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Abstract: The successful restoration of teeth requires a good connection between the inlay and natural
tissue. A strong bond may improve retention and reinforce tooth structure. The purpose of this
study was to evaluate the influence of cement layer thickness on contraction stress generated during
photopolymerization, and to determine the changes in stress state of the cement occurring during
aging in water (over 84 days). Two cements were used: resin composite cement (NX3) and self-
adhesive resin cement (Maxcem Elite Chroma). A cylindrical sample made of CuZn alloy was used
to imitate the inlay. The stress state was measured by photoelastic analysis. The contraction stress
of the inlay restoration was calculated for cement layer thicknesses of 25 µm, 100 µm, 200 µm, and
400 µm. For both tested materials, the lowest contraction stress was observed for the thinnest layer
(25 µm), and this increased with thickness. Following water immersion, a significant reduction in
contraction stress was observed due to hygroscopic expansion. Applying a thin layer (approximately
25 µm) of composite and self-adhesive resin cements resulted in high levels of expansion stresses
(over −6 MPa) after water aging.

Keywords: stress analysis; dental restoration repair; prosthetic dentistry; water absorption

1. Introduction

Damaged teeth which are not able to support basic restorations are typically repaired
using indirect restorations including inlays and onlays [1]. Onlays are applied differently
to inlays in molars with two or even three cusps missing. Unlike crowns, inlays or onlays
cover only the part of the tooth; however, metal-ceramic inlays are better at preserving
natural tissue and tooth vitality, and reducing postoperative sensitivity than crowns, and
they are less invasive. In addition, a gravimetric analysis of removed tooth structure found
less tooth reduction associated with ceramic veneers and onlays compared to all-ceramic
crowns [2,3]. Metal-reinforced systems are very often chosen to manufacture posterior fixed
partial dentures [4]. Such metal-ceramic inlay-retained fixed partial dentures (IRFPDs)
offer a number of advantages such as greater tooth structure preservation, and a lower
risk of gingival irritation and pulp vitality. The method of tooth preparation for inlays or
IRFPDs is similar to that used for indirect preparation of class II cavities [5–8].

The durability of indirect restorations depends upon that of the strength of the bond
between the tooth and the restoration [9]. Hence, to achieve strong, durable adhesion to
dental hard tissues, inlays are cemented with glass ionomer, resin-modified glass ionomer
cements, and resin composite cements [10,11]. For decades, zinc phosphate cement has
been the most commonly-used material for cementing, although resin luting agents have
been proposed as alternatives [12]. It has been reported that resin cements show better
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bond strength to dentin compared with zinc-phosphate or glass ionomer cement [13]. Three
types of resin cements exist based on the adhesion procedure: resin composite cement,
adhesive resin cement, and self-adhesive resin cement [14].

As resin composite cements require multi-step application, which is time-consuming
and susceptible to manipulation errors that may affect bond strength [15,16], self-adhesive
resin cements were designed. This type of material bonds directly to the tooth tissue
without any surface pre-treatment (priming) or conditioning [17,18]. However, following
cementation resin shrinkage caused by polymerization can occur, and this may affect
the integrity of the interface between the resin cement and the tooth structure [13]. The
degree of contraction stress exerted by the resin cement depends on the material; however,
shrinkage stress may be partially relieved, and in some cases, the tooth tissue can be
compressed by hydroscopic expansion of the material caused by water uptake [19].

However, there is little understanding of how metal inlays and luting agents affect
stress distribution in the tooth tissue and the changes that occur during their aging in water.
Especially, if the reconstruction procedure has to be repeated and the possibility of a perfect
fit is limited. In such cases, there is a thicker layer of cement [20]. Composite inlays are
becoming more popular, mainly due to their aesthetic value, and have been used in most
studies on this area [21]; however, a metal inlay was chosen for the present study to negate
the influence of water absorption (associated with composite materials) and clarify the
effect of absorption on the stresses occurring at the interface between the cement layer and
the tooth tissue (epoxy resin).

The aim of this study was to evaluate the influence of cement layer thickness on the
contraction stress generated during photopolymerization. It also evaluated the changes in
stress state occurring during water aging of resin cements using the photoelastic method.

The following null hypotheses were stated:

1. The change in cement volume does not affect shrinkage stress.
2. Water absorption does not affect the state of stress.

2. Materials and Methods

The composition of investigated resin cements was presented in Table 1.

Table 1. The composition of resin cements.

Material Type Composition Curing Time (s) Manufacturer

NX3 Resin composite
cement

TEGDMA, bis-GMA, fluoro-aluminosilicate
glass (67.5% wt./47% vol.), activators,

stabilizers, radiopaque agent
20 Kerr

Maxcem Elite
Chroma

Self-adhesive resin
cement

HEMA, GDM, UDMA, 1,1,3,3-tetramethylbutyl
hydroperoxide TEGDMA,

fluoro-aluminosilicate glass, GPDM, barium
glass filler, fumed silica (69% wt.)

10 Kerr

TEGDMA—triethylene glycol dimethacrylate, bis-GMA—bisphenol A glycol dimethacrylate, HEMA—hydroxyethyl methacrylate, GDM—
glycerol 1,3–dimethacrylate, UDMA—urethane dimethacrylate, GPDM—glycerol phosphate dimethacrylate.

2.1. Photoelastic Study—The Dependence of the Cement Layer Thickness on Shrinkage Stress

Transparent and photosensitive plates made of epoxy resin (Epidian 53, Organika-
Sarzyna SA, Nowa Sarzyna, Poland) with a Young’s modulus similar to dentin were
used to determine the contraction stress. Orifices 6 mm in diameter were sandblasted
with 50 µm grain corundum (Cobra, Renfert, Hilzingen, Germany) to obtain higher
micromechanical retention.

To achieve layers with uniform thickness, cylindrical samples (simplified inlays) were
used. Cylindrical metal inlays with a height of 4 mm and diameters of 5.20, 5.60, 5.80, or
5.95 mm were prepared. Using such metal inlays, cement layers were obtained with the
following values: 400 µm, 200 µm, 100 µm, and 25 µm. Our previous data indicates that
zirconium, Co-Cr alloy, and CuZn alloy inlay restorations are known to have similar stress
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states [22]. Therefore, due to its ease of processing, CuZn alloy (type MM54, Huta Będzin,
Będzin, Poland) was selected for inlay production. Metal inlays were sandblasted with
50 µm grain corundum and then cleaned in isopropyl alcohol (Organika) in the ultrasonic
cleaner (EasyClean, Renfert GmbH, Hilzingen, Germany). Next, the bonding system
(OptiBond® XTR, Kerr) was applied on both the inlay and the surface of the plate and then
polymerized with a light curing unit (Elipar S10, 3M ESPE, St Paul, MN, USA). The orifices
were filled with resin composite cement or self-adhesive resin cement (for the test group,
respectively) and selected inlays (with different dimensions) were inserted. Three samples
were prepared for each tested group. The polymerization was performed according to the
manufacturer’s instructions (Table 1). The light curing units had an output irradiance of
1450 mW/cm2, as stated by the manufacturer.

The stress acting at the interface around the inlays was determined indirectly by
using the photoelastic method with a circular transmission polariscope (FL200, Gunt,
Hamburg, Germany). The generated strains were visualized in photoelastic images, which
were registered by a digital camera (Canon EOS 5D Mark II, Canon Inc., Tokyo, Japan).
Stress and strain were analyzed two-dimensionally for stresses and three-dimensionally for
deformations. The radial (σr), circumferential (σθ), and shrinkage stresses were calculated
as described previously [23–25]. In total, 30 samples were tested.

2.2. Photoelastic Study—Influence of Water Absorption on Stress State

A 5.95 mm diameter inlay (25 µm cement thickness) was chosen as a sample with the
lowest stress state, and a 5.60 mm inlay (200 µm cement thickness) as one with the highest
stress state.

The epoxy resin plate with drilled and sandblasted orifices was placed in a container
with distilled water and sealed in a laboratory incubator (CLW STD 115 STD, POL-EKO) at
37 ◦C for three months. This procedure allowed for full water absorption.

After three months, the soaked plates were removed from the incubator and their
orifices were dried with compressed air and isopropyl alcohol. Samples were taken and
the stress state was determined by the photoelastic method [22–24]. Three samples were
prepared for each tested group. Pictures were taken of the samples; following this, the
samples were placed in a container with water and sealed in a laboratory heater (CLW STD
115 STD, POL-EKO) at 37 ◦C. The stress state analysis was repeated after 1, 3, 4, 7, 10, 14,
21, 28, 56, and 84 days. In total 12, samples were tested.

3. Results
3.1. Photoelastic Study—Dependence of Cement Layer Thickness on Shrinkage Stress

The stresses generated during the polymerization of cement in the tested config-
uration, i.e., with metal inlays, are smaller than those generated by the material itself
(Tables 1 and 2). The lowest stresses were observed for the thinnest cement layer (approxi-
mately 25 µm). Increasing the cement layer from approximately 200 µm to approximately
400 µm did not significantly affect the observed shrinkage stress (Figures 1 and 2).

Table 2. Relationship between the values of radial (σr), circumferential (σθ), and shrinkage stresses
and the thickness of self-adhesive resin cement (Maxcem Elite Chroma) layers.

Cement Layer Thickness σr
MPa

σθ

MPa
Shrinkage Stress

MPa

the cement itself 6.6 ± 0.1 −7.9 ± 0.1 14.5 ± 0.1
approximately 25 µm 0.9 ± 0.1 −2.1 ± 0.2 3.1 ± 0.3

approximately 100 µm 2.8 ± 0.4 −4.2 ± 0.7 7.0 ± 0.5
approximately 200 µm 3.8 ± 0.2 −5.4 ± 0.3 9.2 ± 0.5
approximately 400 µm 3.8 ± 0.2 −5.4 ± 0.3 9.2 ± 0.5
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Figure 2. Isochromes in the epoxy plate around the resin composite cement and post-restoration with
different thickness of cement (NX3) layer (25 µm, 100 µm, 200 µm, and 400 µm) around inlays.

3.2. Photoelastic Study—Influence of Water Absorption on Stress State

A significant reduction in the contraction stress was observed, which could be at-
tributed to the hygroscopic expansion of the cements (Figures 3–6). However, the resin
composite cement (NX3) with the 200 µm cement layer demonstrated no expansion stress
associated with water aging (Figure 4). After 84 days water immersion, the self-adhesive
resin cement with the 200 µm cement layer demonstrated lower stress than the cement
with the 25 µm layer.
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cement; the NX3 layer is approximately 25 µm.
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Figure 6. The influence of water absorption (84 days of water aging) on stress state (mean value and
standard deviation) observed on bonded interface between epoxy resin plate and self-adhesive resin
cement; the Maxcem Elite Chroma layer is approximately 200 µm.

4. Discussion

All currently-available resin-based materials demonstrate material shrinkage on appli-
cation due to polymerization [26–28]. Resin cements are similar to low-viscosity composites
which exhibit a relatively high shrinkage (up to 6%) [29,30], and are generally applied as a
thin layer. In addition, cavity preparation in prosthodontic restorations has a high C-factor,
i.e., a low number of unbounded surfaces and high number of bonded surfaces [19,31].
These circumstances may generate sufficient stress resulting in debonding and formation
of microleakage [32]. However, restorations are exposed to oral fluids, which may cause
relief or even over-compensation of polymerization shrinkage [33].

Saliva is a more aggressive environment than water itself, with the resin demonstrating
higher levels of sorption in saliva than in water alone. Additionally, the conditions of
the oral cavity environment can accelerate the hydrolysis of the dental material [34], and
saliva contamination has shown to be detrimental to adhesive bonding. Despite this, saliva
contamination has not been found to influence the properties of composite materials with
regard to their degree of conversion or microhardness [35].

Aging in water has been found to influence the stress state of resin cements [19]. The
greatest water absorption has been observed for self-adhesive resin cement. This material
was shown to induce water absorption, leading to the expansion of the polymer matrix.
This can be explained by the fact that self-adhesive resin cement consists of resins (HEMA
and GDM) which show one of the highest hydrophilicity among dental resin [19,36,37].
Resin composite cement demonstrates similar levels of absorption to composites because it
does not contain adhesive monomers [19,24,25]. Studies have found that the composition
of a material has the greatest impact on its hygroscopic expansion, plasticization, and
resulting compensatory effect [38].

The first null hypothesis, which stated that the change in cement volume does not
affect shrinkage stress, can be rejected. Our results indicate that contraction stresses increase
with the thickness of the layer (Tables 2 and 3). Similar observations have been reported
in previous studies, which indicate that stress development increases with the volume of
material with a constant bonded area [39]. A cement thickness greater than 400 µm does not
appear to have any significant influence on the values of observed stress; such thicknesses
are not used clinically anyway, as film thicknesses greater than 200 µm should be avoided
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due to a tendency to develop maximum stress zones [40,41]. Clinicians should strive to
achieve the best possible match for indirect restorations, i.e., the marginal and internal
fit of the indirect restoration should not exceed 50 µm for resin cements as specified by
the ISO standard [42]. However, sometimes, it is not possible to achieve a perfect, evenly-
distributed cement layer over the entire restoration interface; in such cases, 90 µm-thick
layers are clinically acceptable, and higher values may exist in some places (pointwise) [43].
Even in laboratory conditions is difficult to obtain a cement layer of the same thickness
(e.g., KoNroot Cem min. 49 vs. max. layer thickness 129 µm or Panavia F 2,0 min. 41 vs.
max. layer thickness 80 µm) [44]. The presented study simulated clinical conditions where
the fit of an indirect restoration was not perfect and the thickness of the cement could vary
within the internal fit of the indirect restoration; such a situation may also result from the
debonding of the inlay/onlay. This would result in the need to clean the connecting surface
of the restoration and to re-prepare it with adhesive before re-cementing.

Table 3. Relationship between the values of radial (σr), circumferential (σθ), and shrinkage stresses
and the thickness of resin composite cement (NX3) layers.

Cement Layer Thickness σr
MPa

σθ

MPa
Shrinkage Stress

MPa

the cement itself 3.9 ± 0.4 −5.2 ± 0.5 9.1 ± 0.9

approximately 25 µm 0.7 ± 0.1 −1.8 ± 0.2 2.6 ± 0.3

approximately 100 µm 3.0 ± 0.2 −4.6 ± 0.2 7.6 ± 0.4

approximately 200 µm 3.9 ± 0.2 −5.4 ± 0.2 9.3 ± 0.4

approximately 400 µm 4.8 ± 0.2 −5.9 ± 0.3 10.7 ± 0.5

Two types of inlays were selected for further investigation: those with a cement
thickness of 25 µm to give restorations that fit well clinically, and those with a cement
thickness greater than 25 µm, which fit poorly. The second hypothesis can be rejected. It is
observed that the stress state is affected by water absorption (Figures 3–6). During the water
aging test, it was found that for both tested materials, the use of a thinner cement layer
resulted in a greater absolute stress change (Figures 3–6). The samples with the thinner
layer demonstrate small stresses resulting from shrinkage after polymerization (3.9 MPa
for both cements); however, high expansion stress (over −6 MPa) is observed following
water absorption (Figures 3 and 5). In contrast, the thicker cement layer generated a higher
(7.8 MPa) initial stress state, caused by shrinkage of the material during polymerization;
however, a more than 50% reduction in stress state was noted after three days in water
(Figures 4 and 6). In addition, the system can be stabilized just after one month.

The samples of resin composite cement (NX3) stabilized at a level of 1.6 MPa (Figure 4),
while those of self-adhesive cement (Maxcem Elite Chroma) stabilized at −2.3 MPa, i.e., hy-
droscopic expansion stress (Figure 6). Such shrinkage compensation caused by hygroscopic
expansion can be attributed to the viscoelastic properties of composites. Water absorp-
tion increases relaxation through chemical degradation of the polymers (hydrolysis) and
molecular mobility (plasticization effects) [45]. A thin layer of cement demonstrates greater
restriction, resulting in the effects of hygroscopic expansion being transferred directly to
the bonded materials, with significant changes being observed at the interface between
the cement and the tissues (epoxy resin). In a larger volume of material, contraction stress
compensation may occur and the ultimate stress state at the interface is smaller.

An appropriate cavity design and bonding agent may reduce gap formation. However,
interfacial and/or marginal defects have been commonly observed under bonded indirect
restorations in laboratory studies. Evidence of insufficient marginal sealing has also been
shown in microleakage studies [46]. Hygroscopic expansion following water absorption
relaxes the internal stresses of the resin restoration [19,24,25]. It can also reduce any
gap formed due to polymerization shrinkage [47]. Consequently, the positive effect of
water absorption on the marginal gap size depends on the thickness of the cement and
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composition of the luting materials. Our research indicates that a very thin cement layer
(approximately 25 µm) of resin composite or self-adhesive resin cements may create a
significant degree of expansion stress state. A high value of expansion stress may lead to
failure of the tooth structure or ceramic crowns. It was shown that hygroscopic expansion
of the resin modified glass ionomer (RMGIC) or compomer materials used for both core
build-up or adhesive bonding, caused the failure of all-ceramic crowns [48]. However, the
application of a cement layer measuring approximately 100–200 µm, particularly when
using self-adhesive cements, may result in the development of expansion stress, which
can seal the bond between cement and tooth. If cements characterized by lower water
absorption are used, the initial level of stress will decrease.

The two cements were chosen to assess stress changes under conditions simulating
clinical settings had significantly different levels of generated shrinkage stresses and
water absorption [19,49]; however, despite these significant differences, the samples with
the 200 µm-thick cement layer demonstrated relatively low stress values, due to water
absorption. Hence, the described situation is clinically very favorable.

From the clinical point of view, our findings could improve the selection of an ap-
propriate cement for indirect restorations: the candidate would demonstrate a good level
of specific water absorption that would balance the contraction stresses occurring during
polymerization at the inlay-tooth tissue interface. In some cases, the occurrence of hydro-
scopic compressive stress could support retention of the reconstruction. The hydroscopic
expansion stress, in all cases, reaches insignificant values and, therefore, should not have a
negative impact on the reconstructed tooth.

Our findings suggest that using a thicker cement layer does not necessarily have
a detrimental effect on contraction stress or the retention of prosthodontic restorations,
despite previous reports that increasing the cement thickness from 100 to 300 µm leads to
an increase in the stress magnitude [50]. These findings were also supported by a finite
element study on stress generated by a luting resin during the cementation of ceramic
and composite inlays [51–53]. Our photoelastic study reveals that even though 200 µm
cement layers demonstrate twice the nominal stress values of the 25 µm layers, this stress is
significantly reduced in a relatively short time (i.e., 2–3 days) due to water absorption. With
further water absorption, they reach even lower values than those generated for 25 µm
cement layers for both luting materials with different water absorption [47].

In the present work, some simplifications were made to obtain results that can be
related to clinical conditions. For example, cylindrical samples made from CuZn alloy
(lack of water absorbency) were used to mimic the inlay, epoxy resin plate mimic dentine.
There is currently no suitable tool or adequate method that would allow to study the inlay
restoration stress state and affection of water aging. It is important to underline that all
popular finite element studies of stress in dental restorations use certain simplifications and
assumptions, and that these limit the reproduction of clinical conditions. In addition, in
finite element method (FEM) studies, it is impossible to determine how the stress state will
change under the influence of water absorption [54,55]. The implementation of photoelastic
tests to assess the state of stress at the interface between the dentine and the cement seems
to have greater clinical value than FEM studies primarily because it also takes into account
the conditions in the mouth (temperature and humidity).

These results are also of value when cementing prosthodontic crowns, bridges or posts
and cores. The use of luting cements with higher water absorption values (self-adhesive
cements) [19] may result in expansion stresses. This phenomenon will have a desirable
effect, changing the direction (vectors) of the acting forces from contraction to compressive
stresses, which may improve retention of prosthodontic restorations. Additionally, in
clinical conditions, high compressive stresses should not be expected due to the elastic
properties of tooth tissues: the dentin is an essential part of prepared prosthetic pillar, and
can deform naturally under compressive stress [56,57].
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5. Conclusions

Within the limitations of this study, it was found that thicker cement layers demon-
strate higher contraction stresses. Moreover, applying a thin layer (approximately 25 µm)
of the composite (NX3) and self-adhesive resin cements (Maxcem Elite Chroma) resulted
in high hydroscopic expansion stresses (over ~6 MPa). The use of thicker layers (higher
than 25 µm, but not exceeding 200 µm) may have a positive clinical effect, resulting in
the creation of expansion stress that will potentially influence the sealing of the marginal
gap and enhance inlay-tooth retention. The presented study simulated clinical conditions
where the fit of an indirect restoration was not perfect and the thickness of the cement
could vary within the internal fit of the indirect restoration.
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Clinical Significance: Differences in the thickness of the resin cement (higher than 25 µm, but not
exceeding 200 µm) which might occur in inlay restoration, may have a positive clinical effect by
compensating for contraction stress after a time depending on cement thickness and the composition
of luting materials.
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