallic glasses in the present work, the
Tb–Co interaction is zero either in pure Tb or in pure Co, but exists in Tb–Co compounds,
changing with the composition of the alloy and reaching a maximum value at a certain
composition. As a result, the relationship between Tc and Tb content in the Tb–Co metallic
glass system will not be the linear relationship in Gd–Co alloys. The parabolic-like nonlinear
curve exhibited in Tb–Co binary amorphous alloys is somewhat similar to the one in Dy–Co
binary alloys, indicating the similar variation trend of Tc induced by the RE–Co interaction
in the binary Dy–Co and Tb–Co amorphous alloys.

In our preliminary work, the Gd–Co amorphous alloys are soft magnetic with almost
zero hysteresis because the stable half full electron arrangement in the 4f shell of Gd
atom does not produce orbital momentum and thus Gd has a relatively small magneto-
crystalline anisotropy. In contrast, the unstable electronic arrangement of the 4f shell in
the Tb or Dy atom gives rise to the existence of orbital momentum and produces a large
magneto-crystalline anisotropy, which is expected to result in a relatively high coercivity
at low temperature in Tb–Co and Dy–Co amorphous alloys. As shown in Figure 3a, the
Tb55Co45 amorphous ribbon is hard magnetic with a coercivity of ~326 kA/m at 20 K, soft
magnetic at 95 K and paramagnetic at 160 K. The high coercivity at 20 K is due to the
random magnetic anisotropy (RAM) which exists in Tb-based amorphous system [20–22],
which will lead to the preferential orientation between the magnetic moments, destroy the
macroscopic effective anisotropy directions of the magnetic order and thereby produce
the hysteresis.
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different temperature under a magnetic field of 5 T; (c) zero field (ZFC) M–T curves of the TbxCo100−x (x = 45, 50, 55, 60,
62.5) amorphous ribbons.

In order to reveal the magnetocaloric properties of Tb–Co binary metallic glass and
explore the mechanism of the magnetic behaviors involved in a more intensive way, it is
necessary to measure the isothermal magnetization curves at various temperatures ranging
from a very low temperature of 20 K to a temperature of 160 K above the Tc. To prevent the
effect of magnetization history on the M–H curve at low temperature, the glassy ribbon was
heat treated to eliminate residual magnetism during the measurement process. As shown
in Figure 3b, the initial magnetization obviously increases with the increasing temperature
from 20 to 90 K within a low range of magnetic field before saturation magnetization,
which indicates the spin glass behavior of the Tb55Co45 metallic glasses [19–27]. The spin
glass behaviors of the amorphous TbxCo100−x (x = 45, 50, 55, 60, 62.5) samples are also
illustrated in Figure 3c by their ZFC M–T curves. The spin freezing temperatures of these
samples, as listed in Table 1, can be obtained from their ZFC M–T curves.

According to the isothermal M–H curves of the TbxCo100−x (x = 45, 50, 55, 60, 62.5)
metallic glasses, the −∆Sm vs. temperature under various magnetic fields can be obtained.
Unfortunately, the spin freezing behavior and the high coercivity at low temperature
obviously deteriorate the magnetocaloric properties of these alloys at temperatures below
their spin freezing temperature, even decrease the −∆Sm value to below zero at 20 K.
Therefore, we only study the magnetocaloric behaviors of the reversible part above the
Tf. The −∆Sm vs. temperature plots of the TbxCo100−x amorphous samples under the
fields of 1.5 T and 5 T are demonstrated in Figure 4a. The −∆Sm

peak of the TbxCo100−x
metallic glasses increases with the increasing Tb content but decrease with the increasing
Tc. The −∆Sm

peak values of the TbxCo100−x glassy samples under 1, 1.5, 2, 3, 4 and 5 T are
summarized in Table 1. The −∆Sm

peak values of the Tb62.5Co37.5 amorphous alloy are much
higher than those of the TbCo amorphous ribbons, which is most likely related to the higher
magnetic moment of a Tb62.5Co37.5 amorphous alloy due to its high Tb concentration and
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the high magnetic moment of the Tb3+ ions (~9.72 µB) [28]. Considering the potential
application perspective the linear −∆Sm

peak ∝ Tc
−2/3 relationship in Gd-based amorphous

alloys [10,11,17,29], we constructed the −∆Sm
peak-Tc

−2/3 plots of TbxCo100-x glassy ribbons
obtained from the (−∆Sm)-T plots under 5 T, as shown in Figure 4b. Unlike the linear
relationship between the −∆Sm

peak-Tc
−2/3 plots in the binary Gd–Co glassy alloys, as also

shown in Figure 4b for comparison purposes, the relationship between −∆Sm
peak and

Tc
−2/3 in the Tb–Co binary amorphous samples is more like a para-curve than a linear

relationship. The non-linear change of the −∆Sm
peak and Tc

−2/3 is also considered to be
related to the non-linear relationship between the Tb concentration and Tb–Co interaction
in the Tb–Co binary metallic glasses.
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Figure 4. (a) The (−∆Sm)-T curves of the TbxCo100−x (x = 45, 50, 55, 60, 62.5) amorphous ribbons under the magnetic field
of 1.5 T and 5 T; (b) the linear fittings of Tc

−2/3 vs. −∆Sm
peak plots for the Gd–Co and Tb–Co amorphous alloys.

4. Conclusions

In summary, the compositional dependence of Tc and −∆Sm of the amorphous
TbxCo100-x (x = 45, 50, 55, 60, 62.5) alloys, and the mechanism involved, were investi-
gated in this paper. The magnetic properties and magnetocaloric effect of the binary Tb–Co
amorphous alloys were measured systematically. Tc of the Tb–Co metallic glasses were
obtained from their FC M–T curves and the dependence of Tc on the composition of the
alloys was constructed. The spin-glass behaviors were observed in the isothermal M–H
curves at low temperature and the ZFC M–T curves of the Tb–Co glassy alloys. To prevent
the deterioration of the magnetocaloric properties by spin freezing behaviors, the (−∆Sm)-T
curves of the TbxCo100-x glassy alloys were established above the spin freezing temperature.
Based on these results, the −∆Sm

peak vs. Tc
−2/3 plots for the Tb–Co systems were obtained.

It can be discovered that the compositional dependence of Tc and the −∆Sm
peak vs. Tc

−2/3

plots in Tb–Co binary metallic glasses does not follow a linear relationship compared with
the Gd–Co binary metallic glasses, which is mostly due to the non-linear compositional
dependence of Tb–Co interaction due to the existence of orbital momentum in Tb.
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