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Software 
The two models developed in this work (for polar and nonpolar systems) are pro-

vided as a Python command line interface tool. Download and usage instructions can be 
found in either of the following links: 

• https://www.egichem.com/tools/calculators/d12-polar-nonpolar/ 
• https://github.com/EgiChem/ml-D12-app 
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Table S1. Tested and best hyper-parameter values for each machine learning algorithm. 

ML Algorithm Hyper-parameter Values Tested Best 

k-Nearest Neighbors 

Number of neighbors 3–15 3 
Algorithm auto; ball_tree; kd_tree; brute auto 

Leaf size (BallTree or KDTree algorithm) 3; 5; 15; 30; 40; 50 15 
Weight function  uniform; distance distance 

Decision Tree 

Quality of a split metric mse; mae; friedman_mse mae 
Split strategy best; random best 

Maximum depth of the tree None; 2; 8; 12 None 
Minimum number of samples per leaf 0.1; 2; 5 1 

Minimum number of samples to split a node 0.1; 2; 8 2 
Minimum weighted fraction required for leaf node 0; 0.1; 0.5 0 

Maximum number of features for split auto; sqrt; log2; None auto 
Minimum impurity decrease 0; 0.5; 2 0 

Random Forest 

Quality of a split metric mse; mae mse 
Number of estimators 10; 15; 20; 30; 100; 150 20 

Maximum depth of the tree None; 2; 10 None 
Minimum number of samples per leaf 0.1; 1; 2; 5 1 

Minimum number of samples to split a node 0.1; 2; 4 2 
Minimum weighted fraction required for leaf node 0; 0.1; 0.5 0 

Maximum number of features for best split auto; sqrt; log2; None log2 
Minimum impurity decrease 0; 0.5; 2 0 

Bootstrap samples when building trees True; False False 

Gradient Boosted 

Quality of a split metric friedman_mse; mse; mae mae 
Loss function ls; lad; huber ls 
Learning rate 0.01; 0.1; 0.5 0.01 

Number of trees used in the boosting process 100, 500, 1500, 2500 2500 
Maximum depth of each tree 2; 3; 8; 10; 12 10 

Minimum number of samples per leaf 1; 2; 4 1 
Minimum number of samples to split a node 2; 6; 10; 16 16 

Maximum number of features for split auto; sqrt; log2; None log2 
mse: mean squared error; mae: mean absolute error; ls: least square regression; lad: least absolute deviation; huber: a 
combination of ls and lad. 

 
Figure S1. Predicted versus experimental diffusivities for the test set of polar systems using the 
Multilinear Regression model. 



Materials 2020, 13, 542 3 of 8 

 

 
Figure S2. Predicted versus experimental diffusivities for the test set of polar systems using the k-
Nearest Neighbors model. 

 
Figure S3. Predicted versus experimental diffusivities for the test set of polar systems using the 
Decision Tree model. 
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Figure S4. Predicted versus experimental diffusivities for the test set of polar systems using the 
Random Forest model. 

 
Figure S5. Predicted versus experimental diffusivities for the test set of nonpolar systems using 
the Multilinear Regression model. 
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Figure S6. Predicted versus experimental diffusivities for the test set of nonpolar systems using the 
k-Nearest Neighbors model. 

 
Figure S7. Predicted versus experimental diffusivities for the test set of nonpolar systems using the 
Decision Tree model. 
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Figure S8. Predicted versus experimental diffusivities for the test set of nonpolar systems using the 
Random Forest model. 

 

 
Figure S9. y-Randomization calculations for the selected ML Gradient Boosted models for (a) polar systems and (b) non-
polar systems. The bars show the 𝑄  values for optimized models based on randomized diffusivity data. The dashed 
horizontal lines show the 𝑄  values of the actual models. 
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Figure S10. Calculated versus experimental diffusivities for the test set of polar systems for the Tyn-Calus model. (a) full 𝐷  range; (b) zoomed on lower 𝐷  range. 

  
Figure S11. Calculated versus experimental diffusivities for the test set of nonpolar systems for the Tyn-Calus model. (a) 
full 𝐷  range; (b) zoomed on lower 𝐷  range. 
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Figure S12. Calculated versus experimental diffusivities for the test set of nonpolar systems for the Zhu et al. model. (a) 
full 𝐷  range; (b) zoomed on lower 𝐷  range. 


