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Abstract: In recent years, the overuse and exploitation of coal resources as fuel in industry has caused
many environmental problems as well as changes in the ecosystem. One way to address this issue
is to recycle these materials as an alternative to aggregates in concrete. Recently, non-destructive
tests have also been considered by the researchers in this field. As there is limited work on the
evaluation of the compressive strength of concrete containing coal waste using non-destructive tests,
the current study aims to estimate the compressive strength of concrete containing untreated coal
waste aggregates using the ultrasonic pulse velocity (UPV) technique as a non-destructive testing
approach. For this purpose, various concrete parameters such as the compressive strength and UPV
were investigated at different ages of concrete with different volume replacements of coarse and
fine aggregates with coal waste. The test results indicate that 5% volume replacement of natural
aggregates with untreated coal waste improves the average compressive strength and UPV of the
concrete mixes by 6 and 1.2%, respectively. However, these parameters are significantly reduced
by increasing the coal waste replacement level up to 25%. Furthermore, a general exponential
relationship was established between the compressive strength and the UPV associated with the
entire tested concrete specimens with different volume replacement levels of coal waste at different
ages. The proposed relationship demonstrates a good correlation with the experimental results.

Keywords: concrete; untreated coal waste; fine recycled aggregates; coarse recycled aggregates;
recycling; ultrasonic pulse velocity (UPV); compressive strength

1. Introduction

The production of global solid waste is persistently accelerating with the advancement
of industry and emerging technology applications, as well as the increase in the human
population. In this regard, coal is considered as one of the most essential sources of energy
throughout the world, the extraction and exploitation of which lead to the production
of waste materials [1,2]. Coal is one of the most abundant resources used to produce
energy. Coal production across the world is about 5.5 billion tons per year, and the volume
produced in Iran reaches about 310 million tons per year. In general, there are three ways
to dispose of such waste in nature: landfills, incineration, and recycling. The latter one has
become a potential solution for the disposal management of such waste [3]. In this respect,
researchers have made great efforts in the field of waste recycling and its reuse in the civil
engineering discipline [4–6]. An efficient method for recycling solid waste is to use them
in concrete; a practice that not only prevents the direct release of the solid wastes into the
environment, but is also able to lower the consumption of quarried aggregates [5,7]. Over
the past years, studies have been carried out on the recycling of various materials such
as scrap tires, polyethylene terephthalate (PET), concrete, glass, etc. in various types of
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concrete. On the one hand, the use of coal waste as a partial replacement of aggregates in
concrete reduces the depletion of natural resources and mitigates environmental hazards.
On the other hand, coal waste can show similar properties to cement due to the presence
of silica and alumina in its composition, and thus improve the mechanical and physical
properties of concrete. Scholars have conducted extensive research on the use of coal waste
as a volume replacement of natural aggregates in concrete. In a study, Cassiano et al. [8]
used coal waste as an alternative to fine aggregates in concrete. They observed that
replacing 25 and 50% of fines with coal waste improved the mechanical properties of
concrete after 28 days. Hesami et al. [9] examined the effect of coal waste on the strength
characteristics of roller concrete. The results indicated that replacing 5% of coal powder
improved the strength properties of concrete for up to 90 days. However, adding 10 and
20% of coal powder reduced the compressive and tensile strengths of roller concrete at
different ages. Karimaie et al. [10] investigated the mechanical specifications of concrete
with coal waste replacing aggregates. It was concluded that the effect of coal waste on
concrete at 5% of volume addition improved the mechanical properties of concrete. The
substitution of aggregates with coal waste increased the average compressive and flexural
strengths by about 3–7 and 5–8%, respectively. In another study, Karimpour [3] evaluated
the effect of untreated coal waste as an alternative to coarse and fine aggregates on the
mechanical properties of concrete. The experimental results showed that adding 5 vol.% of
coal waste enhanced the mechanical properties of concrete, while a further increase of coal
reduced such properties.

On account of the uncertainties present in the strength assessment of concrete speci-
mens, as well as the localized damages induced by weathering, fire, and chemical attacks,
civil engineers are increasingly demanding advanced and reliable methods for the eval-
uation and quality control of the concrete. In this respect, non-destructive test methods
have attracted the attention of civil engineers due to the reduction in testing time, con-
venience of testing, and low cost compared to destructive approaches. Besides, these
procedures have demonstrated promising results in inspecting and evaluating the quality
of existing concrete structures [11–15]. The ultrasonic pulse velocity (UPV) technique is
a non-destructive test method of concrete based on the calculation of ultrasonic pulse
transmission speed within concrete. It has been broadly implemented to estimate various
specifications and integrity of concrete structures [13,14]. Basically, the characteristics of
concrete, including strength, elastic modulus, porosity, depth of surface cracks, defects, and
damages caused by chemical attacks and fire, can be evaluated using UPV [5,16]. The speed
of the ultrasonic pulse is affected by many aspects, such as cement type and content, age of
concrete, water-to-cement ratio, size and type of aggregates, curing method, temperature
of the measuring medium, and the length of measuring distance [15,17,18]. In recent years,
several researchers have focused attention on the ultrasonic pulses in different fields of
study. Washer et al. [19], by examining the experimental results of longitudinal and shear
pulse velocities of cylindrical and cubic concrete specimens, concluded that the velocity
of the pulse is dependent on the presence of fibers, curing method, modulus of elasticity,
and density of concrete. They also proposed that the propagation of ultrasonic pulses at
high frequencies as high as 1 MHz or higher can be launched and received. It was also
stated that increasing the test frequency slightly increases both the longitudinal and shear
pulse velocities. Bogas et al. [18] assessed the compressive strength of lightweight concrete
using UPV. In their research, the pulse velocity of specimens with varying water-to-cement
ratios, type and volume of aggregates, type of pozzolan, and different ages of concrete was
investigated. They could provide pulse velocity ranges according to the type of variable,
and then developed a relationship between compressive strength and UPV in the form
of an exponential function. Thus, a simplified expression for estimating the compressive
strength was recommended, regardless of the concrete type and composition. Despite the
many studies on the estimation of concrete compressive strength using UPV [18–22], there
is little research in the literature on the relationship between compressive strength and
UPV of concrete containing untreated coal waste. Therefore, this study aims to examine the
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performance of the UPV method in estimating the compressive strength and the quality
of specimens containing untreated coal waste. Accordingly, the concrete specimens were
made in 11 experimental groups, and the parameters of compressive strength and UPV at
different ages, and with different percentages of coal waste substituting coarse and fine
aggregates, were investigated. The UPV test was performed on specimens after 7, 14, and
28 days of fabrication.

2. Experimental Program
2.1. Materials and Specimens

In this study, crushed stone was used as coarse aggregate with a maximum nominal
size of 12.5 mm. The crushed sand was also used as fines with a fineness modulus of
2.92 and a maximum grain size of 4.75 mm. The gradation curves of coarse and fine aggre-
gates are illustrated in Figure 1, following the requirements of ASTM C33 [23]. Furthermore,
the properties of the aggregates are reported in Table 1. In addition, untreated coal waste
was utilized as a recycled material replacing coarse and fine aggregates, which was ob-
tained from a Jig concentrator located in the Central Alborz Coal Preparation Plant, Zirab
Northern Iran. Minerals extracted from mining are typically infused with a significant
amount of impurities, the presence of which mostly reduces the mineral grade to such an
extent that it will not have the necessary economic value without processing and upgrading
operations. Jig is one of the gravity upgrading equipment. Despite the implementation of
various gravity concentrators today, Jig has a special role in coal washing due to its high
washing capacity and low operating costs. Untreated coal waste has a dry unit weight of
1.24 g/cm3, compressive strength of about 25 MPa, and fineness modulus of about 2.9. The
chemical properties and the gradation curves of both replacement levels of waste coal used
in this study are presented in Table 2 and Figure 1, respectively. Moreover, Figure 2 shows
an image of the coal waste utilized. In addition, Type 2 Portland cement was purchased
from Mazandaran Cement Factory, Northern Iran. The chemical, physical, and mechanical
characteristics of cement are presented in Table 3.
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Figure 1. Gradation curves of natural and coal waste aggregates.
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Table 1. Properties of natural aggregates.

Aggregate Sand Gravel

Specific gravity (g/cm3) 2.76 2.5
Unit weight (g/cm3) 1.73 1.57
Moisture content (%) 0.3 0.14

Moisture of saturated surface dry (%) 0.5 0.4
Fines modulus (FM) 2.92 -

Sand equivalent value (SE) (%) 82 -

Table 2. Chemical specifications of coal waste.

Items SiO2 AL2O3 Fe2O3 MgO CaO P2O5–P2O3 Na2O K2O MnO TiO2 L.O.I

Untreated Coal waste 37.8 13.14 2.85 0.73 0.76 0.27 0.28 2.02 0.02 1.17 40.96
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Figure 2. Untreated coal waste.

In this study, a total of 99 cubes with 100-mm dimensions were fabricated in 11
experimental groups to evaluate the influence of coal waste on compressive strength and
pulse velocity at 7, 14, and 28 days of concrete age. The test results are the average of three
similar specimens made from the same concrete and tested at the same age.
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Table 3. Properties of cement.

Chemical Properties %

SiO2 21.9
Al2O3 4.86
Fe2O3 3.3
CaO 63.32
MgO 1.15
SO3 2.1

Loss on ignition 2.4

Physical Properties

Specific gravity 3.15
Specific surface (m2/gr) 0.305
Initial setting time (min) 140
Final setting time (min) 190

Mechanical Properties

Compressive strength (MPa) 18.14 (3 days)
28.93 (7 days)
37.17 (28 days)

2.2. Mixing Proportions and Specimen Preparation

The mix design proportions for one cubic meter of concrete, according to the ACI
211.1R specifications [24], are presented in Table 4. As reported in this table, the ratio of
water-to-cementitious materials used for the entire mixes was taken as 0.55. In addition,
the coal waste was considered as a variable in five different volumes of 5, 10, 15, 20, and
25% in the concrete mixing procedure.

Table 4. Concrete mix proportions.

Mix
No.

Mixture
ID

UCW
(%)

W/C
Water Cement Coarse

Agg.
Fine
Agg. UCW

Slump (mm)
(Kg/m3)

1 CS 0 0.55 215 391 854 855 0 80
2

G-J-S

5 0.55 215 391 811.3 855 32.04 80
3 10 0.55 215 391 768.6 855 60.70 70
4 15 0.55 215 391 725.9 855 86.00 75
5 20 0.55 215 391 683.2 855 107.92 80
6 25 0.55 215 391 640.5 855 126.47 82

7

S-J-S

5 0.55 215 391 854 812.25 29.11 70
8 10 0.55 215 391 854 769.5 55.15 70
9 15 0.55 215 391 854 726.75 78.14 68
10 20 0.55 215 391 854 684 98.05 60
11 25 0.55 215 391 854 641.25 114.91 58

UCW denotes the untreated coal waste, S-J-S designates the sand jig specimen (fine recycled aggregates), and
G-J-S represents the gravel jig specimen (coarse recycled aggregates).

In order to prepare the concrete specimens, the gravel and sand were first mixed with
coal waste aggregates in the mixer for 1 min. The cement was then added and mixed for
another 1 min. Afterward, water was gradually added to the mixture in 30 s, and the
mixture was stirred for 2 min. After the mixing process, the slump test of concrete mixtures
was measured according to ASTM C143 [25] to specify the workability of freshly made
concrete, the values of which are given in Table 4. Then, the fresh concrete was poured
into 100 mm cubic molds in two layers, each compacted by 25 strokes of a tamping rod.
A vibrating table was used for compaction and the removal of air bubbles. The cubic
specimens were demolded after 24 h and cured under ASTM C192 [26] for at least 28 days.

The notation of the mixtures, listed in Table 4, was carried out based on the test
variables. Accordingly, mix scheme 1 shows the concrete with no coal waste (CS) (con-
trol specimen). Furthermore, gravel is replaced with coal waste in the G-J-S (gravel jig
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specimen) group, and sand is substituted with coal waste aggregates in the S-J-S (sand jig
specimen) group.

2.3. Testing Procedure

An ultrasonic non-destructive electronic machine with an accuracy of 0.1 µs was used
to measure the UPV complying with ASTM C597 [27]. The non-destructive testing of
specimens at the ages of 7, 14, and 28 days was performed to specify the transmission
time of pulse through a direct procedure with a Pundit (PC 1012) testing tool, as shown in
Figure 3. A transducer with an oscillation frequency of 54 kHz, transit time accuracy of
±1%, and distance accuracy of ±2% was used. Refractory grease was added in all tests to
couple the transducers onto the even surface of concrete. Five points were tested on each
specimen by changing the location of transducers on the opposite sides of the specimen,
the average of which was reported as a result. Figure 4 presents the schematic of measuring
points on tested specimens.
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Once the transmission time test results were determined, the ultrasonic pulse trans-
mission speed in concrete was obtained by dividing the transmission distance (distance
between the measuring points) by the transmission time. Subsequently, the compression
test was conducted on cubes at a loading rate of 0.25 MPa/s, conforming to the BS EN
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12,390 specifications [28]. The compressive strength of all specimens was then calculated
in MPa.

3. Results
3.1. Test Results and Discussion

In this section, the relationship between the effective parameters, including the spec-
imen age, coal waste content, and the replacement scheme on the pulse velocity and
compressive strength, is discussed. The results of compressive strength and UPV of con-
crete specimens after 7, 14, and 28 days are presented in Table 5.

Table 5. Test results of ultrasonic pulse velocity (UPV) and compressive strength of concrete specimens.

Mix No. Group Coal Waste 7 Days 14 Days 28 Days

f
′

c (MPa) V(m/s) f
′

c (MPa) V(m/s) f
′

c (MPa) V(m/s)

1 CS 0 26.96 4421 33.66 4541.2 37.85 4641.2

2

G-J-S

5 28.28 4472.4 35.8 4581.4 40.28 4712.4
3 10 26.71 4430 33.24 4554.2 36.8 4629.5
4 15 26.82 4440 33.75 4580 36.74 4640
5 20 22.42 4396.6 29.07 4520 33.65 4624.7
6 25 20.5 4315 26.17 4463.5 29.43 4576.8

7

S-J-S

5 28.41 4560 36.12 4641.7 38.94 4671.7
8 10 26.82 4428 33.72 4580.4 37.98 4641.4
9 15 26.71 4410 32.86 4510.3 35.23 4550.5
10 20 20.47 4354 28.71 4495.1 32.51 4509.3
11 25 19.18 4268.9 23.33 4400 27.81 4440.4

3.2. The Effect of Type and Amount of Coal Waste on UPV

Figures 5–7 illustrate the effect of the type and amount of coal waste on the UPV of
concrete cubes at the ages of 7, 14, and 28 days, respectively. Based on these figures, it
is discerned that the UPV is significantly decreased with increasing coal waste replacing
coarse and fine aggregates. This can be attributed to higher porosity and lower integrity
of concrete in this group. In other respect, the reduction in UPV is associated with small
pores within the coal waste structure that induce a weaker interfacial transition zone (ITZ)
in comparison with the control specimen (with no coal waste). Therefore, these pores and
microcracks reduce pulse velocity. Nevertheless, adding 5% of coal waste has the greatest
effect on increasing the pulse velocity. In addition, according to Figures 5–7 and Table 5,
it is observed that the maximum pulse velocity for the 28-day specimen with 5% of coal
waste replacing coarse aggregates is 4712.4 m/s, which is 1.53% higher compared to the
control specimen at that age. In contrast, the minimum velocity corresponds to the 7-day
specimen with 25% of coal waste replacing fine aggregates, marking 4268.9 m/s. This
value is even lower than that of the control specimen of the same age with a pulse velocity
of 4421 m/s. Figure 6 shows the effect of coal waste on the UPV of concrete after 14 days
of curing. Exchanging 5% of fines with coal waste has the highest effect on increasing the
pulse velocity by 4641.7 m/s, while the minimum velocity shows 4400 m/s, belonging to
the concrete containing 25% of coal waste aggregates. The effect of coal waste on the UPV
of concrete at 28 days is shown in Figure 7. Accordingly, adding 5% of coal waste replacing
coarse and fine aggregates increases the pulse velocity. In this sense, substituting coarse
aggregates with untreated coal waste demonstrates the greatest influence on increasing
the pulse velocity compared to fine aggregates replacement. However, the pulse velocity
of concrete at the age of 28 days is reduced by 1.4–4.3% by replacing more than 5% of
aggregates with coal waste, compared to the control specimen.
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Figure 6. Effect of replacing aggregates with coal waste at the age of 14 days.
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3.3. The Effect of Type and Amount of Coal Waste on Compressive Strength

The effect of the type and amount of coal waste on compressive strength of concrete at
different ages is presented in Table 5 and Figures 8–10. The declining trend of compressive
strength is seen by increasing the replacement level of aggregates with coal waste. The rea-
son for such reduction is the presence of a porous network within the coal waste aggregates
and the absence of hard cement paste–aggregate bond, thus inducing a weaker (Interfacial
Transition Zone) ITZ as to the control specimen. Therefore, when concrete is exposed to
compression loading, cracking initiates rapidly around the recycled aggregates (coal waste),
reducing the compressive strength. Another reason could be the compressive strength of
untreated coal aggregates, being one-third of the natural companions, accelerates the failure
of the specimen by increasing the replacement content [3,10]. Nonetheless, adding 5% of
recycled aggregates improves the compressive strength by about 5.5% compared to the
control concrete. Thereby, 5% of coal waste replacement can be considered as the optimum
amount of recycled aggregates in this investigation, which is observable at all ages. In this
respect, the compressive strength of specimen with 5% of coal waste is increased by about
5.9% compared to that without recycled aggregates. However, the compressive strength of
mixes with 10, 15, 20, and 25% of coarse coal waste aggregates (coal waste replacing natural
coarse aggregates) is decreased by 1.7, 1.1, 13.9, and 22.8%, respectively, in comparison with
the control specimen. Furthermore, the compressive strength of the specimen containing
5% of fine coal waste aggregates (coal waste replacing natural fine aggregates) is increased
by about 5.2% compared to the control specimen. By contrast, the compressive strength of
concrete specimens containing 10, 15, 20, and 25% of fine coal waste aggregates is decreased
by 0.5, 3.4, 17.6, and 28.7%, respectively, compared to the control concrete. Consequently,
the use of coal waste as the volume replacement of sand, as opposed to gravel, has a more
pronounced impact on decreasing the compressive strength of specimens.
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3.4. The Effect of Concrete Age on UPV and Compressive Strength

The results of the pulse velocity test for all specimens after 7, 14, and 28 days of curing
are presented in Figures 11 and 12. Based on these figures, it is observed that the pulse
velocity is increased with increasing the age of concrete, which is likely due to the removal
of capillary porosity and microcracks within the cement paste, as well as the evolution
of hydration process as the concrete ages [10]. According to the literature, improvement
in the cement matrix has a considerable effect on increasing the strength of cement and
concrete. Figure 11 shows the effect of concrete age on the UPV of the G-J-S group. It is
seen that by replacing 5% of coarse aggregates with coal waste at different ages, the pulse
velocity has the highest value compared to other specimens. However, the lowest pulse
velocity at different ages belongs to concrete with 25% of coal waste. Likewise, the effect of
concrete age on the UPV of the S-J-S group is shown in Figure 12. By replacing 5% of fine
aggregates with coal waste, the pulse velocity has the highest measure at different ages,



Materials 2021, 14, 647 11 of 19

while the lowest value belongs to concrete with 20% of fine coal waste aggregates at 7 days.
The lowest pulse velocities at 14 and 28 days are also associated with concrete containing
25% of fine coal waste aggregates.
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Figure 11. The effect of concrete age on the UPV of the G-J-S group.
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Figure 12. The effect of concrete age on the UPV of the S-J-S group.

The relationship between the concrete age and the compressive strength can be seen
separately in Figures 13 and 14 for both replacement series. The results indicate that the
strength gain has an increasing trend, which will even improve over time. According to
these two figures, it can be seen that the compressive strength increases with increasing
the age of the concrete, which is due to the evolution of the hydration process and the
elimination of concrete porosity. Figures 13 and 14 illustrate the effect of concrete age on
the compressive strength in the G-J-S and S-J-S groups, respectively. As natural aggregates
are replaced with coal waste by 5%, the compressive strength is improved. However, as
more coal waste is used in the mix design, the compressive strength is reduced at different
ages. According to the figures, the maximum compressive strength for the 28-day specimen
with a replacement level of 5% of coarse coal waste is 40.3 MPa, which is approximately
6% higher compared to the control specimen at the same age. On the contrary, the lowest
compressive strength for the 7-day specimen is 19.2 MPa with a 25% replacement of fine
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coal waste, indicating an approximately 29% reduction compared to the control specimen
at that age.
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Figure 13. The effect of concrete age on the compressive strength of G-J-S group.
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Figure 14. The effect of concrete age on the compressive strength of S-J-S group.

3.5. Comparing Compressive Strength and UPV

The relationship between the compressive strength and the UPV of concrete specimens
versus curing time is shown in Figures 15–17. The change in the compressive strength
and UPV of concrete as a result of aging is noticeable in the control specimen and those
specimens containing coal waste at 5% of aggregates volume. According to the figures, the
compressive strength and UPV of the specimens demonstrate an almost equal increasing
trend with increasing the age of the concrete. Therefore, using UPV as a non-destructive
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test method, the trend of strength variation can be well estimated as a curing time function.
This fact implies that the compressive strength increases with increasing age of concrete
specimens. Besides, due to the lower extent of porosity, and thus greater integrity of
concrete, the UPV of concrete specimens is increased analogous to the compressive strength.
Additionally, the results indicate that the pulse velocity is higher than the compressive
strength at the early ages, i.e., before 14 days, the value of which is lower thereafter.
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Figure 15. Comparison of UPV and compressive strength in the control specimen (CS).
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Figure 16. Comparison of UPV and compressive strength at 5% replacement of gravel (G-J-S).
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Figure 17. Comparison of UPV and compressive strength at 5% replacement of sand (S-J-S).

3.6. Relationship between Pulse Transmission Speed and Compressive Strength

When UPV is used to characterize the concrete compressive strength, no specific
relationship can be established between them. However, the elastic modulus of concrete is
correlated with the compressive strength. Besides, the UPV is connected with the modulus
of elasticity and density of concrete. Thereby, a priori motive to investigate the concrete
compressive strength based on UPV can be discerned. Several researchers [18,20,21] have
corroborated that the compressive strength is related to UPV in the form of an exponential
function expressed by Equation (1), which also applies to concrete specimens containing
waste materials [5,29,30]:

f ′c = A e(BV) (1)

in which f ′c and V, respectively, denote the compressive strength and UPV. Furthermore,
A and B are the empirical constants. Correspondingly, an exponential curve was plotted
between the data set using the nonlinear regression analysis. Figures 18 and 19 represent
the appropriate exponential functions in developing the relationship between UPV and
compressive strength for the control specimen and those containing coal waste aggregates
without considering the age of concrete. The coefficients of determination (R2) are also
incorporated in these figures for the entire specimens. The closer this coefficient is to 1, the
lower the scatter will be. Table 6 summarizes the empirical constants of A and B, and the
regression coefficients (R2), for all mix designs.
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Figure 18. Relationship between UPV and compressive strength in the G-J-S group.
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Figure 19. Relationship between UPV and compressive strength in the S-J-S group.
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Table 6. Exact values of empirical constants and correlation coefficients in UPV–compressive strength
relationship.

Mix no Group Coal Waste (%) A B R2

1 CS 0 0.0288 0.0016 0.9849

2

G-J-S

5 0.0436 0.0015 0.942
3 10 0.0204 0.0016 0.9954
4 15 0.0235 0.0016 0.9989
5 20 0.0087 0.0018 0.9873
6 25 0.0505 0.0014 0.985

7

S-J-S

5 0.00007 0.0028 0.999
8 10 0.0143 0.0017 0.9877
9 15 0.0041 0.002 0.9986

10 20 0.0124 0.0017 0.9567
11 25 0.0000001 0.0043 1

Nonlinear regression analysis, including all test results of concrete specimens contain-
ing coal waste at different ages, was performed in order to provide a generic relationship
between the compressive strength and the UPV, as expressed by Equation (2). It can be
seen in Figure 20 that this equation has an acceptable coefficient of determination R2 = 0.89.

f ′c = 0.013e0.0017 V (2)
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Figure 20. Experimental relationship between compressive strength and UPV together with test data
for all concrete specimens.

To further assess and validate the proposed model, the compressive strength predic-
tion results were compared in Figure 21 with other experimental research in the literature
(Irrigaray et al. [31], Nematzadeh et al. [32], and Bogas et al. [18]). As shown in Figure 21,
there is an approximately good accord between the results of compressive strength in the
proposed relationship with the experimental results of other researchers so that the results
of Irrigaray et al., compared to the proposed model, are closer to the experimental results
of the present study. In addition, it is worth noting that Equation (2) was obtained by the
nonlinear regression analysis.
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Figure 21. Comparison of the proposed model with experimental values of other researchers in
literature and the present study.

4. Conclusions

In this study, the compressive strength of concrete containing coal waste aggregates
was estimated using the non-destructive ultrasonic pulse velocity approach. For this
purpose, concrete specimens were made in 11 experimental groups, and the parameters of
compressive strength and UPV were investigated at different ages of concrete with different
volume replacement levels of coarse and fine aggregates with coal waste. The results of
this research are as follows:

1. The UPV in concrete specimens is reduced significantly as the replacement level of
coarse and fine aggregates with coal waste is increased. However, UPV is increased
at 5% substitution of coal waste.

2. The compressive strength of specimens is improved as 5 vol.% of natural aggregates is
replaced with coal waste. However, further addition of coal decreases the compressive
strength at different ages.

3. As the age of concrete specimens increases, the UPV gains value. In this respect, the
maximum pulse velocity corresponds to the 28-day specimen with 5% of coal waste
replacing coarse aggregates. In contrast, the minimum velocity belongs to the 7-day
specimen, with 20% of fine coal waste aggregates.

4. The maximum compressive strength for the 28-day specimen with a replacement level
of 5% of coarse coal waste is 40.3 MPa, which is approximately 6% higher than the
control specimen at the same age. On the contrary, the lowest compressive strength for
the 7-day specimen is 19.2 MPa with a 25% replacement of fine coal waste, indicating
an approximate reduction of 29% compared to the control specimen at that age.

5. The exponential relationship between the compressive strength and the transmis-
sion speed of ultrasonic pulses, obtained in this experiment, shows the acceptable
regression analysis results. Therefore, a generic exponential relationship between
the compressive strength and UPV was proposed for the entire concrete specimen
results with different volume replacement levels of coal waste at different ages, which
correlates well with the test results.
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