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Abstract: Our recently developed non-destructive imaging technique was applied for the charac-
terisation of nanoparticles synthesised by X-ray radiolysis and the sol-gel method. The interfacial
conditions between the nanoparticles and the substrates were observed by subtracting images taken
by scanning electron microscopy at controlled electron acceleration voltages to allow backscattered
electrons to be generated predominantly below and above the interfaces. The interfacial adhesion
was found to be dependent on the solution pH used for the particle synthesis or particle suspension
preparation, proving the change in the particle formation/deposition processes with pH as antici-
pated and agreed with the prediction based on the Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory. We found that our imaging technique was useful for the characterisation of interfaces hidden
by nanoparticles to reveal the formation/deposition mechanism and can be extended to the other
types of interfaces.

Keywords: scanning electron microscopy; backscattered electrons; electron flight simulation; nanopar-
ticles; synthesis

1. Introduction

Nanoparticles have been synthesised on metallic electrodes and (non-)conductive
substrates. Their properties are known to be controlled by their interfacial structures
governed by their formation processes. To date, these interfaces have been predominantly
imaged by destructive methods, which can achieve nanometric resolution. As reported
earlier [1], the highest resolution can be achieved by (scanning) transmission electron
microscopy ((S)TEM) and atom probe imaging. These methods have been used commonly
for the nano- to atomic-scale analysis of the junction interfaces. However, they require
samples to be milled for electron transparency, introducing possible strain and defects
during the sample preparation and hindering the direct correlations between the interfacial
structures and electromagnetic properties. Electron beam-induced and -absorbed currents
(EBIC and EBAC, respectively) has also been used, especially in semiconductor industries,
but they are limited to transport properties with the most conductive layer with a sub-
micron resolution.

On the other hand, our recently developed non-destructive imaging method can be
performed by controlling the acceleration voltage in scanning electron microscopy (SEM)
without modifying a sample and a device [2]. This method achieves a high in-plane
resolution of a few nm without any additional requirements of sample preparation for
imaging. By controlling the electron acceleration voltages in SEM, the penetration depth
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of the electron beam can be manipulated. The corresponding generation of secondary
electrons (SEs) and backscattered electrons (BSEs) are generated within the electron plume
introduced. Since SEs can be surface sensitive via following scattering processes within
the specimen, BSEs are detected in this non-destructive imaging method using an energy
filter. Recently, we have demonstrated in situ imaging capability under the current-voltage
applications, allowing direct comparisons with the defects and the electrical transport
properties [3]. Further, the combinations of spectroscopic and scattering/reflective chemical
analysis allowed us to evaluate the origins of the defects, which is ideal as a quality
assurance for nano-electronic industries. The defect details and the corresponding transport
properties can be fed back to the processes of the device fabrication processes, improving
the yields [4].

In this study, we applied our method to the characterisation of nanoparticles. We
prepared two types of nanoparticles by X-ray radiolysis and the sol-gel method. By imaging
these nanoparticles using our method, clear differences in their interfacial structures were
found. They revealed the differences in their formation processes during the synthesis
or particle suspension preparation, and confirmed the formation/dispersion models pre-
dicted depending on the solution pH used for the particle synthesis or particle suspension
preparation. Hence, our imaging method can be highly useful for the understanding of the
particle synthesis/dispersion processes and can be fed back to the process optimisation of
nanoparticle systems.

2. Synthesis of Nanoparticles and Preparation of Nanoparticle Suspensions
2.1. X-ray Radiolysis

X-ray radiolysis was used to synthesise nanoparticles using beam line BL8S2 at the
Aichi Synchrotron Radiation Center, Aichi Science & Technology Foundation. As detailed
in our previous publication [5], a 100-mL aliquot of 0.37 mol/L (M) Cu(COOCH3)2 (FUJI-
FILM Wako Pure Chemical Corporation, Osaka, Wako 1st Grade, Japan) was prepared by
diluting the stock solution and mixed with methanol with the volume ratio shown in Table
1. In total, 20 µL of these solutions were spread on Si/SiO2, n-Si, or Cu substrate, followed
by the exposure of 5 min of synchrotron X-ray radiation to synthesise nanoparticles. X-ray
irradiation can generate radicals from the radiolysis of liquids and secondary electron gen-
eration from substrates dipped in metallic liquid solution. There are some possible routes
for the nucleation, ripping, growth, aggregation, and immobilisation of the particles onto
the surface of substrate. In particular, near the substrate surface and the interface between
the particles and the substrate, the nucleation, growth, and aggregation of these particles
can be controlled by the X-ray irradiation significantly. Therefore, this investigation by
non-destructive imaging is significantly worthwhile for the understanding of the physical
and chemical mechanisms for the synthesis of particles. Simultaneously, this study can also
provide the clue to control the synthesis and immobilisation of the particles.

Table 1. List of nanoparticles synthesised by X-ray radiolysis.

Samples Cu(COOCH3)2 Volume Additive Solution and Volume Substrates

#1 200 µL Methanol 1 µL Si/SiO2
#2 200 µL Methanol 1 µL n-Si(001)
#3 200 µL Methanol 1 µL p-Si(001)
#4 200 µL Methanol 1 µL n-Si(111)
#5 200 µL Methanol 1 µL Ni
#6 200 µL Methanol 1 µL Al
#7 200 µL Methanol 1 µL LiNbO3
#8 200 µL Methanol 1 µL PTFE
#9 900 µL Methanol 5 µL + NH3 100 µL (pH = 8) Si/SiO2
#10 900 µL Methanol 5 µL + NH3 200 µL (pH = 9) Si/SiO2
#11 950 µL Methanol 5 µL + NH3 50 µL (pH = 7) Si/SiO2
#12 500 µL Methanol 5 µL + NH3 500 µL (pH = 11) Si/SiO2
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2.2. Nanoparticle Synthesis by the Sol-Gel Method and Suspension Preparation

Monodispersed silica nanoparticles were prepared by using the method proposed
by [6]. The average particle radius measured by using TEM images was 280 nm and used in
the DLVO (Derjaguin–Landau–Verwey–Overbeek) potential calculation (see Section 3). The
stock solution containing synthesised silica particles was washed several times to minimise
the salt concentration prior to preparation of the desired silica particle suspensions for
investigation with the desired chemical environments. Under the different conditions listed
in Table 2, silica particle suspensions were prepared in aqueous salt solution (1 × 10−2 M
KNO3, Sigma-Aldrich (St. Louis, MO, USA), and their pH was adjusted using HNO3 or
KOH followed by conditioning the suspensions for 30 min. A tiny volume of each sample
was pipetted and deposited on a standard SEM aluminium stub that was left in an oven at
50 ◦C for several hours to let the moisture content evaporate and firmly deposit particles
on the stub by capillary forces with the residual moisture, followed by metallization of the
stub for the sample conductivity.

Table 2. List of the silica nanoparticle suspensions studied.

Samples Preparation Methods

Tug 2 Silica 0.1 vol.%, 1 × 10−2 M KNO3, pH10
Tug 3 Silica 0.01 vol.%, 1 × 10−2 M KNO3, pH10
Tug 5 Silica 0.1 vol.%, 1 × 10−2 M KNO3, pH2
Tug 6 Silica 0.01 vol.%, 1 × 10−2 M KNO3, pH2

3. DLVO Potential Calculation

Potential energy calculation between (a) two silica particles or (b) aluminium stub/plate
and a silica particle was performed using the DLVO (Derjaguin–Landau–Verwey–Overbeek)
theory, which is a well-known theory for describing the material interactions with the sum-
mation of the van der Waals potential (VA) and electrical double layer potential (VR) [7,8].
If the total potential energy (VT = VA + VR) is high and positive, particles repel each other;
otherwise, particles attract each other. This is a straight-forward theory, which can explain
particle coagulation/dispersion in many different colloidal systems, e.g., [9–15]. In our
previous study that is relevant to the present study, the DLVO theory was also applied
to investigate the particle–particle interactions in the system with the small quantity of
water present in agglomeration processes [13]. The following paragraphs will introduce
and explain the equations used for the potential energy calculation.

Equations used to calculate the potential energies between similar spherical particles [7,8]:

VA = − Aa
12H

(1)

VR =
64πankTγ2 exp(−κH)]

κ2 (2)

n = NAC (3)

κ =

(
8πnz2e 2

εε0kT

) 1
2

(4)
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γ =
exp

(
zeζ
2kT

)
− 1

exp
(

zeζ
2kT

)
+ 1

(5)

where A is the Hamaker (J) constant, a is the particle radius (nm), H is the inter-particle sep-
aration distance, n is the number concentration of ions (nm−3) defined in Equation (3), NA
is the Avogadro’s number (6.022 × 1023 mol−1), C is the concentration of ions (mol/nm3),
k is the Boltzmann constant (1.38 × 10−23 J/K), T is the absolute temperature (K), γ is
the reduced surface potential (unitless), κ is the Debye–Huckel reciprocal length (nm−1)
defined in Equation (4), ε is the dielectric constant of the medium, ε0 is the permittivity
of free space (C/Vnm), z is the ionic valence, e is the elementary charge (C), and ζ is the
zeta potential (V). The zeta potential values of silica particles [16] and aluminium plate [17]
were extracted from the literature and used for the present calculation.

Equations used to calculate the potential energy between plate and spherical particle
interactions [18] (in our case, the interaction between the aluminium stub and silica particle):

VA = − A
6

(
a
H

+
a

H + 2a
+ ln

(
a

H + 2a

))
(6)

VR =
128πankTγsγp exp(−κH)]

κ2 (7)

where γs and γp are the reduced surface potential of the sphere and plate (unitless), respectively.
In this article, the calculated total potential energies were normalized by the thermal

fluctuation energy (kT). For the dissimilar plate-particle systems, the Hamaker constant
A132 was calculated by using the following Equation [19]:

A132 =
(√

A11 −
√

A33

)(√
A22 −

√
A33

)
(8)

where A11 is the Hamaker constant of particle 1 in vacuum, A22 is the Hamaker constant of
particle 2 in vacuum, and A33 is the Hamaker constant of water in vacuum. These values
were obtained from the literature [19,20].

4. Non-Destructive Imaging

As described in Section 1, the acceleration voltage of the electron beam in SEM
was precisely controlled to achieve the corresponding penetration into the layer above
and below the buried interface to be investigated. The detailed procedures of the non-
destructive imaging we recently developed can be found in [3]. An electron flight simulator,
CASINO [21], was used to calculate the number of BSEs to be generated in nanoparticles.
For the cupric and silica nanoparticles investigated in this study, the simulations show that
BSEs can be generated in the vicinity of the nanoparticle–substrate interfaces by introducing
an electron beam accelerated at a series of voltages between 18 and 20 keV and between
8.1 and 8.5 keV, respectively. For the latter case for example, as shown in Figure 1a, BSEs
are generated predominantly within the nanoparticles at 8.1 keV, while more BSEs are
generated from both the nanoparticles and the substrate at 8.5 keV (see Figure 1b). After
the lower-acceleration SEM image is subtracted by the higher-acceleration SEM images,
buried interfaces can be revealed.
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Figure 1. Backscattered electrons generated by the electron beam impacted on the nanoparticles
at the acceleration voltages of (a) 8.1 and (b) 8.5 keV. These histograms are simulated by CASINO
program [20].

5. Nanoparticles Synthesised by X-ray Radiolysis

The nanoparticles, #1 and 6, were imaged as shown in Figure 2a–h, respectively. These
images were produced after subtracting two SEM images, which have been taken using
different acceleration voltages of 18 and 20 keV. These images need to be aligned, which
was carried out by adjusting the positions of the nanoparticles within the orange box
shown in each image. The colour changes from magenta to green indicate that there are
defects or vacancies within the subtracted image. The magenta colour shown at the edge
of the particles in these images is due to its spherical shape as there is no intimate contact
between the edge of the particles and the substrate. In addition, the bright and dark regions
represent the number of BSEs generated to be more and less, respectively.

Figure 2a shows almost white and bright contrast at the nanoparticle–substrate inter-
faces, indicating that the interfaces are uniformly formed to generate a sufficient number
of BSEs. Some arm-shaped regions appeared in magenta and green colours, indicating
BSEs are generated above and below the interfaces, respectively. The magenta- and green-
coloured features may indicate that the arm regions of the nanoparticles can be detached
by voids. This may suggest that these arms can be formed once the main body of the
nanoparticle (the middle region) is formed.

Figure 2b shows the nanoparticles synthesised on a n-doped Si(001) substrate with
a sheet resistance of 1~10 Ω·cm. The size of the nanoparticles is found to be slightly ran-
domised but maintains elongated shapes as seen in Figure 2a. The nanoparticle–substrate
interfaces show broad distributions of contrast. This indicates that some nanoparticles
with white bright interfaces are formed in the same manner with those synthesised on the
Si/SiO2. However, additional nanoparticles may have moved to form clusters, possibly
due to the conductivity of the substrate.
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of 18 and 20 keV on the samples grown on (a) Si/SiO2, (b) n-Si(001), (c) p-Si, (d) n-Si(111), (e) Ni, (f) Al, (g) 128◦ Y-cut LiNbO3 and
(h) PTFE substrates.

By replacing the substrate with p-doped Si(001) with a sheet resistance of 1~20 Ω·cm,
the clustering of the nanoparticles is slightly suppressed by increasing the separation
between the nanoparticles as shown in Figure 2c. The shape also becomes square like. The
interfaces stay uniform. Their elongation is recovered by synthesising them on n-doped
Si(111) as shown in Figure 2d, promoting triangular-shaped particles with closer clustering
like those on n-Si(001).

On the other hand, the nanoparticles synthesised on the metallic Ni substrate show
white bright contrast with magenta colour only without any arms as shown in Figure 2e.
The shape and size of the nanoparticles are found to be almost cubic with three-fold
symmetry as observed for the Si substrates as described above. Similar structures with
more elongation are observed for the Al substrate as shown in Figure 2f. Randomly formed
nanoparticles are observed for those synthesised on a 128◦ Y-cut LiNbO3 substrate (see
Figure 2g). In addition, some distorted particles are observed as immobilised on the
LiNbO3 substrate. They may be due to the chemical interactions with Cu(COOCH3)2 and
difference in crystallinity between LiNbO3 and cuprates. They become elongated on Al and
polytetrafluoroethylene (PTFE) substrates. These results indicate that secondary electrons
from the substrates by the X-ray introduction may contribute to the nucleation, growth,
and aggregation of nanoparticles. It should be noted that all these samples maintain
consistent interfaces.

Since prominent elongated arm-like features were obtained for those synthesised
on Si/SiO2 substrates, we further imaged nanoparticles synthesised under a series of pH
between 7 and 9. Figure 3a shows almost white bright contrast at the nanoparticle–substrate
interfaces for the Y-shaped nanoparticle, confirming that the interface is uniformly formed
to generate a sufficient number of BSEs. There are some minor distributions in colour,
where some voids exist at the interface. The inverse Y-shaped nanoparticle is found to be
formed on the Y-shaped one as the inverse Y-shaped one has darker contrast, indicating
the corresponding interface generates less BSEs, i.e., possible presence of voids.

A similar interfacial structure is observed by increasing pH to 9 as shown in Figure 3b.
The contrast between the Y-shaped and inverse Y-shaped nanoparticles become weaker,
meaning the interface for the latter one reduces the voids, i.e., the formation of a uniform
interface. At the same time, each arm becomes more granular than that for the sample
synthesised at pH = 8. This means the nanoparticle with the two overlapping Y-shapes is
formed by clustering small circular particles to grow along six crystalline facets.
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For pH = 7, the growth along the six facets becomes weaker to form less elongated
arms as seen in Figure 3c. Again, the bottom Y-shaped nanoparticles have stronger adhesion
to the substrate than the inverse Y-shaped one. By increasing pH to 11, the nanoparticles
become almost like a sphere by attaching only the bottom centre of them. These results
suggest that these cuprates are formed from triangular seed crystals, followed by preferred
facet growth along the three directions. These cuprates grow in a Y-shape, whose arm
length depends on the substrate and pH, which control the mobility of the seed crystals. By
rotating 60◦ the Y-shaped cuprates to overlap each other, two of them can form a hexagonal
structure [5]. These results shown here indicate that the composition and crystal shape of
the synthesised and immobilised cupric nanoparticles are dependent on the conductivity
of the substrates and pH of the liquid solutions. The formation of synthesised crystal can
be modified when the relative order of the surface energies is altered or when the crystal
growth along certain directions is selectively hindered. These results suggest that the
selection of surface crystal structures and the electronic states of substrates play a dominant
role in controlling the synthesis of nanoparticles.

6. Nanoparticles Synthesised by the Sol-Gel Method and Their Aqueous Suspensions

Suspensions prepared by the nanoparticles created by the sol-gel method were imaged
as shown in Figure 4a–d, respectively, while some additional images were taken for
a sample (i.e., Tug 3) as shown in Figure 5. These images were again produced after
subtracting two SEM images, which were taken using different acceleration voltages of 8.1
and 8.5 keV. On the other hand, the results of the DLVO potential calculation are shown
in Figure 6.
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solution at 25 ◦C, as a function of interparticle separation distance. The unit of the potential, Vt is the
thermal energy, kBT [J].
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In the processed images shown in Figures 4 and 5, in general, the edges of these
particles show bright/white colour, indicating that they generate more BSEs as compared
with the other interfaces. This suggests that the particles are pinned by these edges due to
the capillary force that is often expressed by the neck shape structure between a particle
and a plate in the presence of a small amount of water [22–25]. On the other hand, some
edges are shown in green or magenta colour, indicating that they are detached from the
substrate due to repulsive force that can be explained by the electrostatic interactions
between particles and/or particle and the substrate/stub.

In Figure 4a, some nanoparticles contain grey spots (less BSEs), indicating there are
some defects or vacancies formed at the nanoparticle, substrate, or their interface. Minor
bright edges are observed while other edges in green or magenta are also seen in Tug 2
(Figure 4a), indicating that the nanoparticles are deposited on the substrate with some
instability due to electrostatic repulsion among the highly charged silica particles at pH
10 (Tug 2), as the repulsive DLVO potential interaction among them is shown in Figure 6
(pH 10 SiO2 particle–SiO2 particle; pH 10 Al plate–SiO2 particle). It is more noticeable with
Tug 2 prepared at pH 10 (Figure 4a) than Tug 5 at pH 2 (Figure 4c), and this agrees with
the DLVO potential calculation shown in Figure 6 (pH 10 SiO2 particle–SiO2 particle vs.
pH 2 SiO2 particle–SiO2 particle) explaining the repulsive interaction at pH 10 while the
attractive interaction at pH 2 between SiO2 particles. Here, it is worth mentioning that the
capillary force can be stronger than the attractive DLVO forces [26] (mainly van der Waals
force in our case) in order to keep those particles on the substrate/stub while the repulsive
DLVO forces (electrostatic force in our case) can influence the stability of particle deposition
on the substrate/stub. Similarly, Figure 4c shows almost uniform interfaces at the middle of
the nanoparticles but with some edge defects as shown in the green colour. Tug 5 (Figure 4c,
pH 2) has a more flat structure in comparison with Tug 2 (Figure 4a, pH 10) that forms
multilayer disposition at the same particle concentration of 0.1 vol.%, indicating more
stable adhesion between the silica particles and substrate, as the attractive DLVO potential
interaction among them at pH 2 shows in Figure 6 (pH 2 SiO2 particle-SiO2 particle).

Figure 4b shows similar interfacial contrast but with darker regions at the edges of the
nanoparticles whose suspension was prepared at pH 10 and 0.01 vol.% silica. Furthermore,
some interparticle spots in green colour are observed. This indicates that the silica nanopar-
ticles do not have a perfect spherical shape or have repulsive interactions to separate the
nanoparticles from each other. On the other hand, Figure 4d shows no interparticle spots
in the green colour, indicating attractive interactions between particles as agreed with the
DLVO potential calculation (Figure 6, pH 2 SiO2 particle–SiO2 particle). The more uniform
colour regions are observed in the Tug 3 (Figure 4b) and Tug 6 (Figure 4d) prepared at
0.01 vol.% silica, where there is a higher amount of moisture content than 0.1 vol.% (Tug 2,
Figure 4a and Tug 5, Figure 4c), and it indicated that silica nanoparticles are firmly de-
posited on the stub by the capillary force with the residual water.

In terms of the interactions between the aluminium stub and silica particles, they are
more repulsive at pH 10 and 0.1 vol.% silica particles (Tug 2) than at pH 2 and 0.1 vol.%
silica particles (Tug 5), as shown in Figure 4a,c and agreed with the highly positive DLVO
potential energies in the former sample condition (Figure 6, pH 10 vs. pH 2) and litera-
ture [16]. It can be also explained by the isoelectric point (IEP) of silica, which is around
pH 2, where silica particles can coagulate while pH 10 is where the solution pH is far away
from IEP and thus silica particles repel each other [16]. Comparing between 0.1 vol.% (Tug
2, pH 10) and 0.01 vol.% (Tug 3, pH 10), the former solid concentration provides more
repulsive–instable interactions. It can be explained by the presence of a higher number of
particles that are deposited on the aluminium stub with the repulsive nature of interactions.

SEM images were also taken in the other three different areas for each sample to
confirm the representativity of the observed images shown in Figure 5 that are the processed
images of Tug 3 (pH 10, 0.01 vol.%) as an example. No apparent difference is observed for
all the four samples, apart from a minor difference in the particle orientation for the Tug 3.
It can be explained by a non-even particle distribution as shown in Figure 5.
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7. Summary

By using our non-destructive imaging method, we imaged nanoparticles synthesised
by X-ray radiolysis and the sol-gel method. The X-ray radiolysis is found to initiate the
formation of a triangular seed crystal, followed by growth along three facet directions. The
sol-gel method, on the other hand, forms spherical nanoparticles, which are pinned to the
substrate at the interface and clustered randomly. These crystallisation, deposition, and
aggregation processes can be controlled by the substrates, pH, and density as expected and
agreed with colloidal DLVO theory. Our imaging method can offer an ideal feedback to
achieve precise control of the synthesis processes.

Author Contributions: All authors contributed to write this article. A.Y. synthesised nanoparticles
and A.O. prepared nanoparticle suspensions. K.E. made all the imaging. A.H. developed the imaging
method and analysed the images with K.E., A.O. and N.L.H. performed DLVO potential calculation.
All authors have read and agreed to the published version of the manuscript.

Funding: The imaging work is partially supported by Japan Society for the Promotion of Sci-
ence (JSPS)-Engineering and Physical Sciences Research Council (EPSRC) Core-to-core programme
(EP/M02458X/1) and Japan Science and Technology Agency (JST) Core Research for Evolutional
Science and Technology (CREST) (JPMJCR17J5). The authors thank financial and technical support
by JEOL UK to develop the non-destructive imaging. The nanoparticle synthesis and characteri-
sation were partially supported by European Soft Matter Infrastructure (EUSMI) and the visiting
professorship of the Institute for Solid State Physics in the University of Tokyo, respectively.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and available on request with
following the guideline set by the University of York (UK).

Acknowledgments: A.O. wishes to acknowledge his thanks to Schofield for the silica particle
synthesis and Hamane for TEM imaging used for size measurement of silica nanoparticles.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hirohata, A.; Frost, W.; Hillebrands, B. Structural and electro-magnetic characterisation. In Magnetic Materials: Fabrication,

Characterization and Application; Elsevier: Amsterdam, The Netherlands, in press.
2. Hirohata, A.; Yamamoto, Y.; Murphy, B.A.; Vick, A.J. Non-destructive imaging of buried electronic interfaces using a decelerated

scanning electron beam. Nat. Commun. 2016, 7, 12701. [CrossRef] [PubMed]
3. Jackson, E.; Wu, Y.; Frost, W.; Kim, J.-Y.; Samiepour, M.; Elphick, K.; Sun, M.; Kubota, T.; Takanashi, K.; Ichinose, T.; et al.

Non-destructive imaging for quality assurance of magnetoresistive random-access memory junctions. J. Phys. D Appl. Phys. 2020,
53, 014004. [CrossRef]

4. Jackson, E.; Sun, M.; Kubota, T.; Takanashi, K.; Hirohata, A. Chemical and structural analysis on magnetic tunnel junctions using
a decelerated scanning electron beam. Sci. Rep. 2018, 8, 7585. [CrossRef] [PubMed]

5. Yamaguchi, A.; Okada, I.; Sakurai, I.; Izumi, H.; Ishihara, M.; Fukuoka, T.; Suzuki, S.; Elphick, K.; Jackson, E.; Hirohata, A.; et al.
Controllability of cupric particle synthesis by linear alcohol chain number as additive and pH control in cupric acetate solution
using X-ray radiolysis. J. Synchrotron Radiat. 2019, 26, 1986. [CrossRef] [PubMed]

6. Van Blaaderen, A.; Vrij, A. Synthesis and Characterization of Colloidal Dispersions of Fluorescent, Monodisperse Silica Spheres.
Langmuir 1992, 8, 2921–2931. [CrossRef]

7. Derjaguin, B.V.; Landau, L. Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged
Particles in Solutions of Electrolytes. Acta Physicochim. 1941, 14, 633–662. [CrossRef]

8. Verwey, E.J.W.; Overbeek, J.T.C. Theory of the Stability of Lyophobic Colloids; Elsevier Publishing Company Inc.: New York, NY,
USA, 1948.

9. Gotoh, K.; Inoue, T.; Tagawa, M. Adhesion of nylon particles to a quartz plate in an aqueous solution and their removal by
electro-osmosis. Colloid Polym. Sci. 1984, 262, 982–989. [CrossRef]

10. Kallay, N.; Barouch, E.; Matijevic, E. Diffusional detachment of colloidal particles from solid/solution interfaces. Adv. Colloid
Interface Sci. 1987, 27, 1–42.

11. Furusawa, K.; Anzai, C. Heterocoagulation behaviour of polymer latices with spherical silica. Colloids Surf. 1992, 63, 103–111.
[CrossRef]

http://doi.org/10.1038/ncomms12701
http://www.ncbi.nlm.nih.gov/pubmed/27586090
http://doi.org/10.1088/1361-6463/ab47b6
http://doi.org/10.1038/s41598-018-25638-8
http://www.ncbi.nlm.nih.gov/pubmed/29765061
http://doi.org/10.1107/S1600577519010543
http://www.ncbi.nlm.nih.gov/pubmed/31721744
http://doi.org/10.1021/la00048a013
http://doi.org/10.1016/0079-6816(93)90013-L
http://doi.org/10.1007/BF01490031
http://doi.org/10.1016/0166-6622(92)80076-E


Materials 2021, 14, 613 14 of 14

12. Otsuki, A.; Dodbiba, G.; Fujita, T. Two-Liquid Flotation for Separating Mixtures of Ultra-Fine Rare Earth Fluorescent Powders for
Material Recycling—A Review. Colloids Interfaces 2018, 2, 7. [CrossRef]

13. Otsuki, A.; Hayagan, N.L. Zeta potential of inorganic fine particle—Na-bentonite binder mixture systems. Electrophoresis 2020,
41, 1405–1412. [CrossRef] [PubMed]

14. Otsuki, A. Coupling colloidal forces with yield stress of charged inorganic particle suspension: A review. Electrophoresis 2018,
39, 690–701. [CrossRef] [PubMed]

15. Otsuki, A.; Dodbiba, G.; Fujita, T. Two-liquid flotation: Heterocoagulation of fine particles in polar organic solvent. Mater. Trans.
2007, 48, 1095–1104. [CrossRef]

16. Otsuki, A.; Barry, S.; Fornasiero, D. Rheological studies of nickel oxide and quartz/hematite mixture systems. Adv. Powder Technol.
2011, 22, 471–475. [CrossRef]

17. Cherepy, N.J.; Shen, T.H.; Esposito, A.P.; Tillotson, T.M. Characterization of an effective cleaning procedure for aluminum alloys:
Surface enhanced Raman spectroscopy and zeta potential analysis. J. Colloid Interface Sci. 2005, 282, 80–86. [CrossRef]

18. Elimelech, M.; Gregory, J.; Jia, X. Particle Deposition & Aggregation—Measurement, Modelling and Simulation; Butterworth-
Heinemann: Woburn, MA, USA, 1995; pp. 33–67.

19. Visser, J. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Adv. Colloid
Interface Sci. 1972, 3, 331–363. [CrossRef]

20. Bergstrom, L. Hamaker constants of inorganic materials. Adv. Colloid Interface Sci. 1997, 70, 125–169.
21. Drouin, D.; Couture, A.R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2.42—A Fast and Easy-to-use Modeling Tool for

Scanning Electron Microscopy and Microanalysis Users. Scanning 2007, 29, 92. [CrossRef]
22. Flury, M.; Aramrak, S. Role of air-water interfaces in colloid transport in porous media: A review. Water Resour. Res. 2017,

53, 5247–5275. [CrossRef]
23. Xu, Q.; Jensen, K.E.; Boltyanskiy, R.; Sarfati, R.; Style, R.W.; Dufresne, E. Direct Measurement of Strain-dependent Solid Surface

Stress. Nat. Commun. 2017, 8, 555. [CrossRef]
24. Quang, T.S.B.; Leong, F.Y.; An, H.; Tan, B.H.; Ohl, C.D. Growth and wetting of water droplet condensed between micron-sized

particles and substrate. Sci. Rep. 2016, 6, 30989. [CrossRef] [PubMed]
25. Leite, F.L.; Bueno, C.C.; Da Roz, A.L.; Ziemath, E.C.; Oliveira, O.N., Jr. Theoretical Models for Surface Forces and Adhesion and

Their Measurement Using Atomic Force Microscopy. Int. J. Mol. Sci. 2012, 13, 12773–12856. [CrossRef] [PubMed]
26. Sharma, P.; Flury, M.; Zhou, J. Detachment of colloids from a solid surface by a moving air-water interface. J. Colloid Interface Sci.

2008, 326, 143–150. [CrossRef] [PubMed]

http://doi.org/10.3390/colloids2010007
http://doi.org/10.1002/elps.202000136
http://www.ncbi.nlm.nih.gov/pubmed/32643162
http://doi.org/10.1002/elps.201700314
http://www.ncbi.nlm.nih.gov/pubmed/29330873
http://doi.org/10.2320/matertrans.48.1095
http://doi.org/10.1016/j.apt.2011.04.004
http://doi.org/10.1016/j.jcis.2004.08.064
http://doi.org/10.1016/0001-8686(72)85001-2
http://doi.org/10.1002/sca.20000
http://doi.org/10.1002/2017WR020597
http://doi.org/10.1038/s41467-017-00636-y
http://doi.org/10.1038/srep30989
http://www.ncbi.nlm.nih.gov/pubmed/27487977
http://doi.org/10.3390/ijms131012773
http://www.ncbi.nlm.nih.gov/pubmed/23202925
http://doi.org/10.1016/j.jcis.2008.07.030
http://www.ncbi.nlm.nih.gov/pubmed/18684467

	Introduction 
	Synthesis of Nanoparticles and Preparation of Nanoparticle Suspensions 
	X-ray Radiolysis 
	Nanoparticle Synthesis by the Sol-Gel Method and Suspension Preparation 

	DLVO Potential Calculation 
	Non-Destructive Imaging 
	Nanoparticles Synthesised by X-ray Radiolysis 
	Nanoparticles Synthesised by the Sol-Gel Method and Their Aqueous Suspensions 
	Summary 
	References

