

Supplementary material

Artificial Weathering Mechanisms of Uncoated Structural Polyethylene Terephthalate Fabrics with Focus on Tensile Strength Degradation

Hastia Asadi 1,*,+, Joerg Uhlemann 1,+, Natalie Stranghoener 1,+ and Mathias Ulbricht 2,+

- ¹ Institute for Metal and Lightweight Structures, University of Duisburg-Essen, Universitaetsstr. 15, 45141 Essen, Germany; joerg.uhlemann@uni-due.de (J.U.); natalie.stranghoener@uni-due.de (N.S.)
- ² Lehrstuhl für Technische Chemie II, University of Duisburg-Essen, Universitaetsstr. 7, 45117 Essen, Germany; mathias.ulbricht@uni-essen.de
- * Correspondence: hastia.asadi@uni-due.de
- ⁺ These authors contributed equally to this work

Table S1. Absorption peaks of polyethylene-terephthalate (PET).

Absorption Peak	Characteristic	
(cm-1)		
3540	Stretching vibration of O-H in hydroxyl end group (hydrolysis product)	
3480	O-H of carboxylic acid	
3290	Stretching vibration of O-H of the carboxyl end (hydrolysis product)	
3256	Carboxyl end group	
2953	Asymmetric stretching vibration of C-H of methylene (-CH2- in ethylene glycol) and stretching aliphatic vibration in the amorphous region	
2864	Symmetric stretching vibration of C-H of methylene (-CH2- in ethylene glycol) and stretching aliphatic vibration in the crystalline region	
2650	-C-H of aldehyde	
2258	Extent of crystallization (hydrolysis)	
1760	C=O of aldehyde	
1720	C=O of ester	
1711	C=O of carboxylic acid, and carbonyl stretching as a signature of chain scission	
1688	C=O of COOH	
1576	Stretching vibration of C=O carbonyl group of carboxyl acid	
1454	Bending (scissoring) vibration of C-H of the methylene (-CH ₂ - in ethylene glicol), bending of –CH ₂ - in the	
1376	Manning site site site site site and the sector of the site site site site site site site sit	
	wagging vibration of C-H of the methylene (-CH2- in ethylene givcoi), wagging vibration of -CH2- in the	
1343	ethylene giycol segment in the amorphous region, gauche conformer of ethylene giycol	
	ethylene glycol segment in the crystalline region, trans conformer of ethylene glycol	
1233	C-O of carboxylic acid (by product of photodegradation in both Norrish type I and II), stretching vibration of C-O of carboxylic acid	
1090	Symmetric stretching vibration of C-O of ethylene glycol (O-CH2), and gauche form in the amorphous region	
1018	In plane ring deformation $(C-H)$ in the amorphous phase	
972	Asymmetric stretching vibration of C-O of ethylene glycol (O-CH2), and trans form in the crystalline region	
898	Rocking vibration of C-H of the methylene (-CH2-) in the ethylene glycol) in the amorphous region, gauche form of ethylene glycol	
837	Rocking vibration of C-H of the methylene (-CH ₂ -) in the ethylene glycol) in the crystalline region, trans	
	form of ethylene glycol	
718	Out of plane bending vibration of ring (C-H), in-plane bending vibration of benzene ring	
498	Stretching vibration of C-C between ring and ester group	
1343/1376	Crystallinity index	
100 × (973/1018)	Degree of crystallinity	

Warp Direction			
$t \rightarrow Ts$	$Ts = -6 \times 10^{-8} t^3 + 1.7 \times 10^{-4} t^2 - 0.17 t + 62.57$		
$t \rightarrow M_n$	$M_n = -6.26 \times 10^{-6} t^3 + 0.024 t^2 - 19.13 t + 26802.46$		
$M_n \rightarrow Ts$	$Ts = 0.01 M_n - 142.05$		
$t \rightarrow M_n \rightarrow Ts$	$Ts = -4.72 \times 10^{-8} t^3 + 1.42 \times 10^{-4} t^2 - 0.14t + 60.04$		
$t \rightarrow Chain scission$	$Cs = 1.9 \times 10^{-10} t^3 - 6.3 \times 10^{-7} t^2 + 8.1 \times 10^{-4} t + 0.06$		
Chain scission \rightarrow Ts	Ts = -137.57Cs + 65.24		
$t \rightarrow Chain scission \rightarrow Ts$	$Ts = -2.66 \times 10^{-8} t^3 + 8.7 \times 10^{-5} t^2 - 0.11t + 57.38$		
$t \rightarrow C = O \text{ of COOH}$	$CO = -5.4 \times 10^{-12} t^3 - 2.46 \times 10^{-8} t^2 + 7.5 \times 10^{-5} t + 1.48$		
$C = O \text{ of } COOH \rightarrow Ts$	$Ts = -2355.57CO^2 + 6132.08CO - 3863.9$		
$t \rightarrow C = O \text{ of } COOH \rightarrow Ts$	$Ts = 4.87 \times 10^{-13} t^4 + 1.3 \times 10^{-8} t^3 + 7.6 \times 10^{-6} t^2 - 0.06t + 49.64$		
Weft direction			
$t \rightarrow Ts$	$Ts = 2 \times 10^{-9} t^3 + 2 \times 10^{-5} t^2 - 0.05t + 31.873$		
$t \rightarrow M_n$	$M_n = -2.6 \times 10^{-6} t^3 + 0.01 t^2 - 14.82 t + 25217.39$		
$M_n \rightarrow Ts$	$Ts = 0.003 M_n - 55.12$		
$t \rightarrow M_n \rightarrow Ts$	$Ts = -8.86 \times 10^{-9} t^3 + 3.28 \times 10^{-5} t^2 - 0.050 t + 30.64$		
$t \rightarrow Chain scission$	$Cs = -1.11 \times 10^{-10} t^3 + 8.5 \times 10^{-8} t^2 + 5.13 \times 10^{-4} t + 0.09$		
Chain scission \rightarrow Ts	Ts = -52.49Cs + 33.1		
$t \rightarrow Chain scission \rightarrow Ts$	$Ts = 5.85 \times 10^{-9} t^3 - 4.47 \times 10^{-6} t^2 - 0.03t + 28.46$		
$t \rightarrow C = O \text{ of COOH}$	$CO = -7.23 \times 10^{-12} t^3 + 2.18 \times 10^{-8} t^2 - 2.16 \times 10^{-6} t + 0.52$		
$C = O \text{ of } COOH \rightarrow Ts$	$Ts = -5790.49CO^2 + 5089.8CO - 1059.81$		
$t \rightarrow C = O \text{ of } COOH \rightarrow Ts T_S = -2.9 \times 10^{-12} t^4 + 7.26 \times 10^{-9} t^3 - 2.03 \times 10^{-5} t^2 + 0.002t + 21.42$			
$t \rightarrow Crystallinity$	$cry = -1.4 \times 10^{-8} t^2 - 6.9 \times 10^{-6} t + 1$		
Crystallinity \rightarrow Ts	$Ts = 17426.75 cry^2 - 33555.01 cry + 16152.3$		
$t \rightarrow Crystallinity \rightarrow Ts$	$Ts = 3.35 \times 10^{-12} t^4 + 4.18 \times 10^{-9} t^3 - 1.77 \times 10^{-5} t^2 - 0.01t + 24.38$		

Table S2. Direct and multi-step pathway equations for the tensile strength deterioration of PET type II under artificial exposure M4, t: time of exposure (hour) and Ts: tensile strength.